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Abstract

This project uses a temporal convolution network architecture to classify coronavirus
genome samples into one of the 7 species that infect humans. Temporal convolution networks
are made of repeating temporal residual blocks that use dilated convolutions to learn longer
range dependencies. The model developed in this project explored optimal model parameters
and training hyperparameters that resulted in a macro F1-Score of 0.9917 and a micro F1-
Score of 0.9935 on the test set, despite training on a heavily imbalanced data set. Accurate
classification of minority classes is likely due to the weighted loss function in which weights
are factor in the number of class examples and a virus virulence. Lastly, grad-CAM and
supervised dimension reduction via UMAP were used in an attempt to better understand
model attenuation and interpret the model. This was a solo project in which I wrote the
majority of code and gathered publically available data from the NCBI.

Introduction

Coronaviruses belong to a family of RNA viruses that cause disease in birds and mammals. In
humans, there are 7 identified strains in total, namely HCoV-OC43, HCoV-HKU1, HCoV-229E,
HCoV-NL63, MERS-CoV, SARS-CoV-1, SARS-CoV-2. The former four are endemic in populations,
typically produce mild symtpoms, and account for 15%-30% of cases for the common cold every
year. The latter three, however, have been responsible for multiple epidemics, including the Middle
East Respiratory Syndrome outbreaks (MERS) in South Korea (2015) and Saudi Arabia (2018) as
well as the Severe Acute Respiratory Syndrome (SARS) outbreak in China (2003), and one ongoing
pandemic, COVID-19 (2020), in the past twenty years. MERS and SARS each boast high death rates,
nearly 40% and 10%, respectively, of those infected [1]. Moreover, COVID-19 this year has already
claimed over one million lives worldwide [2]. Therefore, it is crucial to study the discrepancy in
virulence among strains that infect humans and develop technologies to distinguish between them.

One reliable method of coronavirus identification is Reverse Transcription Polymerase Chain Re-
action (RT-PCR) of swabs from infected patients, often of nasal passages. This technology enables
coronaviruses’ RNA to be converted to DNA (henceforth referred as viral DNA), amplified, and
detected. Therefore, it is most logical to use DNA samples when developing coronavirus classification
tools, and this project will focus on applying multiple deep learning frameworks to this type of data
to classify coronavirus sequences into one of 7 classes.

While there have been a few deep learning models developed for coronavirus classification, none
have utilized approaches to preserve the variability of sequence lengths nor have investigated their
models’ interpretability. This project attempts to address both. Furthermore, it tests the Temporal
Convolution Network (TCN) [3], a variation of Convolutional Neural Networks (CNN) better suited
for sequential data, and compares it to LSTMs, which have also not been used for this task. These
features comprise the novel contributions of this project towards coronavirus classification.
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Related Work

Coronavirus Classification Models. Recently, two groups have developed models for tasks related
to coronavirus classification. Habib et al. (2020) [4] developed a multi-layer perceptron classifier to
sort sequences into Alpha coronavirus (HCoV-229E or HCoV-NL63), Beta coronavirus (HCoV-OC43
or HCoV-HKU1), MERS, SARS-CoV-1, SARS-CoV-2, and bronchitis-CoV. Lopez-Rincon et al.
(2020) [5] uses a 3-layer convolutional neural network to perform binary classification on whether
coronavirus sequences were SARS-CoV-2 strains or not. However, I believe the tasks and constraints
for this project are harder to address than those in Habib et al. (2020) and in Lopez-Rincon et al.
(2020). Specifically, the task at hand involves more classes that are less distinguishable. For instance,
it is likely sequences from HCoV-OC43 and HCoV-HKU1 to be more conserved as both are beta
coronaviruses, so differentiating between these classes is harder than between the more general
subgroups of alpha and beta coronaviruses. Furthermore, Habib et al. (2020) do not limit their data to
samples taken only from human hosts (i.e. they likely contained a substantial number of SARS-CoV-1
samples from other animals, such as bats), which allows their model to train on much more data and
achieve better performance. Therefore, while both models serve as good references, I do not expect
my models to outperform them.

Recurrent Models. Given the sequential nature of DNA sequences, recurrent models are the most
intuitive choice. The classic architecture is the Recurrent Neural Network (RNN), but it is susceptible
to vanishing and exploding gradients as well as a decreased ability to store long-term dependencies.
Long Short Term Memory (LSTM) attempt to fix these problems with cells that contain 3 gates:
an input, output, and forget gate which controls newly calculated, residual, and older calculated
information through the model. Because of these benefits, a vanilla LSTM was chosen as the baseline
model at the start of the project.

Convolutional Neural Networks. One major setback of recurrent models are longer training times
compared to other architectures, like convolutional neural networks. Therefore, I found it worthwhile
to investigate these alternatives.

Character-level convolution networks seemed most relevant for nucleotide data, as processing each
base pair separately is more reasonable than trying to segment sequences (i.e. produce "words") in
ways that made sense biologically. Hence, Kim et al. [6] and Zhang et al. [7] were good initial starting
points for how to incorporate CNNs for additional feature extraction, and I originally planned to
develop a convolutional LSTM model, similar to Shi et al. [8]. I envisioned first using convolutional
layers as feature extractors to transformed the one-hot vector inputs into embeddings. These would
then be concatenated, to preserve some information of relative positioning, and fed into the LSTM
for sequential processing.

However, Bai et al. [3] developed a Temporal Convolutional Network (TCN) that does not use any
recurrent layers but still manages to capture long-range dependencies in sequence-type data. As
the name suggests, TCNs are mainly made of many temporal blocks, shown in Figure 1. These
blocks repeats twice the structure of a dilated convolutional layer followed by weight normalization,
a ReLU activation, and dropout, before adding it to the input which creates a residual connection.
Each subsequent block has convolutions with twice the dilation rate of the previous layer.

Figure 1: (Left) The expanded receptive field of dilated convolutions where the dilation rate of a layer
is twice its the layer preceding it. (Right) Structure of one temporal block with residual connections
from Bai et al. [3]. Both images were taken from figures in the paper.
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The key to this architecture’s ability to detect long-range interactions in inputs is dilation convolutions
that have a greater receptive field compared to their non-dilated counterparts. Similar use of dilations
is present in BPNet [9], a deep learning model that utilizes DNA input sequences to predict DNA
binding profiles at a base pair resolution, to incorporate signal from up to 1034 base pairs around
an output sequence position. The model’s successful performance demonstrates the practicality and
viability of this type of convolution in a genomics setting.

Model Interpretation and Visualization. The idea of model interpretability originated from Karpa-
thy et al. [10], which is a study that sheds light into what features recurrent models attuned to during
training. Gao [11] and Zou et al. [12] provided more insight on how to visualize deep learning models
in the context of genomics, such as translating saliency maps into sequence logos which are more
typical DNA visualizations in bioinformatics.

In the end, this project explored two types of interpretability techniques. The first is Gradient-
weighted Class Activation Mapping (grad-CAM), which extends traditional class activation maps
and can be applied to a broader variety of architectures. When fed an input, grad-CAM utilizes the
gradients, with respect to a channel, flowing into a final convolutional layer to weight the importance
of that channel towards a particular class for the input. The output of this algorithm is a localization
map that highlights key regions in an input for a given class, which is crucial in understanding
where neural networks focus their attention. While traditionally used in computer vision and images,
grad-CAM has been adopted for sequential text data in this project. Hence, the code in Keras’ tutorial,
"Grad-CAM class activation visualization" 1 [13], was used as a base and modified to process text
data and 1-D convolutional layers and produce corresponding visualizations.

The second interpretability method is the dimensionality reduction technique, Uniform Manifold
Approximation and Projection (UMAP) [14]. Unlike its more populat alternative t-SNE [15], UMAP
can perform non-linear dimension reduction, preserves the global structure of data, produces consis-
tent results across runs, and executes in less time. For these reasons, UMAP was the method chosen
to visualize how outputs of layers were clustered in hopes of potentially elucidating the function
of those layers. This project uses the publically available package 2 provided by the authors of the
original paper in dimension reduction and visualization.

Model Parameter Design and Evaluation. Traditional evaluation classifications methods, like Area
Under the Curve (AUC) tend to be applicable for binary cases, not multi-class ones. One solution
used in this project is calculating a generalized AUC described in Hand and Till (2001) [16] that can
be used to evaluate performance for multi-class classifiers and utilized for this project.

For choosing parameters for models, Gao [11] and Zou et al.[12] provided suitable ranges, such as
recommending fewer layers (< 6) and smaller kernel sizes in convolutions, for genomics models.
Rio et al. [17] experimented with padding practices, including sparse or dense padding and left, same
and right padding, and described their results for a model with genomics application. This initially
served as a guide for how inputs were padded for the TCN model, but became less relevant after
revising the model’s architecture.

Data

NCBI Virus [18] was used to access all publically available GenBank DNA sequences of HCoV-
OC43, HCoV-HKU1, HCoV-229E, HCoV-NL63, MERS-CoV, SARS-CoV-1, SARS-CoV-2. This
database contains many of the viral genomes from NCBI Nucleotide [19]. The data was in the format
of FASTA files, which consist of one line of identifying information (the sample’s unique accession
id, host species, virus type, GenBank title, and whether the sample was a complete or partial genome).
Table 1 highlights relevant statistics about the sequences in the data set and how class labels were
defined.

Although there are four nucleotides in nature, the data contains 15 unique letters to present multiple
nucleotide choices for a sequence position. These letters are the standard codes provided by Interna-
tional Union of Pure and Applied Chemistry (IUPAC) [20], shown in Figure 2. Thus, the one-hot
vectors used to represent sequence positions are of shape 1× 15 rather than 1× 4.

1https://keras.io/examples/vision/grad_cam/
2https://umap-learn.readthedocs.io/en/latest/
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Species Class # samples sample length (min, max)
HCoV-229E 0 304 (225, 27307)
HCoV-NL63 1 628 (251, 27832)
HCoV-HKU1 2 399 (143, 29983)
HCoV-OC43 3 1278 (171, 30818)
MERS-CoV 4 738 (147, 30150)

SARS-CoV-1 5 16 (410, 29376)
SARS-CoV-2 6 34606 (64, 30018)

Table 1: Relevant statistics for the genomics sequences of human coronaviruses from NCBI Virus.
While there were many samples from non-human hosts, this project does not focus on classifying
them, so those samples were filtered out and not listed above.

Figure 2: IUPAC Codes for Nucleic Acids.

Approach

Data Preprocessing. All sequences in the FASTA files that were not annotated with ’Homo sapiens’
as host species were filtered out, producing the number of examples detailed in Table 1. Most notably,
we see there is heavy class imbalance in the data. Initially, to address this issue, the SARS-CoV-1
class was removed and 250 examples were randomly sampled from the remaining classes to create a
balanced data set. Sampling, though, may have created artifacts in data for each classes that models
might have detected, such as differences in sequence lengths. Therefore, later models were trained
on the entire data sets for all species including SARS-CoV-1) except SARS-CoV-2, for which 1500
examples were randomly sampled. This was done to mitigate further class imbalance (SARS-CoV-
2 examples outnumber all other classes by a large margin) and because there is less variation in
SARS-CoV-2 sequence length which decreases the risk of sampling artifacts.

Next, each base pair of the input sequences were converted into a 1× 15 one-hot vector based on the
IUPAC codes in Figure 2. Similarly, the output class labels were converted into one-hot vectors of
shape 1× 7. Then, the data was stratified by class and split into 80/10/10% for training, validation,
and testing, respectively. Stratification ensured that each set had a representative number of examples
from each class (e.g. 10% of class 0 is in the testing set).

In earlier models, the examples in each data set (i.e. training, validation, and testing) were than
converted to RaggedTensors, a type of TensorFlow tensor where elements are non-uniform shapes, to
enable batching the data and faster training. In later models, this was removed and examples were
fed one-by-one (i.e. batch size = 1) into the model via a generator, which removed the necessity
of padding sequences for the TCN model, as TensorFlow’s convolutional layer does not support
RaggedTensors.

Choosing An Architecture. The first part of the project involved choosing a suitable model archi-
tecture. In these models, the Sars-Cov-1 had been replaced with an ’other’ class made of randomly
generated sequences.
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Baseline LSTM Model. The baseline model comprises of 1 LSTM layer followed by a fully-connected
layer with softmax activation for classification.

Baseline + Dropout Model. This model adds dropout (rate = 0.2) to the inputs and outputs of
the LSTM layer (i.e. not to the recurrent units) in the baseline model. Dropout is a regularization
technique that can combat overfitting, which is important given the small dataset used for this project.

Stacked LSTM Model. This model consists of 2 LSTM layers, stacked on top of each other, followed
by a fully-connected layer with softmax activation. Stacking layers provides more depth to the
baseline and enable better classifications. The downside, however, is much greater training times.

Temporal Convolution Network Models. This model uses my implementation of the temporal
convolution network that closely follows the one described in Bai [3]. The temporal blocks were
constructed as described in Related Works and shown in Figure 1. Each block had a kernel size
of 3. The dilation rate of the first block is 1 and increases by a factor os 2 for subsequent layers.
The outputs of the temporal blocks are flattened and fed into a fully-connected layer with softmax
activation. I tested three models with different number of temporal blocks (3, 4, 5). Dropout (rate
= 0.2) was applied to the models with 3 and 4 blocks, as they were tested later. Because TCNs do
not rely on recurrences, they are much faster to train.

Revision and Finalization. TCNs, with the same type of increase in dilation rate between subsequent
blocks, were chosen as the underlying architecture as they outperformed all LSTM models and took
less time to train. Concerned about artifacts in the data sets, such as differences in the average and
spread of sequence lengths among classes, I then modified the TCN architectures to allow for inputs
of varying lengths. Specifically, examples were not batched and outputs of the temporal blocks
underwent a global average pooling before the fully connected layer with softmax activation. Global
average pooling acts over the temporal/sequential dimension and averages the information from
each sequence position. This is required to create uniformly shaped outputs that can be fed into the
subsequent fully connected layer. The final architecture is shown below in Figure 3.

Figure 3: Depiction of workflow. Viral DNA sequences of variable lengths, N , and with ’Homo
sapien’ hosts are converted a one-hot vector representation. This is fed into the model composed of a
variable number of consecutive temporal blocks with residual connections (i.e. despite the diagram,
the temporal blocks are not on the same level, but rather have a sequential relationship), a global
average pooling layer over the sequential dimension to standardize shapes, a fully connected layer,
and a softmax classifer. The class with the highest probability outputted by the softmax activation
determines the predicted class of the input.

Weight Loss Function. During training, the individual example losses were weighted based on their
actual class label, as listed below:

class 0: 4.0, class 1: 2.0, class 2: 3.0, class 3: 1.0, class 4: 4.0, class 5: 100.0, class 6: 2.0

These weights were used to incentivize correct classification of under-represented classes. They were
chosen by splitting the classes into viruses with more and less severe disease prognosis, dividing the
number of examples by the max number in each group (1500 and 1140 respectively), multiplying
the more dangerous virus group by 2, rounding, and capping at 100. This scheme adjusts for class
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imbalance and differences in the importance of correct classification among classes. Nevertheless,
their values are still considered arbitrarily chosen, so exploring different weighting schemes is done
during experimentation.

Performance Evaluation and Metrics. Different types of multi-class AUC and ROC curves were
originally used to gauge and visualize model performance for the artificially balanced data set
and models prior to the milestone. Later, F1-score and Precision-Recall curves replaced these
metrics since the final models were trained on an imbalanced data set. Both macro and micro
F1-Score was measured. The former implicitly favors correct classification of minority classes while
the latter implicitly favors more correct classification of classes with many examples. Therefore,
discrepancies between the metrics offer insight on which classes models struggle with, so both are
used to gauge performance. Ideally, though, the two F1-Scores should be similar. Comparisons of
model performance, especially when determining the best model during validation, will be done
manually and use both metrics; that is, models with low micro F1-Scores will not be the best even if
they have the highest macro F1-Scores and vice versa.

Model Interpretation and Visualization. Grad-CAM was used on (generally) randomly chosen
sequences, including those which were correctly and incorrectly classified, but in the same class.
The vectors outputs were plotted against sequence position and analyzed for patterns in peaks, in
which the relative magnitude of these peaks indicate how attuned the models were to a position.
Additionally, for all layers in the model,

Experiments

Model C. Acc. AUC (mi, ma, mlt) F1-Score (mi, ma) T. Time (hrs)
Baseline 0.48 (0.86, 0.84, 0.83) (0.48, 0.42) 3

Base + Dropout 0.40 (0.81, 0.79, 0.77) (0.40, 0.29) 2
Stacked 0.51 (0.89, 0.87, 0.86) (0.51, 0.42) 12

TCN-3 + Dropout 0.93 (0.99, 0.99, 0.99) (0.93, 0.92) 3
TCN-4 + Dropout 0.73 (0.94, 0.98, 0.98) (0.73, 0.75) 2

TCN-5 0.45 (0.82, 0.93, 0.92) (0.45, 0.33) 2.5
Table 2: Performance statistics on the validation set for models tested while choosing an architecture.
’C. Acc.’ stands for Categorical Accuracy, ’mi’ stands for micro, ’ma’ stands for macro, ’mlt’ AUC is
the multi-class AUC described in Hand and Till [16], and ’T. Time’ is model Training Time.

Table 2 displays statistics for models tested while choosing an architecture (i.e. up to milestone).
Despite the same training hyperparameters, LSTM-based models performed worse during test time
and took more time to train. As a result, subsequent experiments focused on exploring TCN-based
models.

Optimizing Parameters in Architecture Design. Convolution kernel size, initial dilation rate, and
number of temporal blocks all influence the maximum receptive field achieved by the final convolu-
tional layer, which is important if there are key relationships necessary for classificaiton between
nucleotides spaced farther away in viral genomes. Thus, the first set of experiments after finalizing
the model’s architecture was to adjust some of these parameters as well as the number of channels in
the convolution. Combinations of parameters tested are denoted in Table 3.

Model temporal blocks kernel size channels
1 4 3 64
2 6 3 64
3 8 3 64
4 4 5 64
5 4 7 64
6 4 3 128
7 4 3 256

Table 3: Combinations of model parameters tested and trained using Adam with a learning rate of
4e− 5, dropout rate of 0.2, patience for 2 epochs before early stopping, and weighted loss function.
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Initial dilation rates greater than one prevents the model from including immediately adjacent
nucleotides in one convolution. This is suboptimal in an biological context as every three nucleotides
defines one amino acids, which are important in determining the structure and function of proteins
encoded by these DNA sequences. Therefore, the initial dilation rate remains 1. The results from
this experiment are shown in Figure 4. The best set of model parameters was determined to be 4
temporal blocks that included convolutions with 7×7 kernels and 64 channels.

Figure 4: Validation set performance for models with different model parameters.

Hyperparameter Search. This experiment focused on tuning hyperparameters involved in training of
the best model from the previous experiment. Because optimizing with Adam attained decent results
and has many theoretical advantages, alternative optimizers were not explored. Rather, as shown in
Table 4, various values of Adam’s learning rate and hyperparameters used in regularization methods,
namely patience in early stopping and the probability of an input element being drop during Dropout
within temporal blocks, were tested. This experiment was important for choosing suitable training
conditions that promote the model to learn optimal weights while minimizing the chance of overfitting.
The results from this experiment are shown in Figure 5. The best set of training hyperparameters
was determined to be a learning rate of 4e-5, a dropout rate of 0.1, and patience for 2 epochs.

Model learning rate dropout probability patience (epochs)
7 4e-5 0.2 2
8 5e-4 0.2 2
9 1e-5 0.2 2

10 4e-5 0.1 2
11 4e-5 0.0 2
12 4e-5 0.2 4

Table 4: Combination of training hyperparameters tested on the best model with 4 temporal blocks
and 7× 7 kernels and 64 channels in convolutional layers.

Best Model Evaluation. After determining the best model parameter and training hyperparameters
among the combinations tested, the test set was evaluated using this model, and results are shown
below:

Categorical Accuracy F1-Score (micro) F1-Score (macro)
0.9935 0.9935 0.9917

These results suggest that the model has achieved good performance, even in minority classes.
This fact is also supported by analyzing the confusion matrix, shown in Figure 6, for example,
when the model is able to correctly classify the SARS-CoV-1 group, likely as a result of the heavy
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Figure 5: Validation set performance for models with different model parameters.

weighting it had in the loss function. The confusion matrix also reveals that the model had the most
misclassifications (2) for MERS-CoV and that there is no apparent pattern in misclassifications.
Similarly, the precision-recall curves in Figure 6 shows that the model requires little trade off between
having a high sensitivity and a high positive predictive power as it has both.

Figure 6: Confusion matrix and precision recall curve generated from evaluation on the test set

Class Attenuation Using grad-CAM. Henceforth, all interpretability experiments only involve the
best model trained under the best training conditions. While the goal of this experiment was to
better understand which input sequence positions are more attuned to for a given class, it was
difficult to analyze the results of this experiment in practice. Reasons included long sequence lengths
and differences in lengths. The former made it impossible to fit all positions in a single plot and
analyze together, especially for complete genomes that had around 29000 positions (for 29000 base
pairs). These challenges made searching for peak patterns very time intensive, and along with time
constraints, I was not able to analyze enough input sequences to find significant peak patterns in input
sequences that could indicate unique motifs for certain classes.

Supervised Dimension Reduction of Layer Outputs Using UMAP. To run a UMAP analysis, the
outputs of all temporal block were first averaged pooled globally, separately, in order to standardize
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shapes between input sequences. This step was skip for the outputs of the global average pooling
layer after the temporal blocks. Then, the UMAP algorithm, with 15 nearest neighbors; a minimum
distance of 0.1 between embedding points; and the euclidean distance as parameters, reduced these
outputs into 2 dimensions. The results are shown in Figure 7. Despite the algorithm knowing
each input’s class label, the results show that clusters are not based on classes. One area of further
exploration is to elucidate features that define these clusters.

Figure 7: UMAP plots for embeddings representations of layer outputs. Different colors represent
different classes.

Conclusions

This project shows that temporal convolution networks can be trained to accurately classify human
coronaviruses and is a better choice than recurrent methods, such as LSTMs, because of better model
performance and shorter training times. Additionally, it seems that smaller models obtain better
performance since the best model had the smallest number of convolution channels and number of
temporal blocks. However, a larger kernel size did improve performance, which may indicate that
local features contribute more to accurate classification than relationships between nucleotides farther
away from each other. With the addition of a weighted loss function, the model was able to achieve
good performance on an imbalanced data set, as evidenced by a macro and micro F1-Score of 0.99.

Unfortunately, interpretability techniques tested did not shed light about how parts of the model oper-
ated. Therefore, avenues for future work included further exploration of interpretability techniques
or refining ones currently explored. Additionally, given the small sample size of classes, especially
SARS-CoV-1, it would be useful to test if the model still performs well on a larger data set.
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