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Abstract

The decennial United States census is an undertaking of massive importance and
immense difficulty. The census bureau must efficiently allocate workers to count
households that have not self-responded to the census. Because households can
continue to self respond as workers are being allocated, there is uncertainty not only
in deciding which census areas to allocate workers to but when to allocate these
workers so as to optimize the total response rate of the census by the end of census-
taking period. We formulate a Markov Decision Process to demonstrate how MDPs
can effectively allocate workers under this uncertainty, and we incorporate both real
data from the 2020 census as well as synthetic data (where real data does not exist
publicly) to model our environment. Through this model, we demonstrate how real
data privately available to the census bureau can easily replace our synthetic data
and how policy-makers can leverage this model to allocate census resources for
fairer representation and counting of historically under-counted groups.

1 Introduction

In this paper, we explore the modeling of the United States census as a Markov Decision Process. We
model the census as a Markov Decision Process where districts (e.g. finite geographic regions with a
population, such as a state, county, or census tract) each accrue response rates (states) due to citizens’
self-responses with some uncertainty. Additionally, in-person follow-ups to districts (actions) can
also increase the response rate with some uncertainty. To maximize total response rate across all
districts, the census bureau must decide where and when census workers should make in-person
follow-ups. A policy can thus be produced that optimizes some reward function using census worker
follow-ups throughout the census duration.

The primary goal of this project is to investigate the effects of different approaches of computing the
value of different census visit policies. We specifically identify reward schemes that can encode the
value of fair representation and counting of historically under-counted minority groups – a significant
issue given the Census’s role in allocating federal resources to communities.

2 Background

The results of each decennial U.S. census are used to apportion the 435 voting representatives in
the House of Representatives and distribute more than $675 billion per year in federal funding to
communities [2]. The Census’s role in the apportionment of political power and federal aid makes
the accuracy of the Census of critical importance. Congress allocated $15 billion to conduct the 2020



census [6][7]. Career workers at the Census Bureau are forced to operate under spending constraints,
and we motivate our work by imagining the position they are in as agents and policy-makers.

The Census’s goal is to count every person in the United States, exactly once, and count them in the
correct location. To count households, the Census relies heavily on self-response wherein households
respond to census questionnaires by mail, phone, or – new to the 2020 census – online. Self-response
rates, however, don’t come anywhere near 100%, and they have continuously dropped over the
past half-century [8][4]. Furthermore, these self-response rates vary across demographic groups.
Historically, census tracts with high populations of Latinx, Black, and Indigenous people have had
low response rates – and therefore were potentially under-counted in the census [5]. In order to count
people who do not self-respond to the census, the Census Bureau sends workers to make in-person
contact with households. These workers are distributed to census tracts across the country with the
goal of getting the total census response-rate to 100% [1].

While the problem of census worker allocation to maximize response rate can be framed as a Markov
Decision Process, this framing is rarely explored in research literature. Thus, we built the MDP from
scratch based on our understanding of the census response process. Furthermore, we were inspired by
the paper by Cai et al. on fairness in resource allocation thorough selective information acquisition.
They looked at this problem in the context of loans using linear programming; we chose to explore
fair representation in the context of the census using MDPs [3].

3 Approach: The Markov Decision Process

3.1 Environment Definitions

Given n districts, we denote a district as i ∈ {1, ..., n}. Allowing up to tend time steps, we denote
T = {1, ..., tend} as the time step space. We also define P = [0.0, 1.0] ⊂ R as the response rate
space for each district.

3.2 State Space

The MDP state s = (t,p) ∈ (T × Pn) contains the current time in t and the response rate pi ∈ P of
each district in vector p. Note that the response rates, and thus the state, is continuous.

3.3 Action Space

An action a ∈ {0, ..., n} represents which district to send census workers to (for the sake of simplicity,
only one visit per time step is allowed, but results apply without loss of generality to visiting multiple
districts at once, since this can be approximated by increasing time step granularity.) If a = 0, then
no districts are visited.

3.4 Transition Model

There are two ways that response rates can increase in our model: they can increase naturally –
simulating the natural increase in response rate that comes from self-response – or they can increase
as a result of workers being sent to a district.

On every time step t, we first apply the natural self-response increase to the response rate of every
district i regardless of the action taken. This is done by sampling an increase from each district’s
individual self-response increase distribution, which is learned from the data.

Furthermore, we apply an additional increase to the response rate of the district i corresponding to
the action a, as the result of census workers visiting the district. This increase is sampled from a
distribution that is shared between all districts, that is, we assume that a census worker visit has the
same impact on each district for the sake of simplicity. This could be extended in future work to
include the effectiveness of visits in different districts.

Finally, we advance the time state by one step.
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3.5 Reward Function and Fair Representation

The reward function is designed to reflect the three criteria that are critical to the census worker
allocation: the cost of logistics of sending workers to a district, the utility of the total response rate,
and the utility of the representation of population demographics.

At each time step t, to represent cost of sending workers to a district, we give a negative reward rcost
if the chosen action is to allocate worker to a district, i.e. a 6= 0. If the chosen action is to stay put,
a = 0, then no negative reward is generated. In our simulation, rcost is constant regardless of chosen
district. In future work, it might be worth exploring rcost as a function of the chosen district to better
represent the variable cost of visiting districts with different demographics.

Furthermore, at the last time step, we give a positive reward rresp based on the total response rate
from all districts. We chose to do so instead of calculating positive reward during the running steps so
to encourage exploration and avoid greedy policies that are short-sighted. After all, the total response
rate and demographic outcomes only matter once the census reaches a deadline.

R(s = (t,p), a) = rcost × 1(a 6= 0) +

{
0 t 6= tend
rresp(p) t = tend

We propose two variants of the reward function based on how we calculate the positive reward. In the
population-based variant, the positive reward is the total number of visited households. We use the
population count of each district sourced from the 2019 estimate by the census bureau, to calculate
the total overall response rate.

rresp(p) =

n∑
i=1

pi · Population(i)

In the second variant, we attempt to reward fair representation as well as total response rate. The
goal of this variant is to penalize situations where the sample’s demographics deviates from the
population’s demographics. To do this, we want to compute the population and sample means of
certain demographic statistics.

We represent the demographic information of all districts in matrix D ∈ Rn×m = [d1, ...,dn], where
di is the vector of demographic information for district i, containing m elements each corresponding
to one numerical demographic value such as median income, percent ethnic distribution, and language
spoken. This data is obtained from the previous census.

To compute the population mean dpop of the demographics, we compute the average of the districts’
demographics weighted by their populations:

dpop =

∑n
i=1 Population(i) · di∑n

i=1 Population(i)

To compute the sample mean dsample of the demographics, we compute the average of the districts’
demographics weighted by the population we have counted at that district:

dsample =

∑n
i=1 pi · Population(i) · di∑n

i=1 pi · Population(i)

Finally, we compute the positive reward by applying a hand-curated fixed weight θj to the ratio
of the sample mean to the population mean of each demographic j, e.g. how our current sample’s
demographics compare to those of the population:

rresp(p) =

m∑
j=1

θj ·

∣∣∣∣∣1− dsamplej

dpopj

∣∣∣∣∣
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3.6 Learning Self-Response Distributions

To simulate the response rate increases from self-response, we pulled self response rate data from the
2020 census starting from March 23rd and continuing up to October 17 (see Data Source). While
the data we pulled was for each census tract, we decided – for the sake of computational efficiency –
to let each district in our MDP correspond to a single U.S. State. Additionally, we chose to let each
time step represent one week. We averaged cumulative response rates for each U.S. State at every
week starting March 23rd. We used the cumulative self-response rates to calculate the weekly percent
increase in response rates.

We initially fit a single normal distribution to these increases for each state; however, we found that
self-response rate increases were drastically higher in the first 7 weeks than in the last 21 weeks. To
compensate for this bimodal behavior, we chose to fit two separate truncated normal distributions;
one to the first 7 weeks of response rate increases, and one to the subsequent 21 weeks. We bound
the random variable between 0 and whatever value increase would bring the response rate to 100%;
we then sample from this truncated normal distribution. Visualizations for these distributions on a
single state are included in the appendix (Figure 6).

3.7 Data Source

Our paper uses a combination of real data from the 2020 Census and synthetic data that we have
created to simulate potential real world data. The need for synthetic data arises from a lack of publicly
available data from the Census Bureau; however, we believe that this data is accessible internally
within the bureau and therefore we demonstrate how real data could be used in our model by utilizing
synthetic data.

We use real data to approximate the natural increase in response rates via self-response. The real data
is pulled from this repo: https://github.com/stuartlynn/census_2020_response_rates.
The repository used the Census Response Rate Data API to pull self-response rates by census tract
for each day since March 22.

We assume arbitrary parameters for the normal distribution that represents the change in response
rate produced by sending workers to a district since this data is not publicly available.

4 Results

We have implemented the above MDP using the POMDPs.jl Julia library, with source code available
at https://github.com/Census-MDP/Census-MDP. We then produced policies using the Monte
Carlo Tree Search solver with 10,000 iterations and sufficient rollout depth to reach the end time
from the start. For all of the below runs, we divide each timestep in the original data (28 total) into
two timesteps to increase the number of possible visits.

4.1 Self-Response Only

For our initial run, we introduce a negative-infinity reward for any action a 6= 0, that is, infinitely
penalizing district visits, to produce a baseline of what the census outcome looks like without visits.
Multiple runs with these parameters produced response rate averages of around 75%.

(a) Districts’ Response Rates at t = 11 (b) Districts’ Response Rates at t = tend = 56

Figure 1: Results on MDP with visits discouraged
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4.2 Rewarding Sample Population

For our next run, we introduce a small negative reward for any action a 6= 0, to penalize truly
unnecessary visits (e.g. to districts already at 100%), and we use the population reward function
defined earlier. Multiple runs with these parameters produced response rate averages of around 85%.
More importantly, high response from more populated states such as CA, NY and TX is favored over
less populated states, which is not necessarily desireable. The visited state is showed in black in the
chart.

(a) Districts’ Response Rates at t = 11 (b) Districts’ Response Rates at t = tend = 56

Figure 2: Results on MDP with population-based rewards

4.3 Rewarding Sample Demographics’ Similarity to Population Demographics

For our final run, we introduce a small negative reward for any action a 6= 0, to penalize truly
unnecessary visits (e.g. to districts already at 100%), and we use the demographic-based reward
function defined earlier. Multiple runs with these parameters also produced response rate averages
of around 85%. However, unlike the previous model, high response from of more populated states
such as CA, NY and TX is no longer favored over less populated states, since doing this causes a
skew towards those states’ demographic means. The new reward function reduces the variance of the
states’ response rates and produces a sample that better approximates their demographics, as shown
in the next section. The visited state is showed in black in the chart.

(a) Districts’ Response Rates at t = 11 (b) Districts’ Response Rates at t = tend = 56

Figure 3: Results on MDP with demographic-based rewards

4.4 Comparing Population-Based Reward to Demographics-Based Reward

It was already shown that the two reward methods produce similar average response rates across
the states. However, the difference between the two approaches can be seen in the below figure
comparing each demographic statistic’s population and sample means for both methods used:
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Figure 4: Comparison of effect of reward functions on sample demographics

It is clear that the demographics-based reward, without necessarily impacting the total number of
households visited, is able to produce a sample that better approximates (e.g. deviates less from)
the demographics of the population than the population-based reward is. With further tuning of the
weights, this effect can be further improved.

5 Conclusion and Future Work

We have defined census worker allocation as a Markov Decision Process, with a visit to at most one
possible district per time step. Then, we have defined our generative transition function based on
distributions of response rate increase that we learned from existing census response data. Finally, we
have explored policies learned from both a population-based reward function and a demographic-
based reward function, and showed how the demographic-based reward function can be used to
produce a sample that better approximates the population’s demographics, which we hope can be
used to produce more representative census results.

Our MDP setup has certain limitations. We chose to limit the number of districts we can visit per
time step to 1. If we allow multiple district visits per time step, our action space would increase from
|A| = n to an upper bound of |A| = O(2n). The high memory usage and processing time with the
expanded action space means this approach was beyond the scope of this project. However, multiple
district visits definitely more accurately reflect the reality of census follow-up, and is worth exploring
in the future with a single-agent MDP and possibly multi-agent MDPs.

We set several constants in our reward functions. We assumed a static cost for each district visit. In
the demographic-based reward function, we hand-curated the weights for each demographic type. In
the future, we can instead learn these parameters by understanding the value of each demographic
using methods such as Utility Elicitation.

6 Contributions

Cem Gokmen implemented the MDP and solver in Julia, executed multiple models, and contributed
the approach and result sections in this report. Lynn Kong built the graph visualization and wrote the
conclusion section and parts of the introduction and approach sections of this report. Connor Toups
parsed the census data into distributions to be used by the MDP and wrote the abstract, background
and parts of the introduction and approach section. All three team members met regularly, contributed
to the MDP conceptualization, and edited the report.
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7 Appendix

(a) First 7 Weeks (b) Last 21 Weeks

(a) All weeks with 1 truncated normal fit (b) All weeks with 2 truncated normal fits

Figure 6: Fitted transition distributions over real census data for a sample U.S. State
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