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Lecture 14: Distributed Learning, 
Security, and Privacy
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Announcements
● TA office hours will be project advising sessions this week
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Agenda
- Distributed Learning and Federated Learning
- Privacy and Differential Privacy
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Distributed Learning

Figure credit: Alsheikh et al. Mobile big data analytics using deep learning and apache spark, 2016.

- Sharing the computational load of training a model among multiple worker 
nodes
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Distributed Learning

Figure credit: Alsheikh et al. Mobile big data analytics using deep learning and apache spark, 2016.

- Sharing the computational load of training a model among multiple worker 
nodes

Data and task 
of computing 
gradient 
updates is 
distributed 
among nodes
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Distributed Learning

Figure credit: Alsheikh et al. Mobile big data analytics using deep learning and apache spark, 2016.

- Sharing the computational load of training a model among multiple worker 
nodes

Data and task 
of computing 
gradient 
updates is 
distributed 
among nodes

Can have data 
parallelism or model 
parallelism
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Federated Learning
- Related to distributed computing, but with an important property for many medical 

settings: data is decentralized and never leaves local silos. Central server controls 
training across decentralized sources.

Figure credit: https://blogs.nvidia.com/wp-content/uploads/2019/10/federated_learning_animation_still_white.png
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Federated Learning

Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

- Example: learning a next-word prediction model from many individual cell phones 

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
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Federated Learning

Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

- Example: learning a next-word prediction model from many individual cell phones 

Current copy of global 
model is shipped to 
local devices that are 
ready to contribute to 
training

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
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Federated Learning

Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

- Example: learning a next-word prediction model from many individual cell phones 

Local gradient 
updates are 
computed on local 
data after 1 or several 
iterations of gradient 
descent

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
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Federated Learning

Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

- Example: learning a next-word prediction model from many individual cell phones 

Local gradient 
updates are shipped 
back to the central 
server

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
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Federated Learning

Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

- Example: learning a next-word prediction model from many individual cell phones 

Local gradient 
updates are 
combined and used to 
update the global 
model

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
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Federated Learning

Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

- Example: learning a next-word prediction model from many individual cell phones 

Updated global model 
is shipped to local 
devices for future 
rounds of federated 
learning training

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
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Federated Learning

Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

- Example: learning a personalized healthcare model from data across different 
healthcare organizations

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
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From earlier: BRATS brain tumor segmentation dataset
- Segmentation of tumors in brain MR image slices
- BRATS 2015 dataset: 220 high-grade brain tumor and 54 low-grade brain tumor MRIs
- U-Net architecture, Dice loss function

Dong et al. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. MIUA, 2017.
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Li et al. 2019
- NVIDIA Clara’s Federated Learning system for medical imaging data

- Used federated learning to train segmentation model on BRATS

- Achieved comparable performance to non-federated learning, training somewhat 
slower but data “silos” preserved 

Li et al. Privacy-preserving Federated Brain Tumour Segmentation, 2019.
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Li et al. 2019
- NVIDIA Clara’s Federated Learning system for medical imaging data

- Used federated learning to train segmentation model on BRATS

- Achieved comparable performance to non-federated learning, training somewhat 
slower but data “silos” preserved 

Li et al. Privacy-preserving Federated Brain Tumour Segmentation, 2019.

Also differentially private 
version… will talk about this 
in a moment 
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Privacy: HIPAA

Figure credit: https://www.jet-software.com/en/data-masking-hipaa/

Health Insurance Portability and Accountability Act (HIPAA), 1996: created “Privacy Rule” 
for how healthcare entities must protect the privacy of patients’ medical information

18 HIPAA identifiers 
(Protected Health 
Information):

https://www.jet-software.com/en/data-masking-hipaa/
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Risks of data re-identification

Figure credit: Sweeney et al. Matching Known Patients to Health Records in Washington State Data, 2011.

Data triangulation: a person may be de-identified as to one data set, but the knowledge 
that they are a member of another available data set may allow them to be reidentified
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Matching Known Patients to Health Records in Washington State Data

Sweeney. Matching Known Patients to Health Records in Washington State Data, 2011.

News stories (e.g., those containing the word “hospitalized”) contain identifying information 
that could be used to identify medical records in the state medical record database, for 43% 
of studied cases

Distribution of values 
for fields harvested 
from news stories
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Matching Known Patients to Health Records in Washington State Data

Sweeney. Matching Known Patients to Health Records in Washington State Data, 2011.
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Matching Known Patients to Health Records in Washington State Data

Sweeney. Matching Known Patients to Health Records in Washington State Data, 2011.
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Identifying Participants in the Personal Genome Project by Name

Sweeney. Identifying Participants in the Personal Genome Project by Name, 2013.

Linked demographics information in the Personal Genome Project (PGP) to public records 
such as voter lists, to correctly identify 84 to 97% of profiles for which guessed names were 
provided to PGP staff 
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K-anonymity
A data release provides k-anonymity protection if the information for each person contained 
in the release cannot be distinguished from at least k-1 individuals whose information also 
appears in the release.

Sweeney. K-anonymity: a model for protecting privacy. 2002.
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K-anonymity

Sweeney. K-anonymity: a model for protecting privacy. 2002.

2 k-anonymity 
tables (where 

k = 2)
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Re-identification from ML models

Fredrickson et al. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, 2015.

- White-box (as opposed to black-box) setting: have access to model parameters, e.g. 
local model downloaded on device to run inference

- Model inversion attack: can use gradient descent if model parameters are available, 
to infer sensitive features 
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Differential privacy
Key idea: output for a dataset, vs. the dataset with a difference for a single entry (e.g., one 
individual), is “hardly different”. Mathematical guarantees on this idea.

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Differential privacy
Key idea: output for a dataset, vs. the dataset with a difference for a single entry (e.g., one 
individual), is “hardly different”. Mathematical guarantees on this idea.

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Differential privacy
Simple intuition behind how we can achieve differential privacy: adding noise!

Figure credit: https://github.com/frankmcsherry/blog/blob/master/posts/2016-02-03.md

Example of reporting a value with Laplacian noise added
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Training 
differentially private 
deep learning 
models

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Training 
differentially private 
deep learning 
models

Abadi et al. Deep Learning with Differential Privacy, 2016.

Compute gradient as 
usual
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Training 
differentially private 
deep learning 
models

Abadi et al. Deep Learning with Differential Privacy, 2016.

Clip the gradient
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Training 
differentially private 
deep learning 
models

Abadi et al. Deep Learning with Differential Privacy, 2016.

Add noise for 
differential privacy
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Training 
differentially private 
deep learning 
models

Abadi et al. Deep Learning with Differential Privacy, 2016.

Compute overall 
privacy cost
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Privacy Aggregation of Teacher Ensembles (PATE)

Papernot et al. Semi-supervised Knowledge 
Transfer for Deep Learning from Private 
Data, 2017. 

PATE Teacher 
model

Approach to combine data from multiple disjoint sensitive populations, with privacy 
guarantees

Figure credit: 
http://www.cleverhans.io/privacy/2018/04/29/
privacy-and-machine-learning.html
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Privacy Aggregation of Teacher Ensembles (PATE)

Papernot et al. Semi-supervised Knowledge 
Transfer for Deep Learning from Private 
Data, 2017. 

PATE Teacher 
model

Approach to combine data from multiple disjoint sensitive populations, with privacy 
guarantees Train separate classifiers from 

disjoint data sets -- no privacy 
guarantees yet

Figure credit: 
http://www.cleverhans.io/privacy/2018/04/29/
privacy-and-machine-learning.html
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Privacy Aggregation of Teacher Ensembles (PATE)

Papernot et al. Semi-supervised Knowledge 
Transfer for Deep Learning from Private 
Data, 2017. 

PATE Teacher 
model

Approach to combine data from multiple disjoint sensitive populations, with privacy 
guarantees To get a privacy-preserving 

prediction, first obtain predictions 
from all distinct classifiers

Figure credit: 
http://www.cleverhans.io/privacy/2018/04/29/
privacy-and-machine-learning.html
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Privacy Aggregation of Teacher Ensembles (PATE)

Papernot et al. Semi-supervised Knowledge 
Transfer for Deep Learning from Private 
Data, 2017. 

PATE Teacher 
model

Approach to combine data from multiple disjoint sensitive populations, with privacy 
guarantees Then add noise to the vote 

histogram (giving differential privacy 
guarantees), and take the class with 
the most votes as the final output

Figure credit: 
http://www.cleverhans.io/privacy/2018/04/29/
privacy-and-machine-learning.html
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Privacy Aggregation of Teacher Ensembles (PATE)

Papernot et al. Semi-supervised Knowledge 
Transfer for Deep Learning from Private 
Data, 2017. 

PATE Student model uses 
public data to train a model 
replicating noisy aggregated 
teacher outputs

This teacher model alone can still be compromised if too many queries are performed 
(privacy cost builds up with each query, so privacy guarantees become meaningless with too 
many queries), or if model parameters are made accessible (and attackable) e.g. distributed 
in local application

Figure credit: 
http://www.cleverhans.io/privacy/2018/04/29/
privacy-and-machine-learning.html
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Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

After training, use generator network to 
generate new images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Remember GANs: Two-player game
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Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

After training, use generator network to 
generate new images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Remember GANs: Two-player game

Can train GANs using differentially private 
SGD (DP-SGD)! Afterwards, using the 
generator to generate synthetic data does 
not incur additional privacy cost

Xie et al. Differentially Private Generative Adversarial Network, 2018.



42Serena Yeung BIODS 220: AI in Healthcare Lecture 14 -

Implementation of DP-SGD

Utilities for calculating epsilon

Can work with differential privacy within deep learning frameworks

https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.html
http://www.cleverhans.io/privacy/2019/03/26/machine-learning-with-differential-privacy-in-tensorflow.html
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Today we covered:
- Distributed Learning and Federated Learning
- Privacy and Differential Privacy

Next time: Guest lecture from Mohit Kaushal, discussing AI in healthcare in 
industry and in public policy


