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Abstract—In this work we explore strategies for determining
optimal actions in Gin Rummy, a turn-based multi-agent card
game. We focus only on online planning algorithms since Gin
Rummy has a high-dimensional state space that is computa-
tionally intractable. We first present playing Gin Rummy as a
Markov Decision Process (MDP) and then implement four online
decision-making algorithms: lookahead with rollouts, forward
search, sparse sampling, and a variation of Monte Carlo tree
search. The algorithms make different assumptions about the
knowledge of the current state of the environment that is available
to the agent. We use a random agent and a greedy agent as
benchmarks to evaluate the time and decision-making efficiency
of the four online algorithms. We also simulate rounds where the
agents following the different online strategies compete against
each other. We find that forward search with depth 1 and sparse
sampling with depth 1 and 10 samples outperform the other
algorithms in making decisions efficiently.

Index Terms—Markov Decision Process, Multi-agent, Online
Planning, MCTS

I. INTRODUCTION

Gin Rummy is a popular card game where two players
compete to form sets and runs using the cards in their hand
in as few turns as possible. Gin Rummy has been around
since 1909 and has continued to gain worldwide popularity.
Some claim that it is “one of the most widely spread two
player card games of all time.” Much of this popularity can
be attributed to the many different decisions a player needs to
take at each turn. These include decisions regarding drawing
cards, forming good hands, and choosing the right time to
challenge the opponent in order to win the game. Since there
are a lot of complicated decisions involved, we are interested
in exploring decision-making algorithms that can help choose
optimal decisions at each turn. In particular, we aim to develop
a player that can defeat both a random player and a greedy
player consistently. A random player can be thought of as a
novice who is still learning the game, while a greedy player
represents a myopic intermediate player.

II. GIN RUMMY RULES

A. Setup and Goal

Gin Rummy is a two-player card game where each player is
dealt 10 cards from a standard deck of 52. A player’s goal is to
form melds with the 10 cards in their hand while minimizing
their deadwood count.

B. Melds

Players can form two types of melds: sets and runs. A set
is a combination of 3 or 4 cards of the same rank. A run is a
combination of 3 or more consecutive cards of the same suit.
One card cannot be used to form multiple melds at the same
time. A deadwood card is a card in a player’s hand that is
not in a meld. Deadwood count is the cumulative rank of the
deadwood cards in a player’s hand. In Gin Rummy the value
of a Jack, Queen, and King is ten, the value of an Ace is one,
and the value of all other cards is the rank of the card.

C. Turns

After each player has been dealt 10 cards, one card from
the deck is flipped up to start the discard pile. During each
turn, a player must pick up one card from either the top of
the deck (disclosed) or the top of the discard pile (revealed).
The rank and suit of all cards in the deck and the ordering
of the deck are unknown to both players. The rank and suit
all cards in the discard pile are known to the players. After
drawing a card the player must discard one card from their
hand and place it flipped up at the top of the discard pile. A
player may choose to discard the card they just drew or any
of the other 10 cards that they already had. Players continue
taking turns until the round ends.

D. Ending a Round

To end a round, a player can call knock or gin. A player
can call knock when the deadwood count of their hand is 10
or lower. They can call gin when the deadwood count of their
hand is 0. Once a player has called knock or gin, both players
in the game reveal their hands. The opponent (player that did
not call knock or gin) is then allowed to lay off some of their
deadwood cards by combining them with the melds of the first
player. This allows the opponent to decrease their deadwood
count. The player who announces knock is not allowed to lay
off their deadwood cards.

E. Scoring

If player 1, announces knock and if their deadwood count
is lower than the player 2’s deadwood count after player 2 has
laid off their deadwood cards, then player 1 wins the round
and earns points worth the difference of the players’ deadwood
counts. However, if player 1’s deadwood count is equal to or
less than Player 2’s deadwood count then Player 2 wins the



round and earns an extra 10 points above the difference of
the players’ deadwood counts. If player 1 announces gin, they
win the round and earn 20 points plus point worth player 2’s
deadwood count. Typically, a game is played over multiple
rounds to 100 points.

III. RELATED WORK

There have been several attempts to find efficient reinforce-
ment learning algorithms for decision-making in Gin Rummy.
Kotnik & Kalika compare two approaches: temporal-difference
learning and co-evolution of the value function, to decide
which action to perform at each turn [1]. They use self-play
to gather data and train the agent. In self-play an agent learns
by competing against a copy of itself.

Nagai et al. use genetic and grid search algorithms to
optimize hyperparameters that drive decisions about whether
to discard a card, draw a card, or call knock or gin [2].

There have also been successful attempts to develop agents
that efficiently determine optimal actions in other turn-based
multiaction games such as Hero Academy by using online
planning algorithms such as Monte Carlo tree search [3].
However, we did not find any direct applications of online
planning algorithms to decision making in Gin Rummy.

IV. GIN RUMMY AS A MARKOV DECISION PROCESS

We present each round of Gin Rummy as a Markov Decision
Process (MDP), by defining the state of environment, the
possible actions, the reward, and the transition model.

A. State of Environment

In a game of Gin Rummy, the current state of the environ-
ment consists of:

1) Agent 1’s hand (h1)
2) Agent 2’s hand (h2)
3) Deck of remaining cards to draw from (c)
4) Discard pile (p)
5) Agent turn (t)

Therefore, each state, s, is a function of h1, h2, c, p, and t.

B. Possible Actions

An agent can take one of 21 possible actions at each turn:
1) Draw from deck, discard card 1 from hand
2) Draw from deck, discard card 2 from hand

...
10) Draw from deck, discard card 10 from hand
11) Draw from deck, discard drawn card
12) Pick up top discard card, discard card 1 from hand
13) Pick up top discard card, discard card 2 from hand

...
21) Pick up top discard card, discard card 10 from hand

Note that we ignore the action that involves picking up the
card at the top of the discard pile and then discarding it, since
this action only does not change the state of the environment
significantly. It changes only one variable, agent turn, and thus
can be ignored.

For simplicity we also make two key assumptions: an agent
greedily calls knock if they are able to and an agent will never
call gin. We made this assumption because we focus on one
round of Gin Rummy and not an entire game to 100 points.
Therefore, an agent does not need to explicitly decide whether
to call knock. They are also relieved from taking decisions
such as whether to keep playing in order to be able the call
gin once their deadwood count is below 10. This also means
that an agent does not have to consider the opposing agent’s
deadwood count.

C. Reward

We assign a reward associated associated with the current
state and the action, R(s, a), to each agent based on their
deadwood count and the number of melds in their hand:

R(s, a) = (4× # of melds)− (5× deadwood count) (1)

We add an additional 100 points to the reward if the deadwood
count is less than or equal to 10. The reward follows from
the rules of Gin Rummy: it penalizes high deadwood counts
and rewards the agent for forming melds that minimize their
deadwood count.

D. Transition Model

T (s′|a, s) defines the probability of transitioning from the
current state, s, to a new state, s′, given that the agent takes
action a. Note that the state transitions are deterministic, i.e.,
there is only one possibility for s′ given a and complete
knowledge of every component of s.

While deciding which action to take, and agent is only
interested in the transition model from its point of view. That
is, if we are in state s1 (i.e. it is Agent 1’s turn) then we are
interested in T (s′1|a1, s1) where s′1 is the next time it is Agent
1’s turn and a1 is the action Agent 1 takes.

T (s′1|a1, s1) =
21∑

a2=1

T (s′1|a1, s1, a2)P (a2|a1, s1) (2)

From a single agent’s perspective, we assume that the opposing
player’s actions are random. If we define a2 to be Agent 2’s
action, we have

T (s′1|a1, s1) =
1

21

21∑
a2=1

T (s′1|a1, s1, a2) (3)

Again, we note that T (s′1|a1, s1, a2) assumes that an agent has
knowledge of all of s1 including the opponent’s hand and the
deck.

However, in the methods we discuss, an agent never has
complete knowledge of the state. For example, the agent does
not know what the top card in the deck is. From the agent’s
perspective the top card of the deck could be any card not in
the agent’s hand and not in the discard pile. Therefore, in order
to consider all possible next states, the agent has to simulate
all possible actions for all possible cards at the top of the deck.



Fig. 1. Simulator in Action

V. GIN RUMMY SIMULATOR

We develop a Gin Rummy simulator in order to experiment
with different algorithms and methods to solve Gin Rummy.
Our game simulator includes two agents in an environment.
The agents keep track of their own hands, melds, deadwood
count, their playing strategy, and the rewards they receive at
each turn. The environment keeps track of the deck, discard
pile, agents, which agent’s turn it is, and the winner if there
is one. Each round the agents choose one of the 21 actions
depending on their strategy. The agents greedily call knock
once their deadwood count is less than or equal to 10. Once an
agent calls knock the opposing agent lays off their deadwood
cards. Subsequently, the agent with the lower deadwood score
wins. If the deadwood scores are tied then the agent that called
knock wins. A round can also end if there are fewer than 2
cards left in the deck.

In order to support different card actions, we extend an
existing Julia programming language package called Cards.jl
to support actions in a Gin Rummy game such as dealing,
discarding, and picking cards from the discard pile or the deck
[4]. We also add functionality to compute melds and deadwood
count in a agent’s hand.

We show an example output of the simulator in Figure 1.
Note that the deck also has an order which is not displayed
in the figure.

VI. METHODS

We investigate various online planning methods to decide
which action to take at each turn in a single round of Gin
Rummy. Online planning methods reason about the reachable
state space from the current state to choose an action. This is
especially important in problems such as our MDP formulation
of Gin Rummy, where the state space is quite large, and the
set of reachable states is only a small subset of the set of all
possible states. For instance, there are

(
52
10

)(
42
10

)
(32)(31!) ≈

6.1× 1054 possible states from which a round can begin. As
the agents take actions the state changes depending on which
cards they draw and discard. Since there are many possibilities

of cards that can be drawn and discarded, especially at the
initial turns, the size of the state space can become intractable
quickly. Online planning methods present a solution to this
problem by considering a limited number of possible next
states at each turn. Some online methods converge to the
optimal action at a particular state, while others do not.

We focus on 4 online planning methods: lookahead with
rollouts, forward search, sparse sampling, and a variation of
Monte Carlo tree search.

A. Lookahead with Rollouts

In lookahead with rollouts the agent considers all 21 actions
from the current state and performs m infinite horizon rollouts
(i.e. until game termination) for each. Every simulated action
after the first action in each rollout are random for both the
agent and its opponent.

For our formulation of lookahead with rollouts we assume
that an agent has complete information about the opposing
agent’s hand. As a result, the agent can infer which cards
are in the deck. The ordering of the deck, however, remains
hidden. This assumption is important to ensure that while
doing rollouts, the agent picks cards from the deck and not
from the opposing agent’s hand, which would be a violation
of the game rules and would introduce duplicate cards to the
game.

The action that leads to the highest expected utility across
all m rollouts is considered to be the optimal action to perform
from the current state. Of course, due to the randomness in the
rollouts, this is only an approximation of the actual optimal
action from the current state.

B. Forward Search

In forward search the agent considers all possible transitions
up until depth d in order to determine the optimal action
from the current state. At each depth the agent can take 21
actions. We assume that the agent does not know the order and
composition of the deck and the composition of the opponent’s
hand.

Since we assume that a lot of information about the current
state is hidden, the agent has to account for all possible current
states while deciding the possible next states. For example, for
the first turn in depth 1, if the agent wants to draw a card from
the deck then there are 41 different cards that could possibly
be at the top of the deck. After drawing a card the agent can
then discard one of the 11 cards in its hand. Hence, there are
41 ∗ 11 = 451 possible states that could result from drawing
from deck. The agent also has to consider picking up the top
card from the discard pile and discard one of the cards from
its hand, which leads to 10 more possible next states. From the
perspective of the agent, each of these 461 states are equally
likely.

In depth 2 of forward search each of these 461 states can
result is hundreds of other states next states that the agent will
have to consider. Due to this exponential growth of the state
space we only experiment with depth 1 and depth 2 forward
search.



The optimal action is calculated by considering each of
the possible state-action pairs up to depth d, calculating the
associated utility for that state-action pair using the lookahead
equation, and propagating the utility upwards.

In order to calculate the lookahead state-action value from
a state s1 given an action a1 we use

Ua1(s1) = R(s1, a1) + γ
∑
s′1

T (s′1|s1, a1)Ua1(s′1) (4)

where γ is the discount factor (we choose γ = 1) and
R(s1, a1) and T (s′1|s1, a1) are defined in (1) and (3), respec-
tively. Recall that in order to calculate T (s′1|s1, a1), we must
sum over all possible opponent actions and all possible cards
at the top of the deck. In the end, we choose the action which
leads to the highest expected utility

π(s1) = argmax
a

Ua(s1) (5)

where π(s1) tells us the action to take from the current state.

C. Sparse Sampling
Like forward search, our formulation of sparse sampling

considers all 21 actions at each depth. However, instead
of considering all possible state transitions, it creates an
approximation of the unknown cards, i.e. cards in the deck
and the opponent’s hand, by randomly choosing m cards
from the set of unknown cards with equal probability. This
results in a smaller reachable state space and depending on
the size of hyperparameters, decreases decision-making time
at the expense of potentially returning a sub-optimal policy
compared to forward search. The hyperparameters for sparse
sampling include the number of cards to sample, m, and
the depth to which the algorithm must run. If m exceeds
the number of unknown cards remaining then we use all the
unknown cards in our algorithm.

D. Modified Monte Carlo Tree Search Algorithm
We implement a modified version of Monte Carlo tree

search (MCTS) by combining sparse sampling and lookahead
with rollouts. We first iterate through each of the 21 actions
and for each action simulate 10 rollouts. Based on these
rollouts we determine the initial estimates of the action value
function in (4).

After setting initial estimates for the action value function,
we run kmax simulations and for each simulation we choose
the action that has the maximum upper confidence bound
(UCB). Initially, the UCB for each action is set to positive
infinity. Once an action is chosen, we recursively call our
modified Monte Carlo tree search (MCTS) algorithm up to
depth d. At depth d we call sparse sampling with depth 1
and m samples to update the approximate value for the action
value function. We then propagate the approximated value up
to depth 0 and update the action value approximation for the
action chosen at the beginning of the simulation. We also
update the UCB, which is used to balance exploration and
exploitation.

In the end, we pick the action which leads to the highest
expected utility (highest expected action value).

VII. RESULTS

We use a random and a greedy strategy as baseline for
evaluating the performance — win % across 100 rounds and
time/turn — of our online planning methods. A random agent
randomly picks one of the 21 actions at each turn, hence
making a random decision about which card to discard and
whether to draw from the discard pile or the deck. A greedy
agent picks up the top card from the discard pile if it reduces
deadwood count, and if not then it blindly draws from the
deck. The greedy agent discards the highest ranked deadwood
card in its hand.

For lookahead with rollouts, we experiment with different
number of rollouts and report the win % vs. the random and
greedy agents, as well as the average time/turn in Table I.
We see a general trend where, as we increase the number
of rollouts, our win % increases against both agents and the
time/turn increases linearly as a function of the # of rollouts.

TABLE I
LOOKAHEAD WITH ROLLOUTS RESULTS

Rollouts Win % vs Random Win % vs Greedy Time/Turn (s)
1 50 21 0.0040
5 86 53 0.0180
10 98 62 0.0313
25 98 80 0.1231
50 99 77 0.2142

100 99 81 0.4104

We also try depth 1 and depth 2 forward search and report
the win % vs. the random and greedy agents, and the average
time/turn in Table II. Although forward search depth 1 and
2 perform similarly against the random and greedy agent, we
see that forward search depth 2 takes longer per turn.

TABLE II
FORWARD SEARCH RESULTS

Depth Win % vs Random Win % vs Greedy Time/Turn (s)
1 100 81 0.0152
2 98 89 49.0430

Similarly, for sparse sampling we experiment with different
values for the depth and the number of samples and report
the win % vs. the random and greedy agents, and the average
time/turn in Table III. We see that even though sparse sampling
does not explore every possible state action transition, we
notice similar win %s compared to forward search. Notice
that sparse sampling with depth 2 and 20 samples performs
about the same as forward search with depth 2, but is faster.

TABLE III
SPARSE SAMPLING RESULTS

Depth Samples Win % Win % Time/Turn (s)vs Random vs Greedy
1 10 99 77 0.0031
1 20 100 84 0.0053
1 30 99 86 0.0090
2 10 100 81 2.5626
2 20 100 83 12.6698
2 30 100 92 39.7284



For our Modified MCTS algorithm we try different values
for the number of samples and report the win % vs. the random
and greedy agents, and the average time/turn in Table IV. We
see that although the modified MCTS can consistently beat a
random agent, the strategy struggles against a greedy agent.
Also note that modified MCTS with depth 1 is much slower
that forward search with depth 1 in addition to having a lower
win %. It also performs much worse than most of the sparse
sampling algorithms we ran, and performs about the same as
lookahead with 10 rollouts.

TABLE IV
MODIFIED MCTS ALGORITHM RESULTS

kmax Depth Samples Win % Win % Time/Turn (s)vs Random vs Greedy
25 1 10 94 61 5.0365
25 1 20 98 65 7.6091

Finally, we also compare several of our online planning
methods against each other in Table V. The parameters we
used to gather this data are specified in parentheses. We find
that forward search and sparse sampling perform better than
lookahead with rollouts. Furthermore, we see that despite the
large difference in time per turn for depth 2 and depth 1
forward search, the agents behave similarly when competing
against each other. Forward search with depth 1 also performs
about the same as sparse sampling with 10 samples. Of
course, depth 2 sparse sampling take much longer than depth
1 forward search, but time per turn for depth 1 forward search
and depth 1 sparse sampling with 10 sample are comparable.
Lastly, we notice that our modified MCTS algorithm performs
poorly against depth 1 forward search.

TABLE V
AGENTS COMPETING AGAINST EACH OTHER

Agent 1 Style Agent 2 Style Agent 1
Win %

Lookahead w/Rollouts (100) Lookahead w/Rollouts (5) 92
Lookahead w/Rollouts (100) SparseSampling (1,10) 54

Forward Search (1) Lookahead w/Rollouts (5) 93
Forward Search (1) Lookahead w/Rollouts (100) 95
Forward Search (1) Sparse Sampling (1,10) 55
Forward Search (1) Sparse Sampling (2,10) 52
Forward Search (1) Modified MCTS (25,1,20) 97
Forward Search (2) Forward Search (1) 53

VIII. DISCUSSION

Each of our 4 online planning algorithms assume varying
levels of knowledge of the current state of the environment. In
lookahead with rollouts and the modified MCTS, we assume
that the agent knows which cards are in the deck and in the
opposing agent’s hand. However, the agent does not know the
order of the deck. In sparse sampling and forward search we
assume that the agent has no information about the cards in
the deck or the opponent’s hand.

Surprisingly, even though lookahead with rollouts and the
modified MCTS assume knowledge of the opposing player’s
hand, both agents perform worse than sparse sampling and

forward search. This can be attributed to the randomness
involved in lookahead with rollouts and modified MCTS.

We see from our results, that most strategies are able to
consistently beat a random agent showing that even with a
little bit of strategy, a player should be able to beat a person
without knowledge about the game. However, a human player
in Gin Rummy naturally tends towards a greedy style of play.
We discover that most of our algorithms are able to beat this
style of play most of the time.

In particular, considering both speed and win %, the algo-
rithms that performed best are forward search depth 1 and
sparse sampling depth 1, 10 samples. Therefore, if computa-
tionally feasible in a human player’s mind, an optimal strategy
is to consider the expected utility drawing a card from the
deck versus the expected utility for drawing from the top of
the discard pile to determine the best action to take.

In the future, it would be interesting to explore algorithms
that have complete knowledge of the current state and make
optimal decisions without sampling from the state space or
running random rollouts. Due to large amount of time some
algorithms took, we gather limited data for our algorithms.
This work can be extended by investigating the performance
of forward search, sparse sampling and the modified MCTS
algorithms at depths higher than 2.

IX. CONCLUSION

We develop online planning algorithms that beat both a
random and greedy agent reliably in one round of Gin Rummy.
Interestingly, the algorithms we develop that do not assume
knowledge of the opposing player’s hand and the cards in the
deck perform better than the algorithms with this assumption.
Furthermore, some of our best performing algorithms can
make an optimal decision in milliseconds. Even some of our
least efficient algorithms are expected to be faster than human
players. We show that online planning algorithms can be used
to efficiently handle decision making under uncertainty for
multi-agent turn-based cards games like Gin Rummy, which,
when formulated as an MDP, have intractable state spaces.
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