
Scaling Graph Neural Networks for Drug-Drug
Interaction Prediction Using Partitioning and

Parallelization

Farzaan Kaiyom
Department of Computer Science

Stanford University
farzaan@cs.stanford.edu

Abstract

The increasing size of machine learning datasets has raised new questions of
scalability. This problem is even more difficult in the more specific field of
machine learning with graphs, because graphs have interconnected data that can’t
be arbitrarily split to parallel workers. Accordingly, sampling based approaches
have provided a way to scale. However, sometimes, especially within the clinical
domain, using an entire dataset is far preferable. This is because graph sampling
has been shown to damage model performance by a non-negligible amount and it
can be expected that ignoring any drugs or proteins in a clinical machine learning
model could become problematic. This paper proposes a method to train graph
neural networks without relying on sampling. Graph partitioning provides a way to
parallelize workers in a way that reduces the cut between subgraphs. This paper
investigates this approach’s efficacy in the more specific problem of drug side
effect prediction, a task where datasets have grown increasingly large and sampling
has been a common previous approach to address data size. The methods shown
in this paper show scalability similar to that of sampling, without sacrificing as
much accuracy. Accordingly they provide a way to train clinical machine learning
models for side effect prediction with greater ease and efficiency.

1 Introduction

The problem investigated in this work is scalability for the task of drug-drug interaction prediction.
Drug-drug interaction prediction involves using drugs, and some of their relations to other drugs (and
often times other biomedical entities) to predict unseen relations (often adverse side effects) between
drugs as a binary classification task. This particular problem is interesting because it has been shown
that models for drug-drug interaction prediction have succeeded in predicting new relations that have
been validated by medical research. The prediction of new relations using neural networks can thus
accelerate the process of drug side effect discovery Zitnik et al. (2018). This is of great importance
because some drug-drug interactions are fatal or have irreversible bodily effects. The use of machine
learning for drug interaction prediction has actually allowed for researchers to conduct drug research
with greater awareness of expectations which has led to increased efficacy and potentially increased
safety.

This paper looks more specifically at scalability of predicting drug-drug interactions because machine
learning with graphs itself is very computationally taxing especially when increasing amounts of data.
A common approach to address scalability in machine learning with graphs has been sampling, but
sometimes graphs are too large to fit on a GPU so even sampling approaches don’t suffice. Even if
data can fit on a machine, sampling doesn’t provide a perfect solution since it creates non-negligible

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



error through approximation Jia et al. (2020). While this is acceptable in other domains like graph
neural networks for product or video recommendations, in the high impact clinical domain it is
not. It’s straightforward that ignoring some drugs or proteins in a clinical machine learning model
could have potentially damaging effects on a downstream prediction task. Additionally training of
machine learning models in this domain can take a very long time (hours-days), especially when using
small batches. This, along with a historical lack of data, could explain why previous work has only
worked with datasets of a few thousand drugs and proteins. This work strives to test the scalability
and performance of a neural network on much larger and comprehensive datasets. Scalability is a
particularly difficult challenge with graph formatted data, because it requires smart partitioning of
data to workers, since the data cannot be arbitrarily split as it is interrelated. Finding an intelligent
way to partition data and parallelize training of neural networks for drug-drug interaction is important
because it can help speed up research on drugs side effects and allow for the full use of datasets that
previously could not be used without sampling.

This paper proposes a parallelized approach that doesn’t require sampling to train a graph neural
network. By partitioning a graph to multiple workers and then training them in parallel, the proposed
method can scale without needing to approximate the data distribution. Results show that this
successfully scales nearly as well as sampling, with some small drawbacks, but with far greater
accuracy.

2 Related Work

The work in this paper is related to previous work in two intersecting sub-topics: message passing
graph neural networks and drug-drug interaction prediction. It’s important to understand both the
foundations of the models discussed in this paper and the nuances of the application they’ll be used
for, so here is a discussion of both of these topics and their relationships in the aforementioned order.

2.1 Graph Neural Networks and Scalability

Graph neural networks are a specific type of neural network that works specifically with graph
structured data (i.e. nodes and edges). This often involves finding the best way to encode the
information of a node using its nearby neighbors. A good example is the approach taken by Kipf and
Welling (2016), graph convolutional networks. These can be compared to nromal convolutional neural
networks and their application to image related tasks: by looking at the neighborhood subgraph or
convolution around each node and aggregating the feature vector into that node, graph convolutional
networks provide an intuitive way to represent nodes in graphs. This gives every node an embedding
that can be used for downstream tasks like node classification and link prediction. The GCN model
popularized the notion of graph neural network and is in many ways the simplest GNN architecture.
Accordingly it will serve as a baseline in this work for accuracy and scalability.

The GCN approach is built upon in Hamilton et al. (2017), with explicit emphasis on scalability.
Their approach is somewhat identical except that it involves using sampling to increase runtime
and efficiency. More specifically, when generating neighborhood subgraphs for each node, it only
considers a sampled subset of nodes at each step. While this may have potential accuracy drawbacks
due to its ignorance of non-sampled neighbors, it makes it feasible to train graph neural networks on
graphs with millions or even billions of nodes and edges. It achieves unprecedented scalability with
little shown consequences on accuracy. GraphSAGE serves as an approximated scalable method for
graph neural networks that can be compared against the methods proposed in this paper.

Another approach that looks at scaling graph neural networks is described in Chiang et al. (2019).
They propose ClusterGCN, a method that uses common partitioning algorithms like METIS to
identify connected clusters within a graph to generate and train mini-batches within. This provides
yet another way to scale graph neural networks which is exactly what this work seeks to do. This
does, however, have the drawback of sometimes cutting off neighborhoods for nodes on the edge
of each partition, but again this doesn’t stop it from achieving its goal of providing a more scalable
approach to graph neural networks. This is one primary difference between ClusterGCN and the
proposed method of this paper; the proposed partitioning method creates overlapping partitions so
each node unique to a partition has its full neighborhood. Another difference is that ClusterGCN
successively trains these partitions on a single worker, whereas the proposed method by this paper
scales to multiple methods.

2



While the aforementioned methods are strong ways to scale GNN training when a graph can fit in
memory, graphs don’t always fit in memory. Further, each of the mentioned methods require a sort
of sampling or cutting of some nodes or edges. Kibata et al. provide a solution to these concerns.
Their approach involves creating partitions where each node has its entire neighborhood, which
means some partitions overlap. Then multiple GPUs simultaneously train solely on each partition
and share their gradients to train a consistent model. Their approach takes inspiration from Chiang
et al. (2019)’s partitioning but is different in that avoids the problem of cutting off neighborhoods
and also parallelizes training of each partition. This sped up runtime of a GCN by 3.28 by using
4 GPUs, an almost perfectly linear increase in performance per GPU. Zeng et al. (2020) takes a
very similar approach of partitioning a graph into partitions for each worker and then training in
parallel. The main distinction between these two works is the approach to partitioning; Zeng et al.
(2020) uses a partitioning algorithm to optimize memory performance while Kibata et al. uses a
partitioning algorithm that optimizes for balancing edges within each partition. These partitioning
and parallelization approaches have been shown to consistently outperform accuracy of sampling
methods like GraphSAGE while providing similar scalability (Jia et al. (2020)).

These partitioning and parallelization approaches are most similar to the approach proposed by this
paper by far. The only difference is the partitioning algorithm used, and the application. Rather
than using performance based partitioning, this paper proposes graph balancing partitioning like
METIS. And of course, the most important difference between this work and the previous work
is the difference in application. While accuracy is slightly better for the partitioned approach than
in the sampled approach for generic web user prediction tasks like those in the aforementioned
papers (Reddit community prediction), the disparity between sampling and partitioning has yet
to be seen in the clinical domain, where one would expect sampling would do even more poorly
compared to the partitioning approach. This is because ignoring some users in a user graph can work
because there might be similar users nearby those users, which is the assumption that GraphSAGE’s
sampling hinges on Hamilton et al. (2017); however, this assumption doesn’t necessarily hold up in a
biomedical knowledge graph where each protein and drug has independent signficance. That’s why
it’s important to see how all of these methods hold up (in scalability and accuracy) for the specific
task of drug-drug interaction prediction.

2.2 Drug-Drug Interaction Prediction

The aforementioned methods are generic to any graph structured data, so its important to separately
discuss the specific domain of drug-drug interaction prediction.

Zitnik et al. (2018) applies Kipf and Welling (2016)’s graph convolutional networks to the task of
predicting polypharmacy side effects (i.e. side effects between multiple drugs). This paper uses
information about protein-protein interactions as well as drug-protein interactions to predict drug-drug
interactions. In order to take this into account, the GCN in this paper, called Decagon, encodes every
edge type differently (protein-protein vs protein-drugs for example). This works well for the task.
This paper’s task is identical to the one I’m investigating. One difference is that this paper evaluated
a model on a much smaller dataset. One with only about 19 thousand protein nodes. Accordingly the
model is only trained on a single worker, so no parallelization is involved.

Nováček and Mohamed (2020) explicitly builds upon Zitnik et al. (2018)’s Decagon with a different
approach. Rather than using graph neural networks, this paper uses knowledge graph embedding
generation, a matrix optimization method that embeds components of a knowledge graph into vector
space. These vectors then are used to rank potential subject-object-predicate triplets that represent
potential links. This paper achieved slightly better AUROC scores than Decagon, but again didn’t
investigate the scalability of their approach.

Yu et al. (2020) provide a method that is a sort of mix between the methods in Nováček and Mohamed
(2020) and Zitnik et al. (2018). They provide a graph neural network approach that also takes into
account knowledge graph embeddings, effectively getting the best of both worlds. Additionally this
model was evaluated on DrugBank data, like my model will be. However, this experiment used a
DrugBank graph from 2008 which is, edge-wise, 10 percent the size of the one I’m using (from 2018).
Again, as a result, this paper has no look into scalability.

Malone et al. (2018) can be thought of as a predecessor to Nováček and Mohamed (2020). It also
investigates using knowledge graph embedding optimization for drug-drug interaction prediction.

3



Similar to its successor, this work doesn’t investigate parallelization or scalability. Further, it didn’t
outperform Decagon. In fact in Yu et al. (2020), this model is shown to perform worse than any of
the aforementioned ones. This could perhaps suggest that message passing graph neural networks
may be important for drug-drug interaction prediction.

Lu et al. (2017) is another older paper that looks at drug-drug interaction without using graph neural
networks. It takes the simple approach of using simalarity indices between nodes and their targets
to predict whether they have an edge between them. It evaluates a number of different similarity
measures including Jaccard similarity and Katz index. The results are decent but not as good as Zitnik
et al. (2018) for example, perhaps again suggesting that message passing graph neural networks or
even knowledge graph embedding generation are better methods for this specific task. These older,
non graph methods have little relevance to the approach proposed in this paper, aside from the fact
they involve the same ultimate prediction task.

3 Data

The dataset used in this project will be the BioSNAP knowledge graph, the largest publicly available
knowledge graph of biomedical data. It was compiled by the SNAP Group at Stanford University and
contains a plethora of biomedical relational data from various reputable sources. It is a heterogenous
graph, containing a number of different node types representing different biomedical entities. For the
selected problem, bipartite subgraphs have been extracted from this graph involving drugs and their
relations to proteins, genes and other drugs. These subgraphs involve data collected from DrugBank
(for drugs), STRING (for proteins), GeneOntology and HUGO (for genes). While the reason for
including the drug graphs is straightforward, the reason for including the protein and gene graphs
is a bit more complex. As noted before, previous work has established the relevancy of protein
information for drug interaction prediction. The reason for this is that drugs usually have gene and/or
protein targets, and these targets can provide information about drug-drug interactions. In this case
we are examining the gene targets for each drug and the proteins that those genes create. The message
passing neural network will help us better represent the drugs because it will take into account their
gene and protein targets and the relations between those targets and other genes/proteins in addition
to the drugs themselves. The bipartite supgraphs are sized as follows:

Bipartite Subgraph Num. Edges
Drug-Drug 2,712,183
Drug-Gene 20,644

Gene-Protein 18,650
Protein-Protein 1,144,563

Here is an example of the data: in the graph there is an edge between the drug, Acetaminophen,
and the drug, Acemetacin, because ’The risk or severity of adverse effects can be increased when
Acetaminophen is combined with Acemetacin.’ This provides an example of an edge in the graph
representing a relation between two drugs and also conveys why these relations are important: they
can have real adverse effects on patients. It would be difficult to visualize this graph or even a
subgraph within it, as the average degree is 200, with many nodes having a degree of 700-1000.
Since the graph is so densely packed with edges and large, it’s difficult to visualize, but this statistic
can provide an idea of how it looks. Common drugs that have widespread interactions with other
drugs like Acetaminophen a common painkiller, for example, have thousands of neighbors in the
Drug-Drug subgraph alone. Meanwhile there is a decent amount nodes in the graph that have degree
of 0.

4 Approach

The approach proposed by this work have 3 main components: first the partitioning of a graph into
pieces for each worker, then the parallelization of workers using distributed software, and finally the
parallelized training of a graph neural network.

4



Figure 1: Parallelization Approach

4.1 Partitioning

In order to utilize multiple workers, one must partition a graph into pieces as is done in Kibata et al.’s
work. Since Chiang et al. (2019) has established the efficacy of traditional graph partitioning methods
like METIS for GNNs, this paper uses METIS to create partitions for each worker rather than a
performance optimizing approach. This means the partitioning algorithm will prioritize balancing
nodes and edges between partitions over runtime and efficiency. In contrast to Chiang et al. (2019)’s
ClusterGCN, the method used in this paper includes overlapping nodes, so that each node that is
unique to each partition has its entire 2-hop neighborhood within that partition. This means that each
partition has a large amount of nodes unique to that partition, but also has non-unique/overlapping
nodes that represent the near neighbors of those unique nodes that might be unique to other partitions.
This ensures that when computing the embedding/representation of each node, no neighbors are cut
off.

4.2 Parallelization

After partitioning, the approach is to use torch.distributed with an NCCL backend for synchronization
of workers. This allows for one easy AllReduce call that ensures all workers have the same averaged
gradient. This approach is similar to that of Kibata et al.. Each worker only has to deal with its own
partition, and will synchronize its gradients with the other workers every epoch or every k epochs. In
this work we set k to be 3, for the sake of simplicity and so that there isn’t too much communication
and so that the workers don’t have much time to diverge. The synchronization process ensures that
after every few epochs, each worker has the same model although they are training on different parts
of the graph. After partitioning and parallelizing, we observed accuracy and F1-scores identical to
that of a baseline without partitioning and significantly reduced memory usage and runtime compared
to the baseline. The full parallel synchronization flow is visualized above.

4.3 Graph Neural Network

Regarding neural network archictecture, my approach is to take a graph convolutional network model,
the most basic of all graph neural networks, train it on drug-drug interaction data, and evaluate
its accuracy, runtime, and memory usage when combined with different scalable methods. More
specifically, we compare the baseline single worker GCN approach to partitioned and parallelized
approaches utilizing 2 and 4 workers. We also compare these approaches to the scalability and
accuracy of GraphSAGE’s neighbor sub-sampling, which will serve as a separate scalable method to
compare the partitioning approach against.

5



Figure 2: Training Plots from Baseline (No Sampling or Partitioning) versus Partitioned (x2)

5 Experiments

5.1 Experimental Setup

As mentioned before there were 4 experiments ran: a baseline single worker GNN (graph neural
network) with no sampling or partitioning, a 2-worker GNN with parallelized partitions, a 4-worker
GNN with parallelized partitions, and a GNN using GraphSAGE neighbor sampling. The latter 3
methods will serve as scalable methods to compare in accuracy and scalability to the baseline GCN
approach. The GraphSAGE sampling has been made to approximately scale similar the 2-partition
approach, so there can be a partitioned experiment to easily compare its accuracy against. To ensure
that the GraphSAGE experiment scaled similar to in the 2-partition experiment, the model was made
to sub-sample up to 100 neighbors for each node. This is because it had to reduce memory usage and
runtime by about 50% to come close to the those of 2-partition approach. I selected 100 neighbors
because each node in the graph had an average degree of 200, so by sampling up to 100 on average
would have comparable scalability to the 2 partition approach. As a result the GraphSAGE’s accuracy
could be directly compared agaisnt the 2-partition approach in order to understand the differences in
their scalability-accuracy tradeoffs.

The previous section explains the implementation at large, but not the specific software and hardware
used. The partitioning algorithm used was METIS; a more specific METIS implementation that allows
for overlapping neighbborhoods for GNN training has been used from DeepGraphLibrary (linked
in the GitHub repository for this project). The neural networks in this project were implemented in
Pytorch Geometric for 2 primary reasons. First, Pytorch Geometric is built on top of PyTorch which
provides easy interfacing with torch.distributed for distributed communication and synchronization
as needed in the project. Second, Pytorch Geometric provided precompiled modules for GCN and
GraphSAGE in the GCNConv and SageConv modules. As mentioned before, within torch.distributed
NCCL (NVIDIA Communications Library) was used as a backend to communicate between the
NVIDIA GPUs used. This brings up the hardware used: 4 Nvidia Quadro RTX 8000 48GB GPUs, 2
Xeon E5-2623 v4 CPUs, and 2TB of RAM from a computing cluster generously provided by the
SNAP group at Stanford University.

5.2 Results

On this page and the following page are training plots showing model performance (train, test, and
validation) across training epochs. Each figure shows the baseline’s training plot compared to one of
the scalable approaches (either GraphSAGE or the proposed partitioning approach). This allows for
easily comparison of training accuracy across epochs and model efficacy across time. The shown
figures are for the 2 partition approach and the GraphSAGE approach, because as explained before
these two approaches have about the same scalability, but different accuracy.

In the first plot (on this page), we can quickly note that the baseline and partitioned approaches have
similar accuracy and somewhat similar training plots. This is because the partitioned approach is not
an approximation like GraphSAGE; it is taking into account every node, just on separate workers.

6



Figure 3: Training Plots from Baseline (No Sampling or Partitioning) versus GraphSAGE Sampling

The difference between the partitioned approach and the baseline is that the partitioned approach
needs to synchronize the model between its workers every 3 epochs, which could explain it’s more
erratic nature. Regardless, it converges to a very close train accuracy to that of the baseline, which is
impressive since it provides significant scalability through higher supported dataset size and lower
runtime, as will be shown later in this work.

In the second training plot comparison, one can observe that GraphSAGE ends up converging at a
lower accuracy than the baseline and is even more erratic than the partitioned approach relative to
the baseline. This is because it is only considering some neighbors of each node. This could explain
its low converged accuracy. As mentioned before there are lots of super-nodes in this graphs, or
nodes with high degree. There are a few hundred nodes with 700-1200 neighbors. One can see why
only considering 100 of these super-nodes’ neighbors could negatively affect their representation’s
and accordingly the model’s accuracy. The sampling provides both a potential explanation for both
the choppiness of the training plot and a potential explanation for its poor accuracy relative to the
baseline.

The following are some more specific numeric metrics representing the scalability of each approach
and the according performance of each model. They can provide insights into just how much
scalability is provided by the scalable methods investigated in this paper. They also allow these
scalability metrics to be directly compared against performance relative to the baseline. Accuracy
and F1-score serve as straightforward performance metrics for the model. Runtime, measured as time
per epoch, is a scalability metric because reduced runtime means models, regardless of size, can be
trained and tuned more quickly. Memory usage is a scalability metric because it serves as a way to
quantify the supported dataset size. For example if memory usage went over 100% with some large
graph in the baseline approach (which would crash the training program), it may not go over 100%
and thus be supported with the scalable methods if they can reduce memory usage enough relative to
the baseline.

Baseline 2 Partitions 4 Partitions GraphSAGE Sampling*
Avg GPU Memory Usage 35.63% 19.12% 11.93% 17.81%

Avg Time per Epoch 0.602s 0.337s 0.210s 0.283s
Accuracy 0.814 0.809 0.814 0.669
F1-Score 0.801 0.803 0.800 0.712

One can note again that the partitioned approaches have comparable accuracy to the baseline, while
GraphSAGE has significantly lower accuracy. However, it’s not all bad news for GraphSAGE, as
GraphSAGE seems to scale more cleanly than the partitioning approaches. GraphSAGE cleanly
splits memory usage and runtime in half, while the partitioning approaches don’t (or in the 4 worker
case partitioning fails to split memory usage into fourths). This is because the partitions aren’t
cleanly cut, and are overlapping to include neighbors of unique nodes to each partition. This overlap
means that memory usage doesn’t cut perfectly in half. Further, communication between workers
after every few epochs serves as a further bottleneck in the partitioned approach. So GraphSAGE
sampling provides slightly better scalability compared to the proposed partitioning and parallelization

7



approach, although it sacrifices a significant amount of accuracy to do so. When considering the full
scalablity-accuracy tradeoff, if one wants to scale without sacrificing accuracy for drug interaction
prediction, parallelization and partitioning appears to be the best method.

6 Conclusion

The experiments show that partitioning and parallelization provide scalability nearly as good as
sampling approaches, without sacrificing nearly as much accuracy. However this was already shown
by Jia et al. (2020) and Kibata et al. to some extent. The more specific insight that is provided by this
work is as follows. These results provide the key insight that partitioning is particularly more accurate
than sampling in the biomedical sphere. While Jia et al. (2020) noted some discrepancies in accuracy
between GraphSAGE sampling and parallel partitioning when used for social network modeling, we
have observed a major discrepancy when using these methods for drug-drug interaction prediction.
This can be explained by the fact that assumptions that neighbor sampling may hold more in social
graphs, where many users are similar and provide similar insights, than they do in biomedical graphs,
where each node (a biomedical entity like a drug or protein) has a unique individual significance.
This means that indeed, sampling is not ideal when using graph neural networks in the biomedical
sphere to model biomedical data.

While this may seem to suggest that partitioning and parallelization should replace sampling com-
pletely, this is not the case. As noted before, the key insight here is that sampling is particularly bad
for biomedical data. Sometimes its approximations work nearly as well as partitioning or baselines
without sampling Jia et al. (2020). Sampling can provide a method to scale when a slight decrease
in accuracy is acceptable and neighbor approximation would work well. Good examples of places
where sampling with graph neural networks would work well includes any work with social network
graphs where similar users are usually nearby (Hamilton et al. (2017)). Sampling could provide
acceptable results as a method to scale in these domains. However the results of this paper show that
parallelized partitioning is far better for biomedical tasks, or at least the task of drug-drug interaction
prediction, where ignoring a few drugs and proteins could damage a model’s predictive power.

One important note regarding this work is that it does not strive to outperform previous work at the
task of drug-drug interaction prediction (although the baseline and partitioned models surprising
perform within 0.1 of the state of the art). Instead the goal of this work is to compare the effects
of different scalable methods on the accuracy of a simple baseline model, specifically for the drug-
drug interaction prediction task. This is similar to the goal of Jia et al. (2020) where investigating
the scalability-accuracy tradeoff between multiple methods was investigated; rather than trying
to outperform previous methods, this work seeks to analyze how different approaches to scaling
these methods may affect accuracy. This work seeks to do exactly this, except in the more specific
domain of drug-drug interaction prediction. Indeed this work does, by showing that partitioning and
parallelization serves as the strongest method to scale graph neural networks while sacrificing the
least accuracy.

Future work could further investigate how partitioning can improve the accuracy of scalable ap-
proaches to other similar tasks. Drug discovery, for example, is a growing field that often uses graph
neural networks and could benefit from scalable approaches that don’t sacrifice accuracy. Additionally
future work could strive to address the scalability shortcomings of the parallel partitioning approach.
The communication bottleneck means that parallel partitioning doesn’t scale as perfectly well as
sampling. If future work could reduce or alleviate the communication costs of parallelized training, it
could effectively make parallelized partitioning the best scalable approach to training graph neural
network by all metrics. Until then, however, parallelized partitioning can provide a scalable approach
that can decently outperform sampling in accuracy, but can’t scale as perfectly as it.

7 Additional Information

7.1 Contributions

Farzaan Kaiyom contributed the code and writing of this project, with specific mentorship from Joy
Hsu (TA for BIODS 220 @ Stanford University) and guidance from the rest of the instructors and
TAs of BIODS220 and BIODS388 at Stanford University in Fall of 2020.

8



7.2 Codebase

The code used for this project can be founds at https://github.com/farzaank/scalableGNNbioSNAP

7.3 Regarding BIODS 220 and BIODS 388

With instructor consent I’ve enrolled in both BIODS 220 and BIODS 388. This means I am using the
same project for both classes, with this paper representing a technical paper while the other class’s
final represents a non-technical clinical study. Accordingly I’ve attached the paper for the other class
in the supplementary materials. The primary similarities are small and can be found in the figures
and data analysis, while the differences are widespread and found in the analysis and explanations.

References
Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. 2019. Cluster-gcn:

An efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
257–266.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large
graphs. In Advances in neural information processing systems, pages 1024–1034.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving the accuracy,
scalability, and performance of graph neural networks with roc. Proceedings of Machine Learning
and Systems (MLSys), pages 187–198.

Tokio Kibata, Mineto Tsukada, and Hiroki Matsutani. An edge attribute-wise partitioning and
distributed processing of r-gcn using gpus.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Yiding Lu, Yufan Guo, and Anna Korhonen. 2017. Link prediction in drug-target interactions network
using similarity indices. BMC bioinformatics, 18(1):1–9.

Brandon Malone, Alberto García-Durán, and Mathias Niepert. 2018. Knowledge graph completion
to predict polypharmacy side effects. In International Conference on Data Integration in the Life
Sciences, pages 144–149. Springer.

Vít Nováček and Sameh K Mohamed. 2020. Predicting polypharmacy side-effects using knowledge
graph embeddings. AMIA Summits on Translational Science Proceedings, 2020:449.

Yue Yu, Kexin Huang, Chao Zhang, Lucas M Glass, Jimeng Sun, and Cao Xiao. 2020. Sumgnn:
Multi-typed drug interaction prediction via efficient knowledge graph summarization. arXiv
preprint arXiv:2010.01450.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. 2020.
Accurate, efficient and scalable training of graph neural networks. Journal of Parallel and
Distributed Computing, 147:166–183.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. 2018. Modeling polypharmacy side effects
with graph convolutional networks. Bioinformatics, 34(13):i457–i466.

9


	Introduction
	Related Work
	Graph Neural Networks and Scalability
	Drug-Drug Interaction Prediction

	Data
	Approach
	Partitioning
	Parallelization
	Graph Neural Network

	Experiments
	Experimental Setup
	Results

	Conclusion
	Additional Information
	Contributions
	Codebase
	Regarding BIODS 220 and BIODS 388


