
Monte Carlo Tree Search Applied to Plants vs.
Zombies

Amy Zhang
CS 238: Decision Making Under Uncertainty

Stanford University

Abstract—Plants vs. Zombies poses numerous sources of un-
certainty, including stochastic resource constraints and stochastic
adversarial behavior. In order to succeed in the game, a player
must be able to build up their defenses to handle an exponentially
large variety of situations. This paper introduces an application
of Monte Carlo Tree Search (MCTS) to address the stochastic
and exponential nature of the Plants vs. Zombies game tree. The
performance of MCTS is compared against a stochastic policy
on both a small game board and a large game board. Analysis
of 400 simulated games shows that MCTS greatly out-performs
the stochastic policy, particularly as the size of the game board
increases.

I. INTRODUCTION

Online planning algorithms, such as Monte Carlo Tree
Search, are often used in applications that involve exponen-
tially large state and action spaces. These algorithms compute
estimations of the optimal policy while interacting in their
environment, hence the name online planning. Through using
the reachable state space to generate an action at each step,
these algorithms greatly reduce the computational complexity
and storage requirements that come with analyzing large or
continuous state and action space problems.

MCTS has been proven to be incredibly effective when
applied to finite horizon games such as Go or Chess [1]. Plants
vs. Zombies is a perfect example of a finite horizon game with
a well-defined winning terminal state and loosing terminal
state. Furthermore, there are many elements of uncertainty
inherent in the game such as which lane a zombie will enter
in and whether the player will have enough resources to plant
a defensive plant. Given the exponential branching factor of
the Plants vs. Zombies game tree, other popular reinforce-
ment learning algorithms, such as Q-learning or Sarsa, are
intractable not only from a computation perspective but also
from a data storage perspective. All of these properties made
MCTS a great candidate for this application.

II. RELATED WORK

When applying MCTS to the area of video games, a com-
mon challenge is navigating complex games with ”dynamic
information and complex victory conditions”. An application
of MCTS to the complex game of Kriegspiel is studied in
[2]. Ciancarini et al compared the performance of traditional
MCTS, MCTS which only involved information broadcasted
by one of the players and MCTS with a depth of 1. Both of the
second approaches were able to significantly reduce the noise
of the MCTS simulations. Another complexity, discussed in

[3], are games that require the achievement of sub-goals in
order to maximize rewards at the end of the game. Depending
on the depth of the rollouts, it is possible that MCTS is not able
to incorporate a higher level of planning that involves short
term sacrifices to achieve sub-goals. Waard et al introduced the
concept of an option, which is a policy that allows the player
to achieve a specific subgoal. Using MCTS with progressive
widening Waard et al were able to successfully apply MCTS
to the area of general video game playing. They were able
to demonstrate that MCTS could handle planning at a higher
level of abstraction through having MCTS choose between
options instead of actions at each step.

Another challenge when performing MCTS in game settings
is balancing computation and time constraints at each step
with making sure that MCTS performs enough rollouts to
explore the reachable state space. One solution to this problem,
presented in [4], is rapid action value estimation (RAVE)
which provides a framework for sharing knowledge between
related nodes in the search tree. RAVE does this through
using the all-moves-as-first heuristic which defines a score for
each possible move regardless of when it is played in the
game, thereby allowing repeated actions to be quickly scored
during simulations. Another approach, discussed in [5], is to
use offline MCTS planning to bootstrap deep-learning online
approaches, which tend to perform much more quickly.

III. MODEL

Fig. 1. Traditional version of Plants vs. Zombies.



The traditional version of Plants vs. Zombies (see fig.1)
involves a 5x9 game board, divided into 5 horizontal lanes,
where adversarial zombies enter the game on the right side of
the board and proceed down the rows towards the home that
is one the left side of the board. Should any zombie manage
to make it to the leftmost side of the board, the player loses
and the game is over. The player’s objective is to survive the
night by planting defensive plants that have the ability to harm
and/or kill zombies in their specific rows. In order to obtain
these plants the player must plant sunflowers to generate sun
which can then be used to buy plants. Should a zombie run
into a plant, it begins eating the plant until either the plant is
gone or the zombie is killed. Traditionally, there are 5 types of
zombies with special behaviors and skills and there are 7 types
of plants with special defense mechanisms, plus sunflowers.
This makes for approximately 1445 = 3.76 ∗ 1051 different
game states. This paper will focus on a simplified version of
the traditional game described below.

A. States

This version takes place in either a small 3x3 game board or
large 10x10 game board that is stored in a zero-indexed array
of length 9 or length 100, respectively. There is only one type
of plant and two types of zombies (a strong zombie which
takes two hits to kill and a normal zombie which takes one
hit to kill). This makes for 59 = 1.95∗106 states for the small
board and 5100 = 7.88 ∗ 1069 states for the large board. The
starting state consists of either a strong or a normal zombie
at the rightmost side of the board. The night is modeled as
20 time steps (tend) so the terminal state is reached when 20
time steps have been reached and there are no more zombies
on the board or when a zombie reaches the left side of the
board. Note: even if 20 time steps have been reached, the game
is not over until all zombies have been cleared from the board.

B. Actions

To model the resource constraint of collecting sun, I allow
the player to plant a plant with probability pplant = 0.5 at
each time step. The one exception is the first time step when
the player is given an advantage and is always able to plant
a plant. The player can plant a plant in any cell that is empty
in the current state and the chosen cell’s index is recorded as
the action. If a player is not able to plant a plant or chooses
not to, the action is recorded as n where n is the number of
cells in the game board.

C. Transition Model

I allow the zombies on the board to take a step forward
at each time step with probability pmove = 0.5 to model
the slow nature of the zombies. So long as it is the night,
a single zombie can enter from the left side of the board with
probability pnew = 0.7 at each time step. If a zombie runs into
a plant, the plant disappears and the zombie moves forward.
Once a normal zombie is hit once by a plant it disappears
from the state. The first time a strong zombie is hit by a plant
it becomes a weakened zombie and is still able to advance

leftward until it is hit for a second time and disappears from
the state.

D. Reward Model

The terminal state of a zombie reaching the leftmost side
of the board is assigned a reward of −200 since this is a
the loosing state. The zombies not only win but they eat
the brains of the people in the house, which is very bad.
The terminal state of reaching 20 time steps and clearing the
board of zombies is assigned a reward of 100 since this is
the winning state. The humans merely survive to fight another
day. Throughout the game if a plant kills a zombie, that state
is assigned a reward equal to the number of zombies killed. If
a plant gets eaten by a zombie, that state is assigned a reward
equal to the negative of the number of plants eaten. This is
to model the fact that plants take resources to plant therefore
allowing a zombie to eat a plant is detrimental to the game.
I chose a discount factor of γ = 0.95 to account for the fact
that plants persist throughout the game, unless they are eaten
by a zombie, so the same plant can kill multiple zombies in
that lane.

IV. METHODS

A. Random Policy Simulators

In order to quantify the performance of MCTS in com-
parison to a baseline, two random policy game simulators
were built using the game model outlined above. The first
simulator was aimed at simulating games in the small 3x3
board and the second simulator was aimed at simulating
games in the large 10x10 board. At each time step of
the game, the simulators recorded tuples consisting of the
(state, action, reward, nextstate). Any time a player could
plant a plant (pplant), these simulators planted a plant ran-
domly in any free cell in the current state.

B. Simulators with Monte Carlo Tree Search

Two simulators were also built to apply MCTS to the small
board and large board. Any time a player could plant a plant
(pplant), these simulators ran MCTS from the current game
state and proceeded with the action returned by MCTS. The
details of the MCTS algorithm are described in the following
sections.

C. Selection

Given the current state of the game (s), the algorithm
greedily explores actions that maximize the upper confidence
bound (UCB). In other words, for each iteration of MCTS, the
algorithm chooses to explore the action (a) that maximizes the
UCB, which is defined as follows:

Q(s, a) + c

√
log(

∑
aN(s, a))

N(s, a)
(1)

N(s, a) is defined as the total number of times the algorithm
has taken action a from state s. The hyperparamter c scales
the exploration bonus (second term). The more times we have
taken action a from state s the greater N(s, a) will be and the



smaller this exploration bonus will be. Q(s, a) is the current
estimate of the action value function and will be defined in
the back propagation step. This step will return an index in
the current state in which to plant a plant.

D. Expansion
The expansion step involves generating the state that follows

from taking the selected action a from state s. Given that
a plant is planted in the selection step, this exploration step
involves updating the board if any zombies have been killed,
moving the zombies, and recording whether any plants have
been eaten. In general simulations of the game, the zombies
can only move with probability pmove, however since each
zombie always stays in its own lane and can only ever move
in the forward direction, the algorithm projects the worst case
scenario with zombies moving forward deterministically at
each step.

E. Rollout
Eventually the algorithm will either reach a state that has

not yet been explored or will reach the maximum depth
parameter (d). When it reaches the maximum depth or we
run out of possible actions (ie. the game board has no free
cell), the algorithm returns 0. When it reaches a new state,
N(s′, a) and Q(s′, a) are initialized and a value estimate is
generated through rollouts. Since zombies move slowly, there
was plenty of time at each step to perform rollouts. Therefore,
the decision was made to perform each rollout until a terminal
state is reached. At each step of the rollout, a random policy
is followed to plant plants with probability pplant. Rewards
are assigned according to the reward model described above
and discounted accordingly by γ. Transitions occur according
to the transition model.

F. Back propagation
Once an estimate for the action value function has been

obtained through the rollout step, the algorithm performs the
following update up the tree:

Q(s, a)← Q(s, a) +
q −Q(s, a)

N(s, a)
(2)

where q is the discounted reward from the rollout. The N(s, a)
counters are updated accordingly.

G. Hyperparamters
There are three hyperparamters associated with MCTS:

kmax, which is the number of simulations we run from the
current state s, the depth (d), which is the depth of the rollouts
and c, which scales the exploration bonus in the UCB. In an
effort to allow MCTS to explore as many different actions as
possible, I set kmax = 20 for the small board and kmax = 150
for the large board. As mentioned previously, the rollouts are
performed to a terminal state so d = 20 for both the small
board and large board. This ensures that a rollout always
reaches a terminal state, otherwise the algorithm tends to
generate sub-optimal actions. c was initially set to a value of
10 and the algorithm tended to perform well with this measure
so this value was kept for the final version.

V. RESULTS

TABLE I
WIN RATES FOR 3X3 BOARD

Policy Win Rate (over 100 simulated games)
Random 11%
MCTS 39%

TABLE II
WIN RATES FOR 10X10 BOARD

Policy Win Rate (over 100 simulated games)
Random 2%
MCTS 95%

As shown in the tables, MCTS not only greatly out-
performed a random policy but also performed exceptionally
well in the large board. Given the finite horizon nature of the
game, MCTS was a very fitting algorithm as, at each step, it
was able to perform multiple rollouts from the current state to
the end of the game and decide the action using those rollouts.
I imposed virtually no computing or time constraints on each
application of MCTS which, in most applications, is unfeasible
but this allows us to underscore how well MCTS can perform
on this problem. As mentioned previously, I did observe that
MCTS tended to choose sub-optimal actions if its rollouts did
not reach a terminal state but this could be partially addressed
by increasing the reward for killing zombies or adding new
rewards for following common game heuristics.

MCTS did not perform as well on the small board. This is
likely due to the fact that pplant < pnew and pplant = pmove.
The zombie only needed to advance two steps before sending
the game into a losing state and so it was easy for one of the
three lanes to go unprotected and for a zombie to enter the
house on that lane. In fact many of the losing games simulated
using the small board ended quickly within just a few time
steps.

The true litmus test for any algorithm is not comparing
it against a random policy but rather comparing it against a
human player’s heuristics and strategies. A common heuristic
for playing Plants vs. Zombies is to plant plants at the leftmost
side of each lane so that they have the maximum potential to
kill zombies and not get eaten. Of course, this means that if the
plant isn’t able to kill the zombie as it advances, the player then
has no chance of saving the game once the zombie eats the
plant and has direct access to the house. Therefore, a human
player must balance this risk and usually does so by putting
more deadly plants closer to the house and more dispensable
plants closer to the zombies. Another common heuristic is to
make sure that each lane is protected before adding additional
defenses to a lane. This is due to the fact that even in the real
version of the game, the player has no idea which lanes the
zombies will appear in and what kind of zombie will appear
in a lane. Fig. 2 shows four winning terminal states generated



from running simulations with MCTS on the large board. It
is clear that the algorithm is also adopting similar heuristics.
Most of the plants are towards the left side of the board and
most lanes are protected with at least one plant.

Fig. 2. Four winning terminal states generated from MCTS simulations

VI. CONCLUSION

The natural next step to this application is to apply MCTS to
more complex and aggressive versions of Plants vs. Zombies.
As mentioned in the description of the traditional game, there
are many more complexities with different zombies, plants
and environments that this application did not include. The
traditional game also introduces new zombies with much
higher probability and sometimes even sends multiple zombies
in at one time step. There are zombies that only respond to hits
from certain types of plants, zombies that launch themselves
stochastically across the board and even plants that are capable
of launching corn cob bombs on an entire group of zombies.
There are even entirely different environments that carry their
own unique set of plants and zombies. Although the state
and action spaces of the game scale exponentially with these
complexities, MCTS (and its different variations) remains an
excellent candidate for this application.

REFERENCES

[1] Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of
Go without human knowledge. Nature 550, 354–359 (2017).

[2] Ciancarini, Paolo, and Gian Piero Favini. “Monte Carlo Tree Search in
Kriegspiel.” Artificial Intelligence, vol. 174, no. 11, 2010, pp. 670–684.

[3] Waard, Maarten Roijers, Diederik Bakkes, Sander. (2016). Monte Carlo
Tree Search with options for general video game playing. 1-8.

[4] Gelly, Sylvain, and David Silver. “Monte-Carlo Tree Search and Rapid
Action Value Estimation in Computer Go.” Artificial Intelligence, vol.
175, no. 11, 2011, pp. 1856–1875.

[5] Guo, Xiaoxiao, et al. “Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning.” Advances in Neural
Information Processing Systems, 1 Jan. 2014.


