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Abstract

Patients with gastric cancer are often treated with surgery followed by adjuvant
chemotherapy. However, adjuvant chemotherapy’s therapeutic benefits are incon-
sistent across patients. In studying the tumor, current methods usually ignore tissue
context specifics, such as microsatellite instability (MSI), and gene expression
levels. Both MSI and the expressions of CDX1, GZMB, SFRP4, and WARS genes
are known to be linked to adjuvant chemotherapy response in patients with gastric
cancer. However, patients do not normally receive gene expression panels for these
four genes, restricting the utility of these genes as prognostic tools. In this paper,
we successfully developed a deep learning model to predict gene expression of
these 4 genes from readily-available, whole slide H&E images from patients with
gastric cancer. Our prediction results are comparable to the state-of-the-art results.
Further work is required to run the models with more sampled patches and confirm
the potential for our results to predict adjuvant chemotherapy response and select
patients that will benefit from treatment.

1 Introduction

Adjuvant chemotherapy after surgery is known to improve the survival of patients with gastric cancer.
However, adjuvant chemotherapy’s therapeutic benefits are inconsistent across patients, helping some
while hurting others. Both tissue context and molecular profiling are crucial in predicting patient
response to chemotherapy. Kather et al. 2019 showed microsatellite instability (MSI) can determine
whether patients with gastric cancer will respond well to immunotherapy [1]. They applied deep
learning to predict MSI status from whole slide images (WSI). Another recent study by Cheong
at al. showed that expression levels of 4 genes (CDX1, GZMB, SFRP4, and WARS) can help
predict whether patients will respond to adjuvant chemotherapy, as well as their overall prognoses [2].
However, not every patient is tested for expressions of these 4 genes, as this requires additional tests.
We will build a deep learning model to directly predict gene expression from whole slide H&E images,
which are readily available for all cancer patients. These gene expression values can be combined
with Cheong et al.’s work to predict whether patients with gastric cancer will respond to adjuvant
chemotherapy, from their WSIs of their tissues. This model may help identify patients who can
benefit from adjuvant chemotherapy after surgery while preventing non-responders from receiving the
treatment. We successfully trained and fine-tuned a deep learning model with a ResNet-50 backbone
[3]. The model accepts tumor patches, extracted from whole slide images, as input, and outputs gene
expression values for the four genes of interest. The predicted gene expressions achieved an average
correlation of 0.312 across the the CDX1, GZMB, SFRP4, and WARS genes.



2 Related Work

Gastric cancer outcomes prediction. The primary motivation of this project was based on two
papers. First, previous work by Kather et al. (2019) has been able to predict whether a patient with
gastrointestinal cancer will benefit from immunotherapy directly from H&E histology images [1].
They applied deep learning methods directly to whole slide images (WSI) and predicted microsatellite
instability (MSI), which is known to determine immunotherapy response in gastrointestinal cancer.
The main assumption made by this group was that all areas of the tumor were equally correlated
with MSI. We plan to build on this assumption for gene expression prediction by building a model
that predicts response to chemotherapy by sampling from known tumor areas in the WSI rather than
the whole slide. Second, Cheong et al. (2018) presented a parallel insight that the expression of 4
genes (CDX1,GZMB, SFRP4, and WARS) together were highly predictive of quality of response to
adjuvant chemotherapy and prognosis in patients with stage II-III gastric cancer [2]. They developed
two rule-based classifier algorithms to classify patients as likely responders or nonresponders, as
well as low/intermediate/high risk patients. However, to use this algorithm to identify candidates
for adjuvant chemotherapy, physicians must order additional tests for gene expressions, incurring
additional costs. We plan to develop a model to predict the expression of these 4 genes from HE
whole-slide images, which are readily available for all cancer patients. We hope to combine our
predictions with Cheong et al.’s findings to create an efficient, cost-effective method to identify
candidates for adjuvant chemotherapy.

Predicting molecular markers from histology images. With the above two insights informing our
hypothesis, we looked for previous work predicting molecular signatures from whole slide images.
There has been much previous work seeking to predict tumor mutations from whole slide images
in various cancer types, such as lung cancer [4], melanoma [5] [6], and others [7] [8]. However,
less work has been done in predicting gene expression from whole slide images. Schmauch et al.
predicted gene expression of many genes from whole slide imaging tissues of 28 different cancer
types [9]. We based our baseline model on their work. Their method predicts gene expression from
an image as follows:

• Sample 8000 224×224 patches from the image, filtering out patches with only white space.
• Run a 50-layer ResNet, pretrained on ImageNet, on each tile to produce a 2048-feature output.
• Clusters the 8000 images into 100 groups based on tile location
• Compute representative “supertiles” for each group by averaging the 2048 features within

each group.
• Run a multi-layer perceptron (MLP) on these supertiles to predict gene expression per

supertile.
• Sample a random integer K between 1 and the number of supertiles.
• Computes expression for any gene X for the full image by taking the average predicted

expression of the K supertiles with the highest predicted expressions of X .

As we look to build our tailored model structure to make gene expression predictions, we have
been searching for other previous work in the space to consider for choosing: (1) where to sample
tumorous patches in the whole slide image, and (2) how to predict gene expression from the sample.
More recent work by Kather et. al (2020) was able to predict immune related gene expression
signatures, known to be involved in response to cancer treatment, from routine histology images [10].
Their image pre-processing approach, neural network training, model selection and hyperparamater
optimization was different from Schmauch et al., and we plan to take inspiration from their work in
the expression prediction. Other work from Fu et. al (2020) used deep transfer learning to identify
molecular patterns in whole slide images, and was able to predict mutations, tumor composition and
prognosis [11]. The spatially resolved tumor and non-tumor tissue distinction they achieve could be
a good addition to our process of sampling tumor tiles, which we currently do through previously
computed heatmaps showing presence of tumor probability.

3 Data

For our analysis, we will develop a model to predict expression of the CDX1, GZMB, SFRP4, and
WARS genes from whole slide, H&E-stained tissue images of gastric cancer tumor biopsies. Our
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data comprises paired samples of whole slide biopsy images (∼450 patients, 82 GB, Fig.1) and gene
expression panels (∼420 patients, 300 KB, Fig. 3). Thus, we have over 400 paired samples of data,
all coming from The Cancer Genome Atlas Stomach Adenocarcinoma data collection (TCGA-STAD)
(https://portal.gdc.cancer.gov/). From our mentor’s lab, we also received heat maps identifying likely
tumorous regions of each slide (Fig.2, 36 MB). For each whole slide image, we select multiple 224
x 224 pixel patches from regions of maximum tumor probability, and train our model to predict
gene expression from these patches. Using the heat map data to generate these 224×224 patches
of tumorous tissue was an unexpected challenge (see data pre-processing for details). Beyond this
obstacle, our data appears to be presented in very usable formats. We are grateful to our mentor for
this support.

Fig. 1. a. Heat map identifying regions of the whole slide image that are likely tumorous.
b. H&E-stained whole slide image of gastric tissue biopsy. c. Gene expression data for
the CDX1, GZMB, SFRP4, and WARS genes; these genes were previously shown to be
predictive of chemotherapy response in gastric cancer patients.

4 Approach

Our baseline model and overall methodology is heavily based on Schmauch et al.’s implementation
[9], mentioned above. Their predicted gene expressions had significant correlations with true gene
expression in 8/28 cancer types, but not gastric cancer, our cancer of interest. We modified several
parts of Schmauch et al.’s workflow and model for our project. Thus, we improved upon their methods
in a few ways:

• Sampling tumorous patches from the image: Schmauch et al. sampled 8000 tumor
patches from each image, requiring that each patch contained tissue rather than solely white
space. However, they did not sample patches that were likely tumorous from the tissue. For
our approach, we sample 10 patches from each image, each of which is likely tumorous.
We do so by using a heat map that signals where the highly tumorous tissue areas are. We
then use a K-Means clustering model, fit to a wide array of 224×224 patches, to filter out
potentially non-tissue patches that were artifacts of the heat maps. We hope that using
likely-tumorous patches will yield a stronger signal in predicting gene expression from the
tumor tissue.

• Computing gene expression with more biologically-grounded methods: Their compu-
tation of whole slide gene expression by averaging the top K tiles for some random value
K does not appear to have biological grounding, and was performed to improve the model’s
robustness. After sampling the likely-tumorous patches, we extract ResNet features for each
patch, average these features, then predict one gene expression value from this averaged vec-
tor. Thus, all patches used in our gene expression prediction are likely tumorous, providing
our approach with more biological grounding.
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4.1 Sampling tumorous patches from the image

First, we used the heat map data to generate 10 224×224 patches of tumorous tissue from each
patient’s whole slide image (Fig. 2). Not all patients with whole slide image data (451 patients) had
corresponding heat maps (404 patients), so we were left with a total of 404 whole slide image-heat
map pairs. To extract the tumorous patches, we first select a region of high tumor probability from
the heat map, starting by looking at the top left corner of the image. We then extracted a 224 × 224
patch from the corresponding location on the whole slide image and ran the sampled patch through
an unsupervised K-means (K = 3) clustering algorithm. This algorithm determines whether the
extracted patch contains meaningful tissue. We do this because many samples have annotations on the
image which are usually mapped to high tumor probability but do not actually represent a tissue area
in the sample (Fig. 3). By running this clustering, we ensure that the sampled image is significant
by comparing it to other previously sampled significant patches. If the sampled patch is significant,
we min-max normalize the patch by subtracting the minimum pixel intensity from each pixel value
and dividing each value by the maximum pixel intensity, then save the patch for later use. If it is not
significant, we sample a new patch.

Fig. 2. Sampling tumorous patches from whole slide image workflow for a single patch.

Fig. 3. 3a: H&E image and its corresponding tumor probability heatmap, 3b: K-means
(K=3) clustering for patch filtering: in Class 1, we have white patches (background); in
Class 2, we have the patches that represent tissue areas; in Class 3, we have the patches
with artifacts. We only select the patches in Class 2 for model training.

4.2 Models

4.2.1 Model Inputs

Our predictive model takes the extracted 224 × 224 patches and gene expression tuples as input for
training, and the tumor patch alone as input for testing. The label is a tuple consisting of 4 gene
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expressions in FPKM-UQ units (an estimation of gene expression from RNA-seq data). Since the raw
gene expression values cover several orders of magnitude, we normalize the values by performing a
log(1 + α) transformation. After removing the duplicated patient ids and matching each label to the
H&E image with the same patient id, we have 350 H&E images left, where each image has multiple
224× 224 patches. Thus, the total data used to train and test the model consists of 350 samples, each
with an image (with multiple 224× 224 patches) and a label (tuple consisting of 4 gene expressions
as floating numbers). We split the data into training (60%), validation (20%) and test (20%) sets.

4.2.2 Model architectures

• Baseline Model. The model takes one 224×224 patch from each H&E image as input and extracts
2048-features from each image patch from the global average pooling layer in ResNet-50, pretained
on ImageNet. This feature vector is then passed to a multi-layer CNN model with input_dim = (#
patches, 1, # features) and output_dim equals to 4 given that we are interested in predicting the 4
relative gene expressions. This baseline model architecture is shown in Fig. 4.

Fig. 4. Model architecture: Baseline Model

• Simplified Version Model. The simplified version model is almost equivalent to the baseline
model. Instead of extracting the features from pre-trained ResNet-50 model, we stack the pre-
trained ResNet-50 layers excluding the fully connected layers with a global average pooling layer,
followed by multiple fully connected layers for retraining to predict the four gene expressions.

• Patch-based Model. The patch-based prediction model takes N > 1 patches from each H&E
image, which are converted to 2048×N features using the ResNet-50 feature extractor. After that,
we perform a patch aggregation using both max and average aggregation methods across all the
patches to obtain 2048 ×N features. This is followed by the same multi-layer CNN model we
used in our baseline model to obtain a 4× 1 predicted gene expressions. The patch-based model
framework is shown in Fig. 5.

Fig. 5. Model architecture: Patch-based Model
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• Multi-task Model. The multi-task model is built based upon the baseline and patch-based model.
Instead of using one fully connected layer for four genes prediction, we use four separate fully
connected layers for each gene prediction. This is inspired by the idea that each of the four gene
expression predictions can be considered as separate tasks which have something in common in
their parameters. The patch-based model framework is shown in Fig. 6.

Fig. 6. Model architecture: Multi-task Model

4.2.3 Model outputs

The model outputs a tuple consisting of 4 gene expression predictions as floats. Since the predicted
gene expressions are continuous variables, mean squared error (MSE) is applied as loss during model
training. For each gene, we plot the predicted vs true expression as shown below (Fig. 7).

Fig. 7. Sample true vs predicted expression violin plots (Baseline model, N=1 patches)

5 Experiments

Our project aims to build a model to predict gene expression from whole slide images (WSI) for
gastric adenocarcinoma (STAD). In particular, we are interested in predicting the gene expression
values for the following 4 genes: CDX1, GZMB, SFRP4 and WARS. Since the predicted gene
expressions are continuous variables, we use the mean squared error (MSE) to compute the loss
during model training. Furthermore, to evaluate the accuracy of our gene expressions prediction, we
apply the Pearson correlation r = [9][12], a test statistic that measures the statistical relationship
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between two continuous variables:

Pearson Correlation r =

∑
(xi − x̄)(yi − ȳ)√∑
(xi − x̄)

2
(yi − ȳ)

2
,

where xi is the true gene expression values, x̄ is the mean of the true values, yi is the predicted gene
expression values and ȳ is the mean of the predicted values. We compute the Pearson correlation
between the true gene expressions and predicted gene expressions for the four genes. We run the
experiments with three models with two patch aggregation approaches (maxpooling and avgpooling)
and vary number of patches per image (N ∈ {1, 10}) described in Section 4.2.2 and the results are
shown in Table 1. The patch-based model in multitask-setting with 10 patches per image achieved
the highest Pearson correlation, which is 0.3122, among all experiments. This shows a statistically
significant relationship between the predicted and true values.

Pearson Correlation r

Model num_patches (N ) = 1 num_patches (N ) = 10

Simplified Version Model (M1) 0.2629 N/A for N > 1

Baseline Model (M2) 0.2635 N/A for N > 1

Patch-based Model + 0.2635 0.3043
Average Patch Aggregation (M3) (same as M2 for N = 1)

Patch-based Model + 0.2635 0.3119
Maximum Patch Aggregation (M4) (same as M2 for N = 1)

M3 + Multi-task 0.2751 0.3042

M4 + Multi-task 0.2751 0.3122

Table 1: Model results

5.1 Effect of changing number of patches

According to Table 1, when we sample more patches from each image and perform patch aggregation,
the model gives higher Pearson correlation and thus achieves better performance. Sampling only
one patch from each image may be biased and may not be representative of the whole H&E image,
while sampling and aggregating more patches allows us to get a better representation of tumor tissue
in predicting gene expression. Due to the computational intensity of additional patch processing,
we ran the experiments with only num_patches_per_image = 1 and num_patches_per_image = 10.
For the next step, we will sample more patches, say 100 patches, from each WSI to better examine
the effect of number of patches on the prediction results.

5.2 Effect of changing model architecture

According to Table 1, the Pearson correlation for M1 and M2 are very close to each other because
these two architectures are almost equivalent to each other. For M1, we freeze the initial layers
in ResNet-50 and modify the fully connected layers for gene expressions prediction. For M2, we
extract the features from the global average pooling layer in the pre-trained ResNet-50 model. In
addition, we found that applying maximum aggregation to the extracted features gives better results
compared to Average aggregation method. Moreover, we observed that the model performs the best
in multi-task setting where we use separate fully-connected layers to predict the gene expression for
each of the four genes.

6 Conclusion and Next Steps

Our results suggest that sampling more tumor patches from each patient results in better predictions
of gene expression. This is likely because the additional tumor patches provide more information
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regarding the state of each patient’s tumor. Further, our results suggest that different patch aggregation
methods (average aggregation, max aggregation) and multi-task learning approaches do not result in
substantially different predictions in gene expression.

For the next step, we will experiment with sampling more patches for each image to get more tumor
context for each prediction. We will then connect our predicted gene expressions with Cheong et
al.’s rule-based classifier of chemotherapy response and perform a similar survival analysis [13] in
order to predict whether a patient will respond to chemotherapy from the patient’s HE whole-slide
image. To do so, we plan to binarize our output predictions and optimize the binarizing threshold to
maximally separate responders from non-responders. We will then validate our response predictor on
an external dataset to test the model’s ability to generalize to non-TCGA populations.

7 Contributions

VV, RY and JH contributed to the writing and review of the abstract. VV took lead on writing of the
introduction. VV, RY and JH contributed to finding previous related work, VV and JH took lead on
writing of the related works section. Data was provided by our mentor YJ, RY took lead on writing
the data section. JH, RY and VV took part in designing the approach, JH took lead on writing the
model design subsection, RY and VV took lead on writing the evaluation subsection. JH, RY and VV
took part on designing experiments. JH took the lead on building patch sampling, VV and RY took
lead on writing the patch sampling section. RY took lead on building the model, VV and RY took
lead on writing the baseline model section. JH, RY and VV took part on experiments planning, JH
took lead on writing the experiments section. VV, JH and RY took part on drafting the conclusion of
the project. Overall, JH, RY and VV equally contributed to the revision and editing of the paper. YJ,
our mentor, gave us guidance in all sections. We are very grateful for his advice.
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