Lecture 14: Distributed Learning,
Security, and Privacy

Serena Yeung BIODS 220: Al in Healthcare Lecture 14 - 1



Announcements

e TA office hours will be project advising sessions this week
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Agenda

- Distributed Learning and Federated Learning
- Privacy and Differential Privacy
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Figure credit: Alsheikh et al. Mobile big data analytics using deep learning and apache spark, 2016.
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Federated Learning

Related to distributed computing, but with an important property for many medical
settings: data is decentralized and never leaves local silos. Central server controls

training across decentralized sources.
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Figure credit: https://blogs.nvidia.com/wp-content/uploads/2019/10/federated_learning_animation_still_white.png
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Federated Learning

Example: learning a next-word prediction model from many individual cell phones
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Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
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Federated Learning

- Example: learning a next-word prediction model from many individual cell phones
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Federated Learning

- Example: learning a next-word prediction model from many individual cell phones
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Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
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Federated Learning

- Example: learning a next-word prediction model from many individual cell phones
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Federated Learning

- Example: learning a next-word prediction model from many individual cell phones
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Federated Learning

- Example: learning a next-word prediction model from many individual cell phones
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Federated Learning

- Example: learning a personalized healthcare model from data across different
healthcare organizations
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From earlier: BRATS brain tumor segmentation dataset

- Segmentation of tumors in brain MR image slices
-  BRATS 2015 dataset: 220 high-grade brain tumor and 54 low-grade brain tumor MRIs
- U-Net architecture, Dice loss function

Dong et al. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. MIUA, 2017.
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Li et al. 2019

NVIDIA Clara’s Federated Learning system for medical imaging data
Used federated learning to train segmentation model on BRATS

Achieved comparable performance to non-federated learning, training somewhat

slower but data “silos” preserved
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Li et al. Privacy-preserving Federated Brain Tumour Segmentation, 2019.
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Li et al. 2019

- NVIDIA Clara’s Federated Learning system for medical imaging data
- Used federated learning to train segmentation model on BRATS

Achieved comparable performance to non-federated learning, training somewhat

slower but data “silos” preserved
Federated Clients
Training on Private Data
(Algorithm 1)
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Li et al. Privacy-preserving Federated Brain Tumour Segmentation, 2019.
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Privacy: HIPAA

Health Insurance Portability and Accountability Act (HIPAA), 1996: created “Privacy Rule”
for how healthcare entities must protect the privacy of patients’ medical information

List of

o= pH]

18 HIPAA identifiers
(Protected Health

‘ Device
Identifiers
Vehicle Identifiers @

I nfo rm atl on ) . (Protected Health
Addresses / Zip Codes / Information
O RS
Phone Numbers IP Addresses
Medical Record
Numbers
~ P
Health Plan
Beneficiary Numbers =
- —
Account Numbers o2 1] -
= Social Security @ Any Other Unique
Numbers — Certificate /License 2 Identifiers
AB-1234 NErrer O
N
CIRI
Figure credit: https://www.jet-software.com/en/data-masking-hipaa/ Total Data Management
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Risks of data re-identification

Data triangulation: a person may be de-identified as to one data set, but the knowledge
that they are a member of another available data set may allow them to be reidentified

Race
Ethnicity

Sex

Age
Hospital
Admit Month
Diagnoses

Procedures

Residence

Physicians
Name
Costs

Payment

News + Public  Hospital Data

Figure credit: Sweeney et al. Matching Known Patients to Health Records in Washington State Data, 2011.
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Matching Known Patients to Health Records in Washington State Data

News stories (e.g., those containing the word “hospitalized”) contain identifying information
that could be used to identify medical records in the state medical record database, for 43%
of studied cases

Number Name General Number of
of Fields  or Street Gender Type Age Address Hospital Details Subjects Totals
3 | | | | 1 il
a | n | | 5
4 b | | n n 7 14
c [ ] [ ] [ ] u 1
d [ ] [ ] [ ] | 1
a ] ] ] ] [ ] 6
Distribution of values h & H N a o 7
. 5 c | n n [ ] 4 »
for fields harvested i ® = u . a 8
e | | | | | | 3
from news stories £ & = = n = :
a | | | | | | | | | 4
b [ ] [ ] [ ] [ ] | ] 9
6 c B | | n | | n 17 3l
d ] [ ] [ ] ] [ ] [ ] 1
7 | | | | | | | | | | 17 17
Totals 90 90

Sweeney. Matching Known Patients to Health Records in Washington State Data, 2011.
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Matching Known Patients to Health Records in Washington State Data

MAN, 61, THROWN FROM MOTORCYCLE
A 61-year-old Soap Lake man was hospitalized
Saturday afternoon after he was thrown from his NEWS STORIES
motorcycle. Raymond Boylston was riding his Number of
2003 Harley-Davidson north on Highway 25, Subjects Percent
when he failed to negotiate a curve to the left. His Motor Vehicle 51 57%
motorcycle became airborne before landing in a Assault 12 13%
wooded area. Boylston was thrown from the bike; Medical 13 14%
he was wearing a helmet during the 12:24 p.m. Other 14 16%
incident. He was taken to Lincoln Hospital. Totals a0
[Spokesman Review 10/23/2011] Table 2. Distribution of news stories by type of
Figure 1. Sample extract of a news story that incident for 90 subjects.

contains name, age, residential information,
hospital, incident date, and type of incident.

Sweeney. Matching Known Patients to Health Records in Washington State Data, 2011.
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Matching Known Patients to Health Records in Washington State Data

e - - e g — —

Hospital 162: Sacred Heart
Medical Center in
Providence

Admit Type 1: Emergency

Type of Stay

1l: Inpatient

Diagnosis
Codes

80843: closed fracture
of other specified part
of pelvis

51851: pulmonary
insufficiency following
trauma & surgery

86500: injury to spleen
without mention of open
wound into cavity

80705: closed fracture
of rib(s); fracture
five ribs-close

5849: acute renal
failure; unspecified

Length of Stay 6 days

Discharge Date Oct-2011

Discharge 6: Dsch/Trfn to home

Status under the care of an
health service
organization

Charges $71708.47

Payers 1: Medicare
6: Commercial insurance
625: Other government
sponsored patients

Emergency E8162: motor vehicle

Codes traffic accident due to

loss of control; loss
control mv-mocycl

Age in Years 60

Age in Months 725

Gender Male

ZIP 98851

State Reside WA

Race/Ethnicity White, Non-Hispanic

Procedure 5781: Suture bladder

Codes laceration
7939: 7919: Open/Closed
reduction of fracture
of other specified bone

Physicians

Sweeney. Matching Known Patients to Health Records in Washington State Data, 2011.
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|dentifying Participants in the Personal Genome Project by Name

Linked demographics information in the Personal Genome Project (PGP) to public records
such as voter lists, to correctly identify 84 to 97% of profiles for which guessed names were
provided to PGP staff

Name Wrong Total Correct%

— Name 19 103 82%
Medications Address Voter Data 9 130 939%
Diagnoses Date Public Records 20 156 87%

registered

Party
affiliation

Table 2. Correctness of different re-identification
strategies. Errors in matching embedded names and other
strategies are due primarily to uses of nicknames rather
than real names.

Procedures

PGP Profile Voter List

Sweeney. ldentifying Participants in the Personal Genome Project by Name, 2013.
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K-anonymity

A data release provides k-anonymity protection if the information for each person contained
in the release cannot be distinguished from at least k-1 individuals whose information also
appears in the release.

Race Birth | Gender ZIP  |Problem
t1(Black 1965 m 0214* [short breath
t2(Black 1965 m 0214* |chest pain
t3|Black 1965 f 0213* |hypertension
t4|Black 1965 f 0213* |hypertension
t5|Black 1964 f 0213* [|obesity
t6|Black 1964 f 0213* [chest pain
t7|White 1964 m 0213* |chest pain
t8| White 1964 m 0213* |obesity
t9(White 1964 m 0213* [short breath

t10|White 1967 m 0213* |[chest pain
t11|{White 1967 m 0213* |chest pain

Figure 2 Example of k-anonymity, where k=2 and QI={Race, Birth, Gender, ZIP}

Sweeney. K-anonymity: a model for protecting privacy. 2002.
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K-anonymity

Sweeney. K-anonymity: a model for protecting privacy. 2002.

Serena Yeung

Race |BirthDate |[Gender |ZIP |Problem
black 9/20/1965|male 02141 |short of breath .
black | 2/14/1965]|male _ |02141 |chest pain 2 k-anonymity
black | 10/23/1965|female 02138 |painful eye tables (where
black 8/24/1965|female 02138 |wheezing k=2)
black 11/7/1964 |female 02138 |obesity
black 12/1/1964|female |02138 |chest pain >
white | 10/23/1964|male 02138 |short of breath
white 3/15/1965|female 02139 |hypertension
white 8/13/1964|male 02139 |obesity
white 5/5/1964|male 02139 |fever
white 2/13/1967|male 02138 |vomiting
white 3/21/1967|male 02138 |back pain

PT

BIODS 220: Al in Healthcare
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Race |BirthDate |Gender |ZIP |[Problem
black [1965 male 02141 |short of breath
black [1965 male 02141 |chest pain
erson|1965 female |0213* |painful eye
|€erson 1965 female |0213* |wheezing
black [1964 female 02138 |obesity
black [1964 female 02138 |[chest pain
white [1964 male 0213* |short of breath
|person|1965 female |0213* |hypertension
white [1964 male 0213* |obesity
white [1964 male 0213* |fever
white [1967 male 02138 |vomiting
white |1967 male 02138 |back pain
GT1
Race |BirthDate [Gender |ZIP |Problem
black 1965 male 02141 |short of breath
black [1965 male 02141 |chest pain
black |[1965 female ]02138 |painful eye
black 1965 female 02138 |wheezing
black [1964 female |02138 |obesity
black [1964 female |02138 |chest pain
white |1960-69 |male 02138 |short of breath
white [1960-69 |human 02139 |hypertension
white |1960-69 |human 02139 |obesity
white [1960-69 |human 02139 |fever
white  [1960-69 |male 02138 |Jvomiting
white |1960-69 |male 02138 |back pain
GT3




Re-identification from ML models

- White-box (as opposed to black-box) setting: have access to model parameters, e.g.
local model downloaded on device to run inference

- Model inversion attack: can use gradient descent if model parameters are available,
to infer sensitive features

Algorithm 1 Inversion attack for facial recognition models.
1: function MI-FACE(label, o, 3,7, \)
2 (%) €1 — fiaper (x) + AUXTERM(X)
3 X0+ 0
4 fori+1...ado
5: x; < PROCESS(x;—1 — A - Ve(x;-1))
6: if ¢(x;) > max(c(xi-1),...,c(xi—g)) then
i
8
9

break

. Figure 1: An image recovered using a new model in-

if c(x;) <~ then version attack (left) and a training set image of the

break victim (right). The attacker is given only the per-

10: return [arg minxi (C(xi))a minx, (C(Xz))] son’s name and access to a facial recognition system
that returns a class confidence score.

Fredrickson et al. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, 2015.
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Differential privacy

Key idea: output for a dataset, vs. the dataset with a difference for a single entry (e.g., one
individual), is “hardly different”. Mathematical guarantees on this idea.

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Differential privacy

Key idea: output for a dataset, vs. the dataset with a difference for a single entry (e.g., one
individual), is “hardly different”. Mathematical guarantees on this idea.

Definition 1. A randomized mechanism M : D — R with
domain D and range R satisfies (g, §)-differential privacy if
for any two adjacent inputs d,d’ € D and for any subset of

outputs S C R it holds that
Pr[M(d) € S] < e PrM(d’) € S] + 4.

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Differential privacy

Simple intuition behind how we can achieve differential privacy: adding noise!

<+ ! l ! ! : : ! 5 5 ! 5 V‘
102 103 104 105 106 107 108 109 110 (i 112 113

Example of reporting a value with Laplacian noise added

Figure credit: https://github.com/frankmcsherry/blog/blob/master/posts/2016-02-03.md

Serena Yeung BIODS 220: Al in Healthcare Lecture 14 - 29



Tralnlng Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi1,...,zn}, loss function L(0) =

dlfferentla”y prlvate + 3. L(6, ;). Parameters: learning rate n;, noise scale

" o, group size L, gradient norm bound C.
deep Iea rnlng Initialize 6y randomly
for t € [T] do
mOdels Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € L, compute g¢(z;) < Vg, L(0:,2;)
Clip gradient
g:(z:) < g(z;)/ max (1, IIgt(gi)Hz)
Add noise
g + 1 (X, 8:(zi) + N(0,0°C?1))
Descent
0141 < 01 — M8t
Output 67 and compute the overall privacy cost (g,9)
using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Tralnlng Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi1,...,zn}, loss function L(0) =

dlfferentla”y prlvate + 3. L(6, ;). Parameters: learning rate n;, noise scale

o, group size L, gradient norm bound C.

deep Iea i ng Initialize 6y randomly
for t € [T] do
mOdels Take a random sample L; with sampling probability
L/N

Compute gradient

Compute gradient as / For each i € L;, compute g:(x;) < Vg, L(0:, ;)

usual Clip gradient
g:(z:) < g(z;)/ max (1, IIgt(gi)llz)
Add noise
g + 1 (X, 8:(zi) + N(0,0°C?1))
Descent

01 < 0 — M8t
Output 67 and compute the overall privacy cost (g,9)
using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Tralnlng Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi1,...,zn}, loss function L(0) =

dlfferentla”y prlvate + 3. L(6, ;). Parameters: learning rate n;, noise scale

" o, group size L, gradient norm bound C.
deep Iea i ng Initialize 6y randomly
for t € [T] do
mOdels Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € L, compute g¢(z;) < Vg, L(0:,2;)

Clip gradient
Clip the gradient — &(x:) « ge(z:)/ max (1, lszoll)

Add noise

g < L (X, 8:(z:) + N(0,0°C?1))

Descent

01 < 0 — M8t
Output 67 and compute the overall privacy cost (g,9)
using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Tralnlng Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi1,...,zn}, loss function L(0) =

dlfferentla”y prlvate + 3. L(6, ;). Parameters: learning rate n;, noise scale

o, group size L, gradient norm bound C.

deep Iea i ng Initialize 6y randomly
for t € [T] do
mOdels Take a random sample L; with sampling probability
L/N

Compute gradient
For each i € L, compute g¢(z;) < Vg, L(0:,2;)
Clip gradient
5 [ : llge (zi)ll2
gAtégfi)  ge(w:)/ max (1, 1EEEH2)
Add noise for e
differential privacy ' 4 « 7 (X, 8(z:) + N (0,07C°T))
escent
0141 < 01 — M8t
Output 67 and compute the overall privacy cost (g,9)
using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Tralnlng Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi1,...,zn}, loss function L(0) =

dlffe rentla”y prlvate + 3. L(6, ;). Parameters: learning rate n;, noise scale
" o, group size L, gradient norm bound C.
d ee p I earnin g Initialize 6y randomly
for t € [T] do

mOdels Take a random sample L; with sampling probability
L/N
Compute gradient

Definition 1. A randomized mechanism M: D — R with For each 1 € L, compute gt(xi) < Vgtﬁ(ot’ 1137,)

domain D and range R satisfies (g, §)-differential privacy if Clip gradient
for any two adjacent inputs d,d’ € D and for any subset of gt (mz) — gt (mz)/ max (]_, M)

outputs S C R it holds that Add noise ¢
Pr[M(d) € S] < e Pr[M(d’) € S] + 6. g« 1 (3, 8:(x:) + N(0,0°C?T))
Descent

C t I 01 < 0 — M8t
ompute overa — Output 67 and compute the overall privacy cost (g,d)

privacy cost using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.
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Privacy Aggregation of Teacher Ensembles (PATE)

Approach to combine data from multiple disjoint sensitive populations, with privacy
guarantees

Jane Smith does

not have cancer \‘.

PATE Teacher 2@8 RS

model Add
Gaussian
— — Cancer l noise to Class with
+ each vote = most noisy
- count votes
28 > Healthy
=9 . , Z 3 Z s
Record () / Honithy 5 £ -
similar to =) £ 9
Jane'’s ==
Figure credit: =
http://www.cleverhans.io/privacy/2018/04/29/ Healthy
privacy-and-machine-learning.html
Papernot et al. Semi-supervised Knowledge —y—" a Y / H—/ H—/ H—j Hr—}
Transfer for Deep Learning from Private Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Data, 2017.
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Privacy Aggregation of Teacher Ensembles (PATE)

Approach to combine data from multiple disjoint sensitive populations, with privacy
guarantees Train separate classifiers from

Jane Smith does disjoint data sets -- no privacy
not have cancer D /

guarantees yet
PATE Teacher :@: i

model Add
Gaussian
= l noise to Class with
& each vote = most noisy
count votes
: / > Healthy
% ~ > 3 z 5
Record YA 5 e 5 <
similar to " 4 =0 B
Jane'’s ==
Figure credit: =
httgp://www.cleverhans.io/privacy/2018/04/29/ w * Healthy
privacy-and-machine-learning.html
Papernot et al. Semi-supervised Knowledge H—’ s Y / H—/ H—/ H—/ Hr—}
Transfer for Deep Learning from Private Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Data, 2017.
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Privacy Aggregation of Teacher Ensembles (PATE)

Approach to combine data from multiple disjoint sensitive populations, with privacy
To get a privacy-preserving

guarantees
Jane Smith does prediction, first obtain predictions
not have cancer il from all distinct classifiers
> Healthy
PATE Teacher ‘
model I Add
O D -a Gaussian
= a0 @& — Cancer l noise to Class with
+ | O A each vote | | most noisy
: - count votes
EX ¥ / i > Healthy
Record VAN ~ Healthy % § % g
similar to - ¢ T O LG
Jane'’s =
Figure credit: > Health
http://www.cleverhans.io/privacy/2018/04/29/ it/
privacy-and-machine-learning.html
o > Y —— e s T o
Noisy vote counts Prediction

Papernot et al. Semi-supervised Knowledge
Transfer for Deep Learning from Private
Data, 2017.

Test input Teachers
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Privacy Aggregation of Teacher Ensembles (PATE)

Approach to combine data from multiple disjoint sensitive populations, with privacy
Then add noise to the vote

guarantees
Jane Smith does histogram (giving differential privacy
not have cancer S guarantees), and take the class with
> Healthy i
PATE Teacher the most ptes as the final output
model P Add
O L 4 O Gaussian
= o @) & — Cancer l noise to Class with
+ L 4 \/*> L 4 - each vote = most noisy
. count ! votes
I3 ® v I > Healthy
QS0 . z g Z 3
Record ﬁ*”@“ﬂ Hesitny - T £
similar to ) = O =
Jane'’s =
Figure credit: > Health
http://www.cleverhans.io/privacy/2018/04/29/ it/
privacy-and-machine-learning.html
Papernot et al. Semi-supervised Knowledge —— N v /) — — ——
Transfer for Deep Learning from Private Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Data, 2017.
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Privacy Aggregation of Teacher Ensembles (PATE)

This teacher model alone can still be compromised if too many queries are performed
(privacy cost builds up with each query, so privacy guarantees become meaningless with too
many queries), or if model parameters are made accessible (and attackable) e.g. distributed

in local application Jane Smith,
PATE Student model uses = Noisy aggregation
public data to train a model ®/e @
replicating noisy aggregated bl g it privacy _ @Y Port lbeled dsis O%%&O
teacher outputs Z g i o &g ®
Student
ey

Figure credit: Unlabeled data
http://www.cleverhans.io/privacy/2018/04/29/
privacy-and-machine-learning.html

Papernot et al. Semi-supervised Knowledge
Transfer for Deep Learning from Private Uniabeled dets L:E,?:f,':g
Data, 2017. p
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lan Goodfellow et al., “Generative

Remember GANs: Two-player game Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images X § Real Images
(from generator) | ~ - ' (from training set)
| i p

Generator Network
A After training, use generator network to

generate new images

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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lan Goodfellow et al., “Generative

Remember GANs: Two-player game Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Eake Can train GANs using differentially private

* SGD (DP-SGD)! Afterwards, using the
generator to generate synthetic data does
Discriminator Network not incur additional privacy cost

Fake Images X § Real Images
(from generator) | ~ - ' (from training set)
| i p

Generator Network

A After training, use generator network to
Random noise Z generate new images
Xie et al. Differentially Private Generative Adversarial Network, 2018. Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Can work with differential privacy within deep learning frameworks

Implementation of DP-SGD

optimizer = optimizers.dp optimizer.DPGradientDescentGaussianOptimizer (
12_norm clip=FLAGS.l12_norm clip,
noise multiplier=FLAGS.noise multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate,
population_size=60000)

train op = optimizer.minimize(loss=vector loss)

Utilities for calculating epsilon

epsilon = get privacy_ spent(orders, rdp, target delta=le-5)[0]

https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.htmi
http://www.cleverhans.io/privacy/2019/03/26/machine-learning-with-differential-privacy-in-tensorflow.html
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Today we covered:

- Distributed Learning and Federated Learning
- Privacy and Differential Privacy

Next time: Guest lecture from Mohit Kaushal, discussing Al in healthcare in
industry and in public policy
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