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Abstract

Game AI agents are a common sub-field of artificial in-
telligence research. One of the most well known agents is
Alpha Go Zero which achieved superhuman performance
in the game Go without the aid of human supervision. In
this project, we implemented an agent which uses the Monte
Carlo Tree Search algorithm to play the game 2048. We
compared three different value functions: the merge score of
the game (the sum of all merged tiles throughout the game),
the largest tile on the final board of the game (with ties bro-
ken by the sum of the tiles on the final board), and the sum of
all of the tiles on the final board of the game. We evaluated
agents using the percentage of games it achieves the 2048
tile in, the average sum of the final board for the games it
plays, and the average merge score for the games it plays.
We found that using the sum of the tile on the final board
of the game as the evaluation policy allows us to obtain the
largest percentage of games where the tile 2048 is achieved,
largest average sum of the final board, and largest average
merge score.

1. Introduction
2048 is a single-player game played on a 4x4 grid. In

each turn, two events occur: 1) the user must decide how
to slide the tiles, and 2) if the grid changes after the tiles
slide, a random tile with the number 2 or 4 spawns in a free
space on the grid. When the player presses an arrow button,
the tiles slide as far as possible to the corresponding side of
the board until it hits either the side of the board or another
tile. If the tile hits a tile of the same value, they combine
into one tile with double the original value. This combined
tile cannot combine with other tiles in the same move. A
merge score is kept track based on the value of a combined
tile and will increase with every combined tile that is made
throughout the duration of the game.

Overall, the objectives of the game are to maximize the
tile with the largest number on it (or achieve 2048), maxi-
mize the sum of the tiles on the final board, and maximize

the merge score. The game ends when all free spaces are
used up and no two tiles can be merged. In our project,
our goal is to develop a bot which is able to play 2048 well
through reinforcement learning.

The source of randomness in this game is the random
placement of a new tile on a available space on the board
after each turn and whether the tile value is a 2 or a 4. The
bot would need to take into account this uncertainty and
play with a strategy to maximize the largest tile achieved,
the sum of the tiles on the final board, and the merge score.

2. Related Work
Several computer players have been developed for 2048

over the past years. Early players employed a depth-limited
tree search algorithms like minimax or expectimax along-
side an evaluation function [2]. Later, more advanced ap-
proaches came around like that one employed by Szubert
and Jaśkowski who utilized N-tuple networks as the evalu-
ation functions and apply a reinforcement learning method
to adjust the weights of the N-tuple networks [4].

Our work for this paper involves implementing a Monte-
Carlo Tree Search. MCTS is an online, heuristic search
algorithm that finds the optimal decision by running sim-
ulations on the given state and simply choosing the action
that maximize the estimate of the action-value Q(s, a) [1].
This method of reinforcement learning has achieved relative
success in game AIs. Most notably, MCTS has been used in
creating Google’s AlphaGo and AlphaGo Zero. In a similar
approach to AlphaGo Zero, where its neural networks learns
by generating its own training data through simulations of
playing Go, we will play simulations of 2048 to determine
the most optimal direction move for our bot to play [3].

3. Methods
We are able to model the game 2048 as a Markov de-

cision process. 2048 has discrete state and action spaces.
Every valid state is a four by four grid and each cell on the
board is either zero or a power of two. The board is initially
empty except for a tile that can have value 2 or 4. The ac-

1



tion space is up, down, left, and right. Choosing a direction
will push all the tiles in that direction, and any two tiles that
have the same number and are adjacent to each other in the
direction chosen, will be combined into their sum. As men-
tioned in the introduction, the game ends when the board is
full and no more moves can be made, meaning that no more
merges can be made in any direction.

In order to do so, we created a 2048 game class. We
keep track of the game board using a two-dimensional array
along with the merge score of the game. We implemented
functions to check whether or not a game is over, complete
a given move given a board, get the sum of the tiles on the
board, get the largest tile on the board, and get the merge
score of the game.

3.1. Evaluation Methods

When evaluating an agent, we run 100 trials (games). We
consider three different factors to mimic what people may
want to achieve when playing 2048.

Our first factor is the percentage of games which
achieved a maximum tile number that is equal to or more
than 2048: given that the name of the game 2048 is 2048,
many people consider achieving a 2048 tile as winning the
game. Our second factor is the sum of the squares on the
final board, as players may evaluate their final board as a
whole and this incorporates all of the information in the
final state of the board. Our third factor is the average
merge score for the 100 games, where the merge score is
the sum of the values for all squares that were merged to-
gether throughout the game (we use a discount factor of 1).

An agent which achieves a higher 2048 square percent-
age, a higher average sum of final tiles, and a higher average
merge score is considered better performing.

3.2. Baseline

Our baseline model, which we call Random, is a uni-
form random policy that randomly chooses between up,
down, left, and right.

3.3. Monte Carlo Tree Search

We choose to use an online planning approach to solve
2048, as 2048 has an extremely large state space: each of
the 16 cells on the board can take on any either zero or any
power of two. If we consider the limited state space where
the largest number is less than or equal to 2048, the state
space is 1612 ≈ 2.815 · 1014.

More specifically, we chose to create a Monte Carlo
Tree Search solver, which we call MCTS. Usually, when
performing MCTS, we would take the action that maxi-
mizes the upper confidence bound defined by Q(s, a) +

c
√

logN(s)
N(s,a) . Here, Q(s, a) is the action-value function of

taking action a from state s, which we will define as the

state-action pair (s, a). N(s) is the number of times we
have reached a particular state s, and N(s, a) is the number
of times we have chosen to take action a from state s. Fi-
nally, c is an exploration parameter that scales the value of
unexplored actions, and higher values of c are assigned to
actions that we haven’t tried as frequently. However, for the
game of 2048, we can perform several modifications to this
update function. Firstly, we can notice that since 2048 has a
very large state space, it is extremely unlikely that we revisit
a state space that we have previously seen before. This is
supported by the fact that, since we generate a new tile every
time a move is performed and we constantly get larger tiles
as numbers are merged, the total sum on the board keeps in-
creasing, so we can’t revisit a previous state with a smaller
sum of tiles on the board. In our algorithm, at each state,
we perform an equal amount of exploration for each action,
randomizing the rollouts. Consequently, we can see that the
ratio of N(s) to N(s, a) would stay constant. Secondly, ev-
ery time we make a move, we are performing an unexplored
action from an unexplored state. Thus, adding the same ex-
ploration reward for every action we take is equivalent to
not adding the exploration reward across all actions. As a
result, at every step, we take the action that solely maxi-
mizes the action-value function Q(s, a), which we describe
in more detail in section 3.3.1.

Thus, to play a game using the MCTS, we do an itera-
tion of choosing and making a move while the game has not
ended (the board has empty squares or at least two squares
can still be merged). For each of the four available moves,
we first make a deep copy of the board and complete the
chosen move on the copy of the board. If making the move
does not change the board, we disregard that move. If the
move does change the board, we then perform many iter-
ations of rollout. For each rollout, we continue to choose
random moves until the game is complete. We choose the
action which has the highest average value for the rollouts
given the chosen evaluation method. Algorithms 1 and 2
provide the pseudo-code for this approach.

3.3.1 MCTS Value Functions

When playing the game, we considered three different types
of value functions used to determine which action to take at
each step in the game.

The first value function we used was the merge score at
the end of the game, which we also discuss when evaluating
the performance of an agent.

The second value function we used was the largest board
sum at the end of the game, as this metric captures infor-
mation about every number on the board at the end of the
game. As many 2048 players are not aware of the merge
score the 2048 provides, we felt that this more closely rep-
resents the judgement of a human 2048 player at the end of
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Evaluation Policy N.O. Rollouts N.O. Trials
Merge Score 50 100
Merge Score 100 100
Merge Score 250 100
Merge Score 500 100

Total Sum 50 100
Total Sum 100 100
Total Sum 250 100
Total Sum 500 100

Largest Number, Total Sum 50 100
Largest Number, Total Sum 100 100
Largest Number, Total Sum 250 100
Largest Number, Total Sum 500 100

Table 1. Monte Carlo Tree Search Experiments

Algorithm 1: MCTS agent

while a move can still be made do
bestMove := None;
bestValue := None;
for move ∈ (up, down, left, right) do

moveSumValue := 0;
make a copy of the game;
make the move on the copy of the board;
if copy of board is identical to the original

board then
continue;

end
for i ∈ [1, ...,Number of Roll Outs] do

moveSumValue += random(copy of the
game);

end
if sumValue > bestValue then

bestValue := moveSumValue;
bestMove := move;

end
end
make the best move on the board;

end

the game.

The third value function we used was the largest tile at
the end of the game, with ties being broken with the sum of
the tiles on the board at the end of the game. This uses the
idea that one metric some 2048 players use is the highest
number (aligning with one of our evaluation metrics, the
2048 square percentage), and gives a way to break ties.

Algorithm 2: Complete a random run given a starting
2048 board.

make a copy of the board passed in;
while a move can still be made do

choose a random move;
make the random move on the copy of the board;

end
return the value of the copy of the board for the
appropriate method of evaluation;

3.3.2 MCTS Experiments

We were interested in comparing the performance of our
MCTS when we use of our three different value functions.
We were also interested in determining how the number of
rollouts affects the performance of the agent, and choose to
test agents which had 50 rollouts, 100 rollouts, 250 rollouts,
and 500 rollouts per action for each move. We tested an
agent for each combination of value function and number
of rollouts for a total of 12 Monte Carlo agents, each of
which was tested 100 times, as summarized in Table 1.

3.4. Code

If you are interested in more details for our
method, code for our implementations can be found
at https://github.com/nathgoh/CS238-2048.git.

4. Results
4.1. Random Policy

When evaluating our models, we first ran experiments
on the random policy. We simulated 100 full games to find
the average largest tile, sum of the final board, and merge
score. The random policy never reached the 2048 tile, had
a really low average sum for the final board of 262.8, and
had a really low average merge sum of only 942.72. Table
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Evaluation Function 2048% Avg Sum of Final Board Avg Merge Score Run Time
Random 0 262.8 942.72 < 1 sec

Table 2. Results with the random policy baseline model. Tested using computer B.

Evaluation Function N.O. Rollouts 2048% Avg Sum of Final Board Avg Merge Score Run Time
Largest Merge Sum 50 13 1729.42 12647.12 4 hrs 8 min 24 sec
Largest Merge Sum 100 27 2001.1 15205.16 9 hrs 27 min 38 sec
Largest Merge Sum 250 34 2261.44 17516.6 26 hrs 27 min 38 sec
Largest Merge Sum 500 42 2393.54 18740.4 2 days 8 hrs 32 min 52 sec

Table 3. Results with the Largest Merge Score Valuation Function. Tested using computer A.

Figure 1. Average merge score and average board sum occurrences
over rollouts for the three value functions.

2 shows our results for the random policy.

4.2. Monte Carlo Tree Search

We compared three different value functions: the merge
score of the game (calculated by taking the sum of all
merged tiles throughout the game), the sum of all of the
tiles on the final board of the game, and the largest tile on
the final board of the game (with ties broken by the sum of

Figure 2. 2048 occurrences and average runtime over rollouts for
the three value functions. We ran the experiments for different
value functions of separate computers, with the exception of the
largest tile value function with 500 rollouts which was run using
the computer used for merge score.

the tiles on the final board). We also tested different num-
ber of rollouts (50, 100, 250, and 500 rollouts). We ran 100
trials for each combination of value function and number of
rollouts.

Of the agents we tested, the best performing agent used
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Evaluation Function N.O. Rollouts 2048% Avg Sum of Final Board Avg Merge Score Run Time
Largest Sum of Board 50 11 1781.86 13037.76 6 hrs 17 min 43 sec
Largest Sum of Board 100 19 1971.22 14763.96 14 hrs 21 min 36 sec
Largest Sum of Board 250 36 2329.18 18022.88 1 day 16 hrs 57 min 48 sec
Largest Sum of Board 500 43 2444.58 19107.28 3 days 8 hrs 3 min 17 sec

Table 4. Results with Sum of Tiles on Final Board. Tested using computer B.

Evaluation Function N.O. Rollouts 2048% Avg Sum of Final Board Avg Merge Score Run Time
Largest Tile 50 12 1599.42 11552.04 8 hrs 59 min 27 sec
Largest Tile 100 16 1622.72 11839.96 20 hrs 39 min 30 sec
Largest Tile 250 19 1876.66 14054.12 2 days 9 hrs 31 min 1 sec
Largest Tile 500 22 1927.36 14471.96 1 day 21 hrs 35 min 54 sec

Table 5. Results with the Largest Tile Valuation Function. Tested using computer C except for 500 rollouts, which was tested using
computer A.

the sum of all of the squares on the final board as the value
function and had 500 rollouts, achieving the 2048 tile in
43% percent of its games, an average sum of 2444.58 on
the final board of its games, and an average merge score
of 19107.28 in its games. The agent which used the merge
score of the game as the value function and had 500 rollouts
performed marginally worse, achieving the 2048 tile in 42%
percent of its games, an average sum of 2393.54 on the final
board of its games, and an average merge score of 18740.4
in its games.

We found that the MCTS agents which used these value
functions with any number of rollouts we tested (at least
50 rollouts) had much better performance in all three cate-
gories (percentage of games where the tile 2048 is achieved,
average sum of the final board, and average merge score)
when compared to the random policy, as shown in Tables 2,
3, 4 and 5.

The results of our experiments comparing the three value
functions using different numbers of rollouts can be visu-
alized in Figures 1 and 2 and are documented in Tables 3
(results using the largest merge score as the value function),
4 (results using the sum of tiles on final board as the value
function), and 5 (results using the largest tile on the final
board as the value function).

4.2.1 Comparison of Number of Rollouts

For all three value functions, increasing the number of roll-
outs also increased the performance of the agent across all
three categories: percentage of games where the tile 2048 is
achieved, average sum of the final board, and average merge
score (as demonstrated in Figure 1 and the top plot in Figure
2). This makes sense, as the more rollouts we do, the more
information we are able to gather on each action, so doing

more rollouts allows us to make a more informed decision.
However, the rollouts exhibit decreasing marginal utility

(as demonstrated in Figure 1 and the top plot in Figure 2).
This makes sense, as when we have many rollouts, the new
information provided by an additional rollout increases the
total amount of information by a smaller percentage, since
we have a larger amount of total information.

The runtime scales relatively linearly with the amount of
rollouts we perform (when the same computer is used), as
shown in the bottom plot for Figure 2. This makes sense as
the number of games which we play at each move increases
linearly with the number of rollouts. However, since the
more rollouts we play, the better performing the agent tends
to be, when we increase the number of rollouts, we also
increase the average number of moves in the game (as the
agent is able to progress further in the game before the board
is full and no two squares can be merged). Thus, the runtime
scales a little more quickly than linearly with the amount of
rollouts.

4.2.2 Comparison of Value Functions

The first value function we evaluated calculates the sum of
every merge that occurs. This is the same as the traditional
scoring method for 2048. The results of this value func-
tion are shown in table 3. this value function, when used
with 500 rollouts, reaching the tile 2048 or better 42% of
the time, an average final board sum of 2393.54, and an
average merge score of 18740. As expected, agents with
this value function perform well it comes to getting opti-
mizing the merge score for the game. Yet at the same time,
agents with this value function also performed well in terms
of reaching reaching a tile with 2048 and maximizing the
sum of the total tiles left on the board at the end.
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Our second value function is the sum of all the tiles on
the board when the game ends. We sum the resulting tiles
for each rollout we perform, and choose the action asso-
ciated with the highest average for the sum of tiles on the
final board. Table 4 shows the results for the various num-
bers of rollouts for this value function. At 500 rollouts, we
reached the tile 2048 or better 43% of the time, an aver-
age merge sum of 19107.28, and an average board sum of
2444.58. This valuation function performed slightly better
than the merge score function when 500 rollouts were used,
although this may be also in part due to better random luck:
they performed very similarly when comparing agents us-
ing the same number of rollouts.

For our final value function, we use the value of the
largest tile generated by each run of the game. We choose
the move with the maximum average largest tile. As de-
scribed, we evaluate our agent using the percentage of
games it achieves the 2048 tile, so it is reasonable to pre-
fer states that reach higher tiles. Table 5 shows the results
from this value function. With this value function and 500
rollouts, we reached 2048 only 22% of the time, with an
average merge sum of 14471.96 and an average board sum
of 1927.36. Overall, the agent which used the largest tile
generated as the value function performed the worst out of
our three value functions. Since we get larger tiles through
this process of merging, we would want to encourage the
process. However, in this valuation function, we only care
about the highest number achieved on the board at the end
of the game, so there is less reward for getting more merges
throughout the states. In the end, this method is shown to
be inferior than the other two models.

5. Conclusion
We created an agent which plays 2048 using the Monte

Carlo Tree Search algorithm, comparing three different
value functions: the merge score of the game (calculated
by taking the sum of all merged tiles throughout the game),
the sum of all of the tiles on the final board of the game,
and the largest tile on the final board of the game (with ties
broken by the sum of the tiles on the final board). We found
that the MCTS agents which used these value functions had
much better performance in all three categories (percentage
of games where the tile 2048 is achieved, average sum of
the final board, and average merge score) when compared
to the random policy.

From our experiments for the Monte Carlo Tree Search
algorithm, we can see that the most optimal value function
to use to reach the target of 2048, get the largest sum of
the tiles on the final board, and get the largest merge score,
is the sum of the squares. However, it is also notable that
the merge score valuation function performs nearly as well
as the largest tile function. The largest tile value function,
which only takes into account the largest tile on final board

state, performed the worst.
Finally, we note that increasing the number of rollouts

improves the average final board sum, average merge score,
and percent of games which achieve 2048. However, the
number of rollouts is relatively linearly correlated with the
runtime and there are decreasing marginal returns.

6. Future Work
In our project, we chose to analyze three valuation func-

tions to run with MCTS for a computer to beat the game of
2048. Currently, following the MCTS algorithm, we per-
form a randomized action for each rollout step. Since we
know that the goal of 2048 is to either reach the largest tile,
largest sum of tiles on the final board, and largest merge
score, we can add in heuristics that, at every rollout move,
favor moves that either merge two tiles together, or create
a new largest tile. One additional strategy people tend to
use is to keep the largest tile in a corner, so we can also add
heuristics to simulate this game-play strategy. Of course,
MCTS is only one of the many functions that can be used to
simulate the game. Some other algorithms that can be con-
sidered include expecti-minimax, and using Convolutional
Neural Networks.

Furthermore, many optimizations can be made to our al-
gorithm to make it run faster. For example, on an aver-
age computer, our algorithm took more than 2 days to run
100 trials of 500 rollouts. A computer equipped with faster
processors would allow us to test agents which have more
rollouts for each move, which may allow us to further de-
termine whether or not there would be decreasing marginal
utility for additional rollouts past a certain point.

7. Contributions
Nathaniel helped build the 2048 game class and imple-

mented the baseline algorithm.
Simon added merge score calculations to the 2048 game

and allowed the Monte Carlo Tree Search algorithm to use
different value functions.

Katherine helped build the 2048 game class and imple-
mented the structure for the Monte Carlo Tree Search algo-
rithm.
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