Lecture 12: Unsupervised and
Reinforcement Learning
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Announcements

e Project milestone due Friday 10/30
e Project milestone presentations next Monday 11/2 in-class
o See upcoming Piazza post for details
o Please show up at the beginning of the class time, we will share
presentation order at that time
e \We want to hear how things are going for you in the class, and your feedback!
A survey was released on Piazza, please fill this out.
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Supervised learning

Data: (x, y)

Er”
x is data, y is label |
| | ,  Right
Goal: Learn a function to map x -> vy effusion

Examples: Classification,

regression, semantic segmentation,

object detection, instance Classification
segmentation
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Now: Unsupervised learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
representation / feature learning,
density estimation, etc.
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Now: Unsupervised learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

+4
b £ .+
oo+ +
ity L E g

Examples: Clustering, AR
representation / feature learning,

density estimation, etc. K-means clustering

This image is CCO public domain
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https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Now: Unsupervised learning

Data: x

Unsupervised
Just data, no labels! training objective

Goal: Learn some underlying
hidden structure of the data

Encoder

45
Features z
I

Examples: Clustering,
representation / feature learning,
density estimation, etc.

Input data

Representation learning
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Unsupervised Reconstructed data
" T P

representation L2 Loss qunc2tion: -E‘B
- Iz~ 4l o el S 2T A
learning: i Bl « s
R tructed 5 o
autoencoders  routdata z
Encoder: 4-layer conv
Decoder Decoder: 4-layer upconv
Features 2 t*data
i ;
Encoder
Input data €2
Autoencoders
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Unsupervised Reconstructed data
" p N T

representation = Lﬁf_ﬂg}g‘°“: b Y

learning: i e ela

autoencoders ~ Recorstucted i N——
input data A

Encoder: 4-layer conv
Decoder Decoder: 4-layer upconv

/ Features 2 t*data
(Feature { s R A

] Encoder
representation)

Input data €2

Autoencoders
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Representation learning: autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Features 7 ﬁhi
T Encoder K‘ a

Input data T !Sﬂn
il < NS
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Representation learning: autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN

Features A ﬁ hg
T Encoder Klﬁ

Input data T !ﬁﬂn
el < B2
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Representation learning: autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN

Features YA ﬁhi
T Encoder Aﬁ

ol [ T R

e R T

Q: Why dimensionality
reduction?

Input data T
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Representation learning: autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

Later: Deep, fully-connected

Q: Why dimensionality Later: ReLU CNN

reduction?
A: Want features to - - o
capture meaningful Features 4 ih p .

;aac;taors of variation in T . s g
erl R LT

Input data T
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Representation learning: autoencoders

How to learn this feature representation?

Features A ﬁhg
T Encoder K‘ a

Input data T !gﬂﬂ
p s/ < I
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Representation learning: autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed 7
input data
T Decoder
Features z
T Encoder
€T

Input data

- ey O R
e i . N
b BN o1

Al 4

LN [l
a7l < B
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Representation learning: autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct original data

“Autoencoding” - encoding itself

Originally: Linear +
nonlinearity (sigmoid)

/ Later: Deep, fully-connected
Later: ReLU CNN (upconv)
Decoder

T
Features YA ﬁhi
4 by

Reconstructed
input data

Encoder ﬁﬁ
ol [ T R
a7l <« B

Input data
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Representation learning: autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed 7
input data
T Decoder
Features z
T Encoder
€T

Input data

Reconstructed data

e =
R L&fS
[yl 2R W

-Eﬁ: idy

Encoder: 4-layer conv
Decoder: 4- Iayer upconv

Edata
IIKAIE

LN [l
a7l < B
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Reconstructed data

Representation learning: autoencoders B

Trai h that feat ’ =
c;illzuucsed fo SIS L2 Loss function: Egsgg

reconstruct original data |z — 5;”2 - :
y -H*‘ LT

Reconstructed
input data

Encoder: 4-layer conv
Decoder: 4- Iayer upconv

Decoder

5

T ut data
Features 2z E

h

Encoder Kh @
mmnsﬂn
il < 6S

Input data

Serena Yeung BIODS 220: Al in Healthcare Lecture 12 - 17



Representation learning: autoencoders

Reconstructed data

e i =2

Train such that features 19 Loss function: Doesn’t use labels! ’E.na

can be used to -> unsupervised

reconstruct original data |z — 5;”2 -

T

Reconstructed fi‘
input data
T Decoder
Features YA
T Encoder
€T

Input data

(R Rl

-H: idy

Encoder: 4-layer conv
Decoder: 4-layer upconv

*

t ‘data

Inpu
Ml - I
A BY

P el o 1 ¥
a7l < B
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Representation learning: autoencoders

Reconstructed
input data

z
Features YA \ After training,
L

Input data
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Representation learning: autoencoders

Encoder network can now be
used as a feature extractor!
Should be semantically
meaningful features due to
autoencoder loss from training.

Features z
T Encoder
Input data T
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Representation learning: autoencoders

Encoder network can now be
used as a feature extractor!
Should be semantically
meaningful features due to
autoencoder loss from training.

Features e Features can be used for
clustering, retrieval (e.g. find the
T Encoder closest patient to this one), etc.
Input data T
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Representation learning: autoencoders

In supervised Loss function
learning tasks, an (Softmax, etc)
encoder trained in

an unsupervised / \
way (potentially on  predicted Label
larger amounts of

Y

data) can also be Fine-tune

used as a feature encoder

extractor for the Features YA jointly with
€I

Classifier

task, or to initialize a classifier

supervised model Encoder

Input data
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Miotto 2016

- Used stack of denoising autoencoders (add noise to inputs to avoid overfitting) to learn feature
representation from EHR data of 700,000 patients from Mount Sinai

- Used learned feature representation for downstream disease classification tasks

Raw Patient Dataset

Medications ~ Diagnoses  Procedures .. Lab Tests Patients
Clinical Descriptors
Layer 1 Layer 2 Layer N Deep Patient Dataset
Input  Hidden  Output . Input  Hidden  Output . Input  Hidden  Output ) o — Features
Layer Patients at Layer Patients at Layer Patients at atents

Layer 1 Layer N-1 Layer N

|

Miotti et al. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records, 2016.
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Darabi 2019

- Autoencoder-based unsupervised representation learning for multimodal data of 200,000 records
from 250 hospital sites (elCU collaborative Research Database)

- Used feature representation to train models for downstream mortality, readmission prediction tasks

ceoe ceoe|

m; try d

= 2 ," — g \\‘ ¢"’

s [T i, |

o - e = Sy g A ."’ - \\
m; tre d

ceoe

=)

B st -

2 T\ Ny

Darabi et al. Unsupervised Representation for EHR Signals and Codes as Patient Status Vector, 2019.
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Darabi 2019

- Autoencoder-based unsupervised representation learning for multimodal data of 200,000 records
from 250 hospital sites (elCU collaborative Research Database)

- Used feature representation to train models for downstream mortality, readmission prediction tasks

moom 4 Autoencoder for each

P el code-based modality (e.g.

© G G e / medlcat!on,treatment,
0e0e) diagnosis), and signal

time-series (e.g. heart rate)

0
o
0

Darabi et al. Unsupervised Representation for EHR Signals and Codes as Patient Status Vector, 2019.
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Darabi 2019

- Autoencoder-based unsupervised representation learning for multimodal data of 200,000 records
from 250 hospital sites (elCU collaborative Research Database)

- Used feature representation to train models for downstream mortality, readmission prediction tasks

ceoe

m, tr, i d | ceoce) l\) . 2
2 e — | % Concatenatg feature
: - b PSS : : | /representatlons from
y i di ' | ' ' each autoencoder
— PSV: [ by, | P, [ ha, | [hy;max(H, )mean(H,)] | : ’
oceoce L—'—l p———— and further fine-tune
. s e o on predicting future
5 K ’ Code Forecastin, ignal .
IOV Q : Q AV, 2 % reasing - €l@ments in data
'%0 /—\_/ /_\—/ Crt1 ..O. St+1 e 2

Darabi et al. Unsupervised Representation for EHR Signals and Codes as Patient Status Vector, 2019.
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Aside: self-supervised learning

- Also learns representations without external (e.g., manually provided) labels,
but instead using labels generated from inherent structure in the data

- Remember BERT training
~ [CLS] —>» —> [CLS]
acute —> Transformer —> acute
Sentence 1 < mASK] —> Encoders —> dia
##sto —>» —> ##sto
- . w .
r~ & — L]
his —» ® —>» his
~
Sentence 2 < sep—» 6) >8P
[MASK] —>» —> #i#tsis
- K j —>» Next Sentence Label

Huang et al. ClinicalBert: Modeling Clinical Notes and Predicting Hospital Readmission, 2019.
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Aside: self-supervised learning

- Also learns representations without external (e.g., manually provided) labels,
but instead using labels generated from inherent structure in the data

- Remember BERT training
~ [CLS] —>»
acute —> Transformer
sentence ) paasi) —» Encoders
##sto —>»
A\ : W
his —» z
Sentence 2 < sep—» 6)
[MASK] —>»
o e

A

—> [CLS]

—>» acute

—>» dia

—.) #itsto

— > his

—> sep

—> #isis

—>» Next Sentence Label

Huang et al. ClinicalBert: Modeling Clinical Notes and Predicting Hospital Readmission, 2019.
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Also a lot of recent
work in contrastive
learning. E.g., two
transformed versions
of an image should
have similar
representations to
each other, and
different from
transformed versions
of other images

Serena Yeung
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Reconstructed data

Representation learning: autoencoders B
Train such that features L2 Loss function: Doesn’t use labels! ’E.nﬁ

can be used to

- ised
reconstruct original data |z — 2] = e un!sgn
f -H: LT

Reconstructed
input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Decoder A
t ‘data

T
T Inpu

Features > ﬁ& i
4

Encoder Ki @
ol oL RS S
il < 6S

Input data
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Probabilistic version:

variational autoencoder ‘f
Decoder network

yA

A
Encoder network

Input Data v
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Probabilistic version:

variational autoencoder ‘f

Decoder network

po(z|2)

yA
A

Encoder network

q¢(2|z)

Input Data v
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Probabilistic version:

variational autoencoder ‘f
Decoder network
po(z|2)
yA
Encoder network
qs(2|z) “’;lw\/%zlm
Input Data v
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Probabilistic version:
variational autoencoder

> | &=

Decoder network

po(z]2)

<
Sample z from z|a: ~ N(uz|a;, Ez|:1:)

Encoder network /
q¢(2|z) Pzl 2|z

~_

Input Data v
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Probabilistic version:
variational autoencoder

=

Decoder network

po(z|2) ua:lz\/zvm 2
<
Sample z from z|a: ~ N(uz|a;, 2z,|ac)

Encoder network /
q¢(2|z) Pzl 2|z

'\m/

Input Data
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Probabilistic version: ]

variational autoencoder i
Sample x|z from x|z ~ N(Mm|z, Em|z)

Decoder network / \

po(x|z) Hz|z Yzlz

~_

<
Sample z from z|a: ~ N(uz|a;, 2z,|ac)

Encoder network /
q¢(2|z) Pzl 2|z

~_

Input Data v
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Probabilistic version:
variational autoencoder

Loss function

E. [logps(e® | )| = Dicr(gs(= | 27) || po(2))

£(zD,0,¢)

A

L

Sample x|z from a7|z ~ N(Mm|z, Eac|z)

/\

Decoder network

po(z]2)

M|z

:1:|z

~_

Z

Sample z from z|a: ~ N(uz|a;, 2z,|ac)

Encoder network

/

q¢(2|T)

Hz|x

Input Data

~_

23z|:1:

b
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.y . . ; Maximiz
Probabilistic version: e _

variational autoencoder orgnatinedt z
eing Sample x|z from x|z ~ N(leza Em|z)

_ reconstructed
LOSS fu nM Decoder network / \
(i) (3) p9($|2) u’.’L‘lz :1:|z
E. [logpo(a | )] ~ Dics(go(z | 2 || po(2) \/
L(2D,0,¢)

<
Sample z from z|a: ~ N(uz|a;, 2z,|ac)

Encoder network /

q4(2|z) Halz Zizla

~_

Input Data v
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Probabilistic version:
variational autoencoder

E. [logps(e® | )| = Dicr(gs(= | 27) || po(2))

NS

£(zD,0,¢)

Make output distribution
of encoder close to a
prior

Maximize
likelihood of
original input
being

reconstructed

Decoder network

po(z]2)

A

L

Sample x|z from a7|z ~ N(Mm|z, Eac|z)

/\

M|z

:1:|z

~_

Z

Sample z from z|a: ~ N(uz|a;, 2z,|ac)

Encoder network

q¢(2|T)

/

Hz|x

Input Data

~_

23z|:1:

b
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Since variational autoencoders learn distribution of the data,
can also be used to generate new (synthetic) data

Use decoder network. Now sample z from prior!

A

L
Sample x|z from :E|z ~ N(Mm|z, 2m|z)

i

M|z zmlz

Decoder network \/
po(z|2)

Z

Sample z from z ~ N (0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Since variational autoencoders learn distribution of the data,
can also be used to generate new (synthetic) data

QAN NNNNANNN SN NNNNSN
VQADIY AL LHLLUWN NN~
QAVVINNNKHEELLLVVYY Y N~
QUAVVDNININin oot ©VOVVY W -~~~
QOAVVOHHINNKNEEWWBVIOVI® W - ——
QAOOOHINININMHEBPBDIOVI S W - ——
QAQOQOMIMNMNMN N MDY IY D @ - ——
QOO IMMNMMMMM®DOI DD @ — —
QODMMM MMM NN WD DD e e —
QOMME MM (N0 0000 e oo o= —
QAN P07 00 00 On & oo~
SR N Ko e N R i alk S S
S dodocororrororrrTannN~
Sdadadddocrrrrr T TITIIINN
SdadddagorrrrrrdIITIIXINN
SAdddTrTrrrrrrrIrP™22RNN
K I g gl gl il el ool ool ol ol ol ol U O RN LN

2:1:|z

i

Sample x|z from :E|z ~ N(Mm|z, 2m|z)
Hx|z

Use decoder network. Now sample z from prior!

Decoder network
po(x|z)

Z
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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J

Since variational autoencoders learn distribution of the data
can also be used to generate new (synthetic) data

Data manifold for 2-d z
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Vary z,

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Since variational autoencoders learn distribution of the data,
can also be used to generate new (synthetic) data

(55 o o

giffereth Degree of smile iR R R R
imensions of z \

encode : B et ‘

interpretable factors Qs‘ﬁ:’iva’v‘gﬂs

of variation vary 2, ﬁ%ﬁﬁﬁﬁﬂﬁ;

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Another approach for learning to generate data:
generative adversarial networks (GANSs)

Motivation: Want to sample (generate data) from complex, high-dimensional training
distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to
represent this complex
transformation?
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Another approach for learning to generate data:
generative adversarial networks (GANSs)

Motivation: Want to sample (generate data) from complex, high-dimensional training
distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to

training distribution. Output: Sample from
y T

Q: What can we use to training distribution
represent this complex i
transformation? Generator
A: A neural network! Network
}
Input: Random noise z
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Another approach for learning to generate data:
generative adversarial networks (GANSs)

Motivation: Want to sample (generate data) from complex, high-dimensional training
distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to

training distribution.
y T

*

Output: Sample from
training distribution

Q: What can we use to
represent this complex

transformation? Generator

A: A neural network! Network
. _— . A

If goal is generating high quality Input: Random noise -

samples, most current state-of-the-art

approaches based on this
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images _
(from generator) | -~ N
A
Generator Network

*

Random noise Z

Real Images
(from training set)

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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. lan Goodfellow et al., “Generative
Tra|n|ng GANS: TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Minimax objective function:

min 10 [Expye,, 108 Do, (2) + oyt 1oB(1 — Do, (G, (2))
g d
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. lan Goodfellow et al., “Generative
Trammg GANSs: TWQ_p|ayer game Adversarial Nets”, NIPS 2014
Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) that image is real
Minimax objective function:

min max [Emwpdam log Dy, (z) + E,~p(z) log(1l — Dg,(Go, (z)))]
0, B4 0 L 1

Discriminator output Discrimina'tor output for
for real data x generated fake data G(z)
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) that image is real
Minimax objective function:

min max []Emdiam log Dy, (z) + E,~p(z) log(1l — Dg,(Go, (Z)))]
0, B4 0 L 1

Discriminator output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z2)) is close to 0 (fake)

- Generator (Gg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min 2 | Egnpy,q, 108 Do, () + Eanpie) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

r%i‘x [Eprdata log D9d (:E) + Esz(z) log(l - D9d (GGQ (z)))]

2. Gradient descent on generator
rr;in IE:zr,rvp(z) log(l - D9d (G9g (Z)))
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min 2 | Egnpy,q, 108 Do, () + Eanpie) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

r%i‘x [Eprdata log D9d (:E) + Esz(z) log(l - D9d (GGQ (z)))]

2. In practice: Gradient ascent on generator, different objective
max E,~p(2) 10g(Dy, (G, (2)))
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lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Minimax objective function:
min 2 | Egnpy,q, 108 Do, () + Eanpie) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

ngx [Em,\,pdam log Dy, () + IEsz(z) log(1 — Doy, (Ggg (z)))]

2. In practice: Gradient ascent on generator, different objective

n%ax ]Esz(z) log(Da, (Geg (2)))

Instead of minimizing likelihood of discriminator being
correct, now maximize likelihood of discriminator being

wrong.

Lecture 12 - 52
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lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Minimax objective function:
min 2 | Egnpy,q, 108 Do, () + Eanpie) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

50 [0 108 Do, () + Eonpey 108(1 — Doy (G, (2))]

2. In practice: Gradient ascent on generator, different objective

n%ax ]Esz(z) log(Da, (Geg (2)))

Same objective of fooling discriminator, but this
objective has some nice properties that make
optimization work better in practice

Instead of minimizing likelihood of discriminator being
correct, now maximize likelihood of discriminator being

wrong.
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min 2 | Egnpy,q, 108 Do, () + Eanpie) log(1 — Do, (Go, (2))]

0, 6a

Alternate between: Aside: Jointly train
1. Gradient ascent on discriminator side: Jointly training two
networks is challenging,

max [Emfvpdam log Dy, () + E,p(z) log(1 — Dg,(Go, (z)))] can be unstable. Lots of

04 active research to improve
. . _ o GAN training.
2. In practice: Gradient ascent on generator, different objective
max E,~p(2) 10g(Dy, (G, (2)))
g

Instead of minimizing likelihood of discriminator being Same objective of fooling discriminator, but this
correct, now maximize likelihood of discriminator being objective has some nice properties that make
wrong. optimization work better in practice
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do

for £ steps do

e Sample minibatch of m noise samples {z(), ..., 2(™)} from noise prior p,(2).

e Sample minibatch of m examples {z(),...,2(™} from data generating distribution

pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

1 & . .
Vou— > | 10g Do,(29) + log(1 — Do, (G, (:)))]
i=1

end for
e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 «— :
Voy 1 21080 (Go, (=)
z:

end for
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

Some find k=1
more stable,
others use k > 1,
no best rule.

More recent GAN
variants alleviate
this problem,
better stability!

for number of training iterations do

fo [ stcps Ho

e Sample minibatch of m noise samples {z(), ..., 2(™)} from noise prior p,(2).

e Sample minibatch of m examples {z(),...,2(™} from data generating distribution

pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

1 & . .
Vou— > | 10g Do,(29) + log(1 — Do, (G, (:)))]
i=1

end for
e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 «— :
Voy 1 21080 (Go, (=)
z:

end for
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images X § Real Images
(from generator) | ~ - ' (from training set)
| i p

Generator Network
A After training, use generator network to

generate new images

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Example GAN-based medical image synthesis

Realistic Tumors
in Random Locations

(GAN)
Generate

Synthetic Images for
Data Augmentation

leer IeS|ons of dlfferent types (Fr|d Adar 2018) h

Generate

Generator Dlscnmlnator b
age (Conditional GAN)

Semantic Map

Original Brain
MR Images

Realistic Tumors
with Desired Size/Location
by Adding Conditioning

Synthetic Images for
Physician Training

Brain MRIs with lesions (Han 2018)

Can be used for data augmentation!
Dermatology lesions (Ghorbani 2019)
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A third paradigm of learning: reinforcement learning

Problems involving an agent

interacting with an environment,  °#°*
which provides numeric reward

signals

Reward T
Next state St

Action a,

Environment

Goal: Learn how to take actions

in order to maximize reward -

Atari games figure copyright Volodymyr Mnih et al., 2013. Reproduced with permission.
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Reinforcement learning

Agent

Environment
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Reinforcement learning

Agent

State S,

Environment
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Reinforcement learning

Agent

State 5t Action a,

Environment

Serena Yeung BIODS 220: Al in Healthcare Lecture 11 - 62



Reinforcement learning

Agent

State s, Reward r, Action a,

Environment
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Reinforcement learning

Agent

State s, Reward r,

Action a,
Next state s, ,

Environment
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Q-learning (one class of RL methods)

Learn a function (called Q-function) to estimate the expected future reward from
taking a particular action from any given state:

Q(s,a;@)\

function parameters (weights)
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Q-learning (one class of RL methods)

Learn a function (called Q-function) to estimate the expected future reward from
taking a particular action from any given state:

Q(s,a;O)\

If the function is a deep neural network => deep g-learning!

function parameters (weights)
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Famous example: playing Atari games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network architecture

Q(37 a, 0) : FC-4 (Q-values)
neural network
with weights @ FC-256

32 4x4 conv, stride 2

16 8x8 conv, stride 4

!

Current state s, 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network architecture

Output expected future reward from taking
/ each of the 4 possible actions

Q(37 a, 0) : FC-4 (Q-values)
neural network
with weights @ FC-256

32 4x4 conv, stride 2

16 8x8 conv, stride 4

!

Current state s, 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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Policy gradients (another class of RL methods)

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair
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Policy gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand

Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?
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Policy gradients

Formally, let’s define a class of parameterized policies:II = {mg,0 € R}

For each policy, define its value:

J(@) =E nytrthrg

t>0

Serena Yeung BIODS 220: Al in Healthcare Lecture 12 - 72



Policy gradients

Formally, let’s define a class of parameterized policies:II = {mg,0 € R}

For each policy, define its value:

J(O) =E | ~'re|ms

t>0

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
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Policy gradients

Formally, let’s define a class of parameterized policies:II = {mg,0 € R}

For each policy, define its value:

J(0) = Z")’ T¢|mo

t>0

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
Gradient ascent on policy parameters!
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Example: Raghu et al. 2017

Lea rn ed a Q_ I ea rn i n g Physician Low SOFA policy “”i Ift:ysician Mid SOFA policy § Physician High SOFA poh-
based policy to take =

-

.
e

treatment actions for . mg i, e L, 9
sepsis patients, using " [ S5 oot %, 100

the MIMIC dataset

2 3 a 1 2 3 4 o 1 2 3 4
Vasopressor dose Vasopressor dose Vasopressor dose
. . -Network Low SOFA policy -Network Mid SOFA policy Q-Network High SOFA policy
5x5 possible policy il - i W]
L] L] m
actions at any timestep e - s
|} -
w1 § 3
- 20002 = xoo§
2000 1 1
1000 1000 so
0 o o
) 1 2 3 s ° = ] 1 2 3 s 0 ° 1 2 3 a °
Vasopressor dose Vasopressor dose Vasopressor dose

Raghu et al. Deep Reinforcement Learning for Sepsis Treatment, 2017.
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Next time

e Your milestone presentations!
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