Lecture 11: Al and COVID-19
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Announcements

e Project milestone due Fri Oct 30
e Project milestone presentations Mon Nov 2 in-class
o 4 minutes per group, strict time limit. It's ok to have a subset of group
members present
Should summarize all components of milestone report (5 pts total)
Pre-recorded video option can be requested for those unable to attend
o See Piazza post for more details about all of this
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Today

- Applications of Al in Healthcare through the lens of a real-world case study:
COVID-19
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First application area: Al interpretation of
chest radiology images
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Bernheim et al.; COVID-19 hallmarks on chest CTs based on
radiologist review

Key Results

» The hallmark CT manifestations of coronavirus disease 2019
(COVID-19) include bilateral and peripheral ground-glass and
consolidative pulmonary opacities, sometimes with a rounded
morphology and peripheral lung distribution.

» As the time between onset of symptoms and initial chest CT in-
creases, some CT findings are observed with increasing frequency,
including consolidation, bilateral and peripheral lung disease,
greater total lung involvement, linear opacities, and the appear-
ance of a crazy-paving pattern and reverse halo sign.

» Certain chest CT findings, including pleural effusions, lymphade-
nopathy, pulmonary nodules, and lung cavitation, are characteris-
tically absent, and more than half of patients imaged quickly after
symptom onset have a normal CT scan.

Bernheim et al. Chest CT Findings in Coronavirus Disease 2019 (COVID-19): Relationship to Duration of Infection, 2020.
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Bernheim et al.:
COVID-19 hallmarks
on chest CTs based
on radiologist review

4

Figure 1: (a) Axial CT image obtained without infravenous conirast
material in a 36-year-old man shows bilateral ground-glass opacities
in upper lobes with a rounded morphology (arrows). (b) Axial CT im-
age obtained in a 44-year-old man shows larger ground-glass opaci-
ties in the bilateral lower lobes with a rounded morphology (arrows).
() Axial CT image obtained in a 65-year-old woman shows bilateral
ground-glass and consolidative opacities with a siriking peripheral

distribution (arrows).

Bernheim et al. Chest CT Findings in
Coronavirus Disease 2019 (COVID-19):
Relationship to Duration of Infection, 2020. &
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Harmon et al.

- Detection of COVID-19 from CT images

- 2 stage process: lung segmentation followed by classification of COVID-19 or not
- Multinational dataset of 2724 scans from 2617 patients, with 1029 scans (922) patients

confirmed positive for COVID-19

Original CT image Lung segmentation Crop to lung region

Harmon et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets, 2020.

(a) Full 3D model

(b) Hybrid 3D model

> Entire 3D lung region ' Yes/no |
S 192 x 192 x 64 = m . COVID-19 |
| Multiple crops =
' Yes/no
Y 192 x 192 x 32 |— WGy PANN — ;
| 6 crops/lung training = COV' D-1 9 N

15 crops/lung inference

v /

mask image to lung regions
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Harmon et al.

- Detection of COVID-19 from CT images
- 2 stage process: lung segmentation followed by classification of COVID-19 or not
- Multinational dataset of 2724 scans from 2617 patients, with 1029 scans (922) patients

confirmed positive for COVID-19 First stage: segmentation

(a) Full 3D model

Original CT image Lung segmentation Crop to lung region

P Entire 3D lung region ' Yesio |
) — 192 x 192 x 64 = m_' COVID-19 |
; (b) Hybrid 3D model
0 | Multiple crops ===
¢ Yes/no
Y 192 x 192 x 32 |— ECLIPAN —: :
| 6 crops/lung training = COV' D-1 9 N
15 crops/lung inference
5 / --
mask image to lung regions

Harmon et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets, 2020.
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Harmon et al.

- Detection of COVID-19 from CT images
- 2 stage process: lung segmentation followed by classification of COVID-19 or not
- Multinational dataset of 2724 scans from 2617 patients, with 1029 scans (922) patients

confirmed positive for COVID-19 Second stage: classification based on whole lung
region vs. combination of cropped regions

Original CT image Lung segmentation Crop to lung region \ (a) Full 3D model

) Entire 3D lung region ' Yes/no |
— 192 x 192 x 64 = m | COVID-19 |

(b) Hybrid 3D model

Multiple crops

é VYes/hrb :
192 x 192 x 32 |— ECLIPAN —: :
6 crops/lung training COVID-19 H

15crops/lung inference | T

mask image to lung regions

Harmon et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets, 2020.
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Harmon et al.

- Detection of COVID-19 from CT images

- 2 stage process: lung segmentation followed by classification of COVID-19 or not
- Multinational dataset of 2724 scans from 2617 patients, with 1029 scans (922) patients
confirmed positive for COVID-19 “DenseNet” convolutional neural network architecture

Original CT image Lung segmentation Crop to lung region

Harmon et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets, 2020.

(a) Full 3D model l

(b) Hybrid 3D model

> Entire 3D lung region ' Yes/no |
S 192 x 192 x 64 = m . COVID-19 |
| Multiple crops =
' Yes/no
Y 192 x 192 x 32 |— WGy PANN — ;
| 6 crops/lung training = COV' D-1 9 N

15 crops/lung inference

v /

mask image to lung regions
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Harmon et al.

Multinational patient
dataset

Harmon et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets, 2020.

Serena Yeung

Disease cohort Center Demographics Training Validation Testing
COVID-19 Hubei, China 363 Male, 353 female 369 Scans 122 Scans 207 Scans
Median 49 (182-92) 354 Patients 113 Patients 207 Patients
Milan, Italy 220 Male, 90 female 57 Scans 24 Scans 54 Scans
Median 60 (18-96) 52 Patients 17 Patients 54 Patients
Tokyo, Japan 91 Male, 60 female 100 Scans 31 Scans 49 Scans
Median 60 (4-87) 45 Patients 15 Patients 49 Patients
Milan, Italy 10 Male, 5 female - - 15 Scans
Median 55 (31-85) 15 Patients
Syracuse, NY, USA bSee footnote - - 1 Scan
1 Patient
Any clinical indication Syracuse, NY, USA 437 Male, 534 female 356 Scans 93 Scans 500 Scans
Median 65 (19-100) 356 Patients 93 Patients 500 Patients
Cancer diagnosis and/or staging LIDC23 N/A 149 Scans 50 Scans 271 Scans
149 Patients 50 Patients 271 Patients
NIH, USA 100 Male - - 100 Scans
Median 69 (30-89) 100 Patients
Pneumonia Syracuse, NY, USA 73 Male, 42 female - - 140 Scans
Median 66 (13-101) 140 Patients
NIH, USA 28 Male, 8 female 28 Scans 8 Scans -
Median 21 (4-71) 28 Patients 8 Patients
Total 1059 Scans 328 Scans 1337 Scans
984 Patients 296 Patients 1337 Patients

aAge was not readily available for all Hubei, China patients.
bDemographics for COVID-19 diagnosis from SUNY is included in all-comer/any clinical indication grouping.
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COVID-19 STATU

S

------- 3D model, independent test inst.

------- Hybrid 3D model, independent test inst.

3D model

Hybrid 3D model

Harmon et al. 10
Model achieved 90.8% accuracy 0 |
(84% sensitivity, 93% specificity) '
§ 0.6
=
02 - - S
00 | 0.00 0.05 0.10
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False positive rate

Harmon et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets, 2020.
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Harmon et al.

Grad-CAM saliency maps showing regions contributing most to model prediction (will discuss
more in upcoming lecture)

_’V‘- B
gV

Harmon et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets, 2020.

Serena Yeung BIODS 220: Al in Healthcare Lecture 11 - 13



Wang S. et al.

- Also detection of COVID-19 from Sy
CT images, based on 1266 patients

(924 with COVID-19) from 7
Chinese cities or provinces

- Addressed lack of available data
due to ongoing pandemic, through
pre-training using a different dataset
of 4106 lung cancer patients (that

was trained to predict

accompanying epidermal growth

factor receptor (EGFR) gene
mutation)

n=53, Beijing n=161, Heilongjiang
bt CT image

630 cri
) image

‘g™ all with COVID-19

N COVID-19: 92
Y20 follow-up > 5 days

other pneumonia: 69

n=4106, Sichuan
2l CTi
5 ’4 image

EGFR gene

mutation status
mutant: 2115
wild type: 1991

n=709, Wuhan, and Henan

n=226, Anhui
[y
IC3A

COVID-19: 102
other pneumonia: 124

CT image

| External validation 4 |
n=117, Huangshi
bkl CTi
s " image

%l CTi
(] " image

COVID-19: 560

*other pneumonia: 149
VNN follow-up > 5 days: 301

y all with COVID-19
V208 follow-up > 5 days

Wang S et al. A Fully Automatic Deep Learning System for COVID-19 Diagnostic and Prognostic Analysis, 2020.
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Wang S. et al.

3D convolution

- Deep learning architecture is (kemel=3x3x3)

similar to a DenseNet (stacked
modules, with dense
connections between them)

Automatic lung segmentation Non-lung area '

DenseNet121-FPN  lung mask  lung-ROI }
“'"' » >4
A
'V

<« COVID-19Net: COVID-19 prognostic and diagnostic analysis model

uoissaxddns

3D convolution
(kernel=1x1x1)

batch
COVID-19 normalization
b. b'l'ty‘;%’ - e J
- Also extracted e 5 ‘ ) -
64-dimensional visual features mulivarae Cox_ [~ g Fispleatiing
. pe . prognostic . TSSO <:|'§<::Iinical features &  feature
from the classification model, oufoore W= - I l.
and combined it with clinical S R e il
features to train a model for Use CT and gene data of 4106 lung cancer patients to pre-train the COVID-19Net -
. . . S global average
prognosis (hlgher'”Sk VS. CT image of patients (_‘?/ <4 EGFR gene pooling
H H ith | o |\ tati tat
lower-risk patients) e &’ A\ 28— dense
Learn lung features that can reflect micro-level lung functional abnormality connection

Wang S et al. A Fully Automatic Deep Learning System for COVID-19 Diagnostic and Prognostic Analysis, 2020.
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Gozes et al.

- Beyond COVID-19 classification on CTs,
also outputs a “Corona score” to measure
progression of the disease over time

- The score is a volumetric measurement of
the opacities burden, and is based on a
volumetric summation of
network-activation maps and localized
nodule detections

- A‘relative Corona score” can perform ,
patient-specific monitoring by normalizing Corona Score: 191.5 cm3 Corona Score: 97.1 cm3 Corona Score: 0 cm3

Relative Corona Score: 1 Relative Corona Score: 0.51 Relative Corona Score: 0
the score by the score computed at the >
CT Scan #1 — 49% Reduction CT Scan #2 — R . CT Scan #3 —
. . . ecovery
f| rst ti me pOI nt 27 Jan 2020 in Corona Score 31 Jan 2020 ; 15 Feb 2020

Gozes et al. Rapid Al Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient
Monitoring using Deep Learning CT Image Analysis, 2020.
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Gozes et al.

- Multi-time point tracking of patient disease progression

CT Scan #1 - 26 Jan 2020 CT Scan #2 - 30 Jan 2020 CT Scan #3 - 4 Feb 2020 CT Scan #4 - 11 Feb 2020

1-4 days after symptoms appeared 5-8 days after symptoms appeared 10-13 days after symptoms appeared 17-20 days after symptoms appeare
N > o~ N

Volume: 9.9 cm3 Volume: 19.9 cm3 Volume: 13.2 cm3 Volume: 6.3 cm3
Average Axial Diameter: 30.3 mm  Average Axial Diameter: 37.4 mm  Average Axial Diameter: 34.2 mm Average Axial Diameter: 26.6 mm

Gozes et al. Rapid Al Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient
Monitoring using Deep Learning CT Image Analysis, 2020.
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Wang L. et al.

- This work takes a different approach and tries to detect COVID-19 from chest x-rays instead of CTs,
since x-rays are fast, more accessible (especially in developing countries), and portable (can be
performed e.g., within an isolation room)

- Trained a deep learning model to predict no infection, non-COVID-19 infection, COVID-19 infection

- 3
No infection COVID-19 infection
Wang et al. COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images, 2020.
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Wang S. et al.

convixi

- Model architecture was convixt
selected based on a “network | o |
generation” approach to &S A e[ PEPXmodle |

design a high-performing
network for the task. But still
based on familiar components!

N B P~ P P B

30x30x216)
30x30x224)
30x30x216)
30x30x216]
30x30x216)

o o o S g~

input image (480x480x3)
conv7x7 (240x240x56)
PEPX1.1(120x120x56) N\
PEPX1.2 (120x120x56)

PEPX 1.3 (120x120x56)
PEPX 2.1 (60x60x112)
PEPX 2.2 (60x60x112)
PEPX 2.3 (60x60x112)
PEPX 2.4 (60x60x112)
PEPX 4.1 (15x15x424)
PEPX 4.2 (15x15x424)
PEPX 4.3 (15x15x400)

PEPX 3.1
PEPX 3.2
PEPX 3.3
PEPX 3.4
PEPX 3.5
PEPX 3.6

Y

Sensitivity (%) Positive Predictive Value (%)
Architecture | Normal | Non-COVID19 | COVID-19 Architecture | Normal | Non-COVID19 | COVID-19
VGG-19 98.0 90.0 58.7 VGG-19 83.1 75.0 98.4
ResNet-50 97.0 92.0 83.0 ResNet-50 88.2 86.8 98.8
COVID-Net 95.0 94.0 91.0 COVID-Net 90.5 91.3 98.9

Wang et al. COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images, 2020.
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Second application area: Modeling
patient outcomes using EHR data
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Aggregating data across many hospitals: the 4CE consortium

- Consortium for Clinical Characterization of COVID-19 by EHR (4CE): international consortium of 96
hospitals across five countries

- Used platforms such as OMOP to map all EHR to a common data model

- Total data covers 27,584 COVID-19 cases with 187,802 laboratory tests

- Initially includes 14 laboratory markers of cardiac, renal, hepatic, and immune dysfunction that have
been associated with poor outcome in COVID-19 patients

Participating Sites Consortium
https://covidclinical.net

Site . . . Merge _Combined Visualize
Daily Counts Daily Counts

EHR - ] Site . o ._Mﬂ. Combined ____Visualize
- i2b2 Demographics _Demographics
e
OMOP Site . . . Merge _Combined Visualize
= Diagnoses Diagnoses
- p Merge P Visualize
Site _ Combined <
Query & Aggregate . Labs . . . . Labs E

! |

DDiagnoses, Labs (LOINC Codes) D Format Specification

T

|

Brat et ak, International electronic health record-derived COVID-19 clinical course profiles: the 4CE consortium, 2020.
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Remember: OMOP Common Data Model

- Observational Medical Outcomes
Partnership (OMOP)

- Created from public-private
partnership involving FDA,
pharmaceutical companies, and
healthcare providers

- Standardized format and

Source 1 Source 2 Source 3

vocabulary
- Allows conversion of patient data =
. . Analysis :
from different sources into a i

common structure for analysis
- Intended to support data analysis

Figure credit: https://www.ohdsi.org/wp-content/uploads/2014/07/Why-CDM.png
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Remember: OMOP Common Data Model

| Person b Standardized health Standardized
system data metadata
_’l Observation_period | =I Location |v\ | CDM_source |

> Visit_occurrence |<: | Location_history | Metadata |
> Visit_detail w Care_site |/ Standardized

i 'I Condition_occurrence |« Provider V vocabularies
g Concept

= Drug_exposure I‘ Standardized derived

E elements Vocabulary

= Procedure_occurrence I" —

5] I Condition_era l Domain

e [ Device_exposure

Q \" —€Xp | Drug_era |

N

4 Concept_class
T 'I Measurement | Dose_era | P

] - -
° | '/ Concept_relationship
c * Note Results schema

S

(7]

I ’fq Cohort_definition

> Survey_conduct M Concept_synonym

Standardized health
economics

| | Cost |
|

Observation Concept_ancestor

Specimen Source_to_concept_map

|
|
|
|
|
Relationship |
|
|
|
|

Fact_relationship | Payer_plan_period | Drug_strength

Figure credit: https://ohdsi.github.io/TheBookOfOhdsi/images/CommonDataModel/cdmDiagram.png
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Aggregating data across many hospitals: the 4CE consortium

Table 1. Sites contributing data to the consortium.
Healthcare system Acronym  City Country Population Hospitals Beds Inpatient
discharges/year
Assistance Publique—Hépitaux de Paris APHP Paris France Adult & Pediatric 39 20,098 1,375,538
Bordeaux University Hospital FRBDX Bordeaux France Adult & Pediatric 3 2,676 130,033
Erlangen University Hospital UKER Erlangen Germany  Adult & Pediatric 1 1,400 65,000
Medical Center, University of Freiburg UKFR Freiburg Germany  Adult & Pediatric 1 1,660 71,500
University Medicine Mannheim UMM Mannheim Germany  Adult & Pediatric 1 1,352 50,748
ICSM Pavia Hospital ICSM1 Pavia Italy Adult 1 426 8616
ICSM Lumezzane/Brescia Hospitals ICSM5 Lumezzane/Brescia Italy Adult 1 149 1296
ICSM Milano Hospital ICSM20  Milan Italy Adult 1 200 2432
Policlinico di Milano POLIMI Milan Italy Adult & Pediatric 1 900 40,000
ASST Papa Giovanni XXIIl Bergamo HPG23 Bergamo Italy Adult & Pediatric 1 1080 45,000
National University Hospital NUH Singapore Singapore Adult & Pediatric 1 1556 100,977
Boston Children’s Hospital BCH Boston, MA USA Pediatric 1 404 28,000
Beth Israel Deaconess Medical Center BIDMC Boston, MA USA Adult 1 673 40,752
Children’s Hospital of Philadelphia CHOP Philadelphia, PA USA Pediatric 1 564 25,406
University of Kansas Medical Center KUMC Kansas City, KS USA Adult & Pediatric 1 794 54,659
Mayo Clinic MAYOC Rochester, MN USA Adult & Pediatric 1 2059 100,000
Mass General Brigham (Partners Healthcare) MGB Boston, MA USA Adult & Pediatric 10 3418 163,521
Medical University of South Carolina MUSC Charleston, SC USA Adult & Pediatric 8 1600 55,664
University of Pennsylvania UPenn Philadelphia, PA USA Adult 5 2469 118,188
University of California, LA UCLA Los Angeles, CA USA Adult & Pediatric 2 786 40,526
University of Michigan UMICH Ann Arbor, MI USA Adult & Pediatric 3 1000 49,008
University of North Carolina at Chapel Hill UNC Chapel Hill, NC USA Adult & Pediatric 11 3095 52000
UT Southwestern Medical Center uTsSw Dallas, TX USA Adult 1 608 26,905
Total 96 45,352 2,444,792

Brat et ak, International electronic health record-derived COVID-19 clinical course profiles: the 4CE consortium, 2020.
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Aggregating data across many hospitals: the 4CE consortium
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Brat et ak, International electronic health record-derived COVID-19 clinical course profiles: the 4CE consortium, 2020.
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Yad aW et al . lzi_Decemd (n=313) l_\live (n=3528)

100

80

- Prediction of COVID-19 patient
mortality from patient clinical
variable data

60

40

204

Minimum oxygen saturation (%)

- Trained on 3841 patients from = o .
the Mount Sinai Health System in . .
NYC. Tested on 961 e ——

retrospective and 249
prospective patients.

- Needed to perform missing value
imputation (remember from
Lecture 6) 0

Yadaw et al. Clinical features of COVID-19 mortality: development and validation of a clinical prediction model, 2020.

80 -

60— -

Age (years)

40 .

20+ -
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Yadaw et al.

Evaluation of multiple

types of machine learning

models

Yadaw et al. Clinical features of COVID-19 mortality:

A
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0554,

o1
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bt
-
M
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H

— XGBoost

— Logistic regression

—— Support vector machine
—— Random forest
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—— 3F model
AUC=0-91 (0-87 to 0-94)
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——17F model

AUC=0-94 (0-90 to 0-97)
—— 3F model

AUC=0-91 (0-86 to 0-95)

0.0+
00

development and validation of a clinical prediction model, 2020.

Serena Yeung
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Razavian et al.

- Instead of mortality, predict favorable outcomes (may be more meaningful when |ICUs are already

saturated!)

- Trained multiple types of machine learning models on 3345 and 474 prospective hospitalizations,

using clinical variable data.

Razavian et al. A validated, real-time prediction
model for favorable outcomes in hospitalized
COVID-19 patients, 2020.
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Retrospective Evaluation
Precision Recall Curve
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Retrospective Evaluation

Receiver Operating Characteristic Curve

Blackbox Model ROC Curve
T AUC:0.957(0.957 0.958)

____ Parsimonious Model ROC Curve
AUC:0.951(0.951 0.952)

Blackbox Model Standard Deviation
Parsimonious Model Standard Deviation

0.2 0.4 0.6 0.8 1.0
False Positive Rate
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Patient Name Covid-19 Low Risk

Razavian et al.

Integrated and deployed in NYU hospitals

Covid-19 Low Risk of Adverse Events within 96 hours

of Adverse Events
Factors Contributing to Score
61% O2 Device is greater than Nasal cannula

-
-
E H R System 9% RRMaxin last 12 hris 36
- 21 Blood urea nitrogen Last is 39
4
High o 2

7%
% C-reactive protein Last is 235
% HR Min in last 12 hris 77
n 19 100> 1% Temp Max in last 12 hris 98.2
-4% Nasal cannula O2 flow rate Max in last 12
hris N/A
- 19 o -4% SpO2 Min in last 12 hris 91
-8% Eosinophils % Last is 7
-
- e % Covid-19 Low Risk of Adverse Events within 96 hours

Factors Contributing to Score
13% Blood urea nitrogen Last is 24

8% RR Max in last 12 hris 20

7% HR Mininlast 12 hris 93

3% RRMininlast 12 hris 18
Low 3% LDH Lastis 713

-8% Platelet count Last is 240

-9% O2 Device is None (Room air)
-19% Eosinophils % Last is 5

Razavian et al. A validated, real-time prediction -29% SpO2 Min in last 12 hr is 97
model for favorable outcomes in hospitalized 5
COVID-19 patients, 2020. o (c) Epic Systems Corporation. Used with permission
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Razavian et al.

Prospective model performance

Prospective Evaluation b Prospective Evaluation
a Precision Recall Curve Receiver Operating Characteristic Curve
1.0 1.0
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pe -
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@
o
& 02 0.2
: f Prospective Evaluation Prospective Evaluation
Razavian et al. A Va“dated- —— Precision Recall Curve —— ROC Curve
real-time prediction model for Average Precision:0.908(0.908 0.908) AUC:0.868(0.868 0.869)
favorable outcomes in Standard Deviation Standard Deviation
- . 0.0 0.0 .
hospitalized COVID-19 patients, 0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 06 0.8 10
2020. Recall (Sensitivity) False Positive Rate
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Third application area: Finding
treatments for the disease

Serena Yeung BIODS 220: Al in Healthcare Lecture 11 - 31



How does virus
Infection work?

Krammer. The human antibody
response to influenza A virus
infection and vaccination, 2020.
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How does virus
Infection work?

Virus enters cell through
endocytosis

Krammer. The human antibody
response to influenza A virus
infection and vaccination, 2020.
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How does virus
Infection work?

Viral contents are released
and viral RNA is reproduced,
with the help of host
components I
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How does virus
Infection work?

New viruses are assembled
and leave the cell through viral
egress

Krammer. The human antibody
response to influenza A virus
infection and vaccination, 2020.
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How does virus
Infection work?

Krammer. The human antibody
response to influenza A virus
infection and vaccination, 2020.
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AlphaFold

- Protein structure prediction: determining the 3D shape of a protein from its amino acid sequence
- Based on neural network that predicts distances between pairs of residues, then energy
minimization to determine most likely 3D shape
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AlphaFold

- Protein structure prediction: determining the 3D shape of a protein from its amino acid sequence
- Based on neural network that predicts distances between pairs of residues, then energy
minimization to determine most likely 3D shape
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Beck et al.

- Deep learning-based drug-target interaction model that predicts whether commercially
available drugs can act on viral protein of SARS-CoV-2

- Extracted amino acid sequences of proteins from the SARS-CoV-2 replication complex

- Can use sequence models from NLP to model the data!

Atazanavir COC(=0)NC(C(=0)NC(Cc1ccccc1)C(O)CN(Cc1cce(—c2cceen2)cc1)NC(=0)C(NC(=0)0C)C(C)(C)C)C(C)O)C

Remdesivir* CCC(CC)COC(=0)[C@H](C)N[P@](=0)(OC[C@@H]1[C@H]([C@H]([C@](O1)(C#N)C2 = CC = C3N2N = CN = C3N)0)0)
04=CC=CC=C4

Efavirenz* 0 = CINc2ccc(Cl)cc2[C@@](CH#HCC2CC2)(C(F)(F)F)O1

Ritonavir CC(C)c1nc(CN(C)C(=0)NC(C(=0)NC(Cc2ccccc2)CC(0)C(Cc2ccccc2)NC(=0)0Cc2cncs2)C(C)C)es1

Dolutegravir CC1CCOC2Cn3cc(C(=0)NCc4ccc(F)ccdF)c(=0)c(0)c3C(=0)N12

Asunaprevir C = CC1CC1(NC(=0)C1CC(0c2ncc(0C)c3ccc(Cl)cc23)CN1C(=0)C(NC(=0)0C(C)(C)C)C(C)(C)C)C(=0)NS(=0)(=0)C1CC1

Ritonavir* CC(C)c1nc(CN(C)C(=0)N[C@H](C(=0)N[C@@H](Cc2ccccc2)C[C@H](O)[C@H](Cc2cccecc2)NC(=0)0Cc2cncs2)C(C)C)es1
Simeprevir* COc1ccc2c(O[C@H]3CC4C(=0)N(C)CCCC/C = C\[C@H]5C[C@@]5(C(=0)NS(=0)(=0)C5CC5)NC(=0)[C@@H }4C3 )cc(—c3nc(C
(C)C)es3)nc2c1C

Beck et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep
learning model, 2020.
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Beck et al.

|dentified promising drugs such as atazanavir, remdesivir, and others
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CryoET high resolution imaging of virus spike structure

- CryoET (cryogenic electron
tomography) imaging can provide
high-resolution visualization of
virus particles

- Analysis of virus spike (surface
protein) structure, organization
and variability can provide insight
into how it binds to host cell
receptors

Turonova et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges, 2020.
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Additional application areas
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Epidemiology and disease forecasting

- Epidemiological models e.g., SIR, SEIR, based on numbers of susceptible, exposed, infected,
recovered individuals help with anticipating and preparing for upcoming challenges
- Also efforts at deep learning-based forecasting of future cases
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Hu et al. Forecasting and Evaluating Multiple Interventions for COVID-19 Worldwide, 2020.
Shinde et al. Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art, 2020.
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Telehealth

- Demand for virtual visits are up more than 1000x in some care settings'

- Digital setting offers opportunity for Al algorithms

- Already many Al applications and even products popping up around use cases such as triaging,
vitals measurement, and even cough analysis

|
\

"https://www.aarp.org/health/con
ditions-treatments/info-2020/teleh
ealth-surges-during-coronavirus-
outbreak.html

Figure credit:
https://www.healthwise.org/blog/
patient-ed-telehealth-amid-covid-
19.aspx
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Summary

Today we covered:

- Applications of Al in Healthcare through the lens of COVID-19

- Al interpretation of chest radiology images
- Modeling patient outcomes using EHR data
- Finding treatments for the disease

- Additional application areas

Next time:

- Unsupervised Learning and Reinforcement Learning
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