
1Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Lecture 2:
Deep Learning Fundamentals

2Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Announcements

- A0 was released yesterday. Due next Tuesday, Sep 22.
- Setup assignment for later homeworks.

- Project partner finding session this Friday, Sep 18.
- Office hours will start next week

3Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Last time: key ingredients of deep learning success
Algorithms Compute

Data

4Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Today: Review of deep learning fundamentals

- Machine learning vs. deep learning framework

- Deep learning basics through a simple example
- Defining a neural network architecture
- Defining a loss function
- Optimizing the loss function

- Model implementation using deep learning frameworks

- Design choices

5Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Machine learning framework

Data-driven learning of a mapping from input to output

6Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Machine learning framework

Input Feature
extractor

Machine learning
model

Output

(e.g.,) (e.g., color and
texture histograms)

(e.g., support vector machines
and random forests)

(e.g., presence or
not or disease)

Data-driven learning of a mapping from input to output

Traditional machine learning approaches

7Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Machine learning framework

Traditional machine learning

Input Feature
extractor

Machine learning
model

Output

(e.g.,) (e.g., color and
texture histograms)

(e.g., support vector machines
and random forests)

(e.g., presence or
not or disease)

Q: What other features could be of interest
in this X-ray? (Raise hand or type in chat box)

8Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning (a type of machine learning)

9Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning (a type of machine learning)

Traditional machine learning

Input Feature
extractor

Machine learning
model

Output

(e.g.,) (e.g., color and
texture histograms)

(e.g., support vector machines
and random forests)

(e.g., presence or
not or disease)

10Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning (a type of machine learning)

Deep Learning Model

Traditional machine learning

Input Feature
extractor

Machine learning
model

Output

Deep learning

Input Output

(e.g.,) (e.g., color and
texture histograms)

(e.g., support vector machines
and random forests)

(e.g., presence or
not or disease)

(e.g.,) (e.g., presence or
not or disease)

(e.g., convolutional and
recurrent neural networks)

11Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning (a type of machine learning)

Deep Learning Model

Traditional machine learning

Input Feature
extractor

Machine learning
model

Output

Deep learning

Input Output

(e.g.,) (e.g., color and
texture histograms)

(e.g., support vector machines
and random forests)

(e.g., presence or
not or disease)

(e.g.,) (e.g., presence or
not or disease)

(e.g., convolutional and
recurrent neural networks)

Directly learns what are useful (and better!)
features from the training data

12Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

How do deep learning models perform feature extraction?

Input

(e.g.,)

Output

(e.g., presence or
not or disease)

13Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

How do deep learning models perform feature extraction?

Input

(e.g.,)

Output

(e.g., presence or
not or disease)

Hierarchical structure
of neural networks

allows compositional
extraction of

increasingly complex
features

Low-level
features

Mid-level
features

High-level
features

Feature visualizations from
Zeiler and Fergus 2013

14Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Topics we will cover

1. Preparing data for deep learning
2. Neural network models
3. Training neural networks
4. Evaluating models

Input

(e.g.,)

Output

(e.g., presence or
not or disease)

15Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

First (today): deep learning basics through a simple example

Model input: data vector Model output: prediction (single number)

Let us consider the task of regression: predicting a single real-valued output from input data

16Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Model input: data vector Model output: prediction (single number)

Let us consider the task of regression: predicting a single real-valued output from input data

Example: predicting hospital length-of-stay from clinical variables in the electronic health record

[age, weight, …, temperature, oxygen saturation] length-of-stay (days)

Example: predicting expression level of a target gene from the expression levels of N landmark genes

expression levels of N landmark genes expression level of target gene

First (today): deep learning basics through a simple example

17Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Regression tasks

Breakout session:
1x 5-minute breakout (~4 students each)

- Introduce yourself!
- What other regression tasks are there in the

medical field?
- What should be the inputs?
- What should be the output?
- What are the key features to extract?

18Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network

19Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network

all inputs of a layer are connected to
all outputs of a layer

20Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network

all inputs of a layer are connected to
all outputs of a layer

For simplicity, use a 3-dimensional input (N = 3)

Output:

21Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network

all inputs of a layer are connected to
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

bias term (allows
constant shift)

22Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network

all inputs of a layer are connected to
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

bias term (allows
constant shift)

23Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a neural network architecture

Neural network parameters:

Our first architecture: a single-layer, fully connected neural network

all inputs of a layer are connected to
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

bias term (allows
constant shift)

24Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a neural network architecture

Neural network parameters:

Our first architecture: a single-layer, fully connected neural network

all inputs of a layer are connected to
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

bias term (allows
constant shift)

layer “weights” layer bias

25Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a neural network architecture

Neural network parameters:

Our first architecture: a single-layer, fully connected neural network

all inputs of a layer are connected to
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

bias term (allows
constant shift)

layer “weights” layer bias

Often refer to all parameters together as just
“weights”. Bias is implicitly assumed.

26Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a neural network architecture

Neural network parameters:

Our first architecture: a single-layer, fully connected neural network

all inputs of a layer are connected to
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

Caveats of our first (simple) neural network architecture:
- Single layer still “shallow”, not yet a “deep” neural network. Will see how to stack multiple layers.
- Also equivalent to a linear regression model! But useful base case for deep learning.

bias term (allows
constant shift)

layer “weights” layer bias

Often refer to all parameters together as just
“weights”. Bias is implicitly assumed.

27Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a loss function

Neural network parameters:

Output:

28Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a loss function

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

Neural network parameters:

Output:

29Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a loss function

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.

Neural network parameters:

Output:

30Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a loss function

MSE loss for a single example , when the prediction is and the correct (ground truth) output is :

Neural network parameters:

Output:

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.

31Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a loss function

MSE loss for a single example , when the prediction is and the correct (ground truth) output is :

 the loss is small when the prediction is close to the ground truth

Neural network parameters:

Output:

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.

32Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Defining a loss function

MSE loss for a single example , when the prediction is and the correct (ground truth) output is :

MSE loss over a set of examples :

 the loss is small when the prediction is close to the ground truth

Neural network parameters:

Output:

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.

33Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Goal: find the “best” values of the model parameters that minimize the loss function

Optimizing the loss function: gradient descent

34Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Goal: find the “best” values of the model parameters that minimize the loss function

The approach we will take: gradient descent

Optimizing the loss function: gradient descent

35Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Goal: find the “best” values of the model parameters that minimize the loss function

The approach we will take: gradient descent

Optimizing the loss function: gradient descent

“Loss landscape”: the value of the
loss function at every value of the
model parameters

Loss

Figure credit: https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png

36Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Goal: find the “best” values of the model parameters that minimize the loss function

The approach we will take: gradient descent

Optimizing the loss function: gradient descent

“Loss landscape”: the value of the
loss function at every value of the
model parameters

Main idea: iteratively update the model
parameters, to take steps in the local
direction of steepest (negative) slope,
i.e., the negative gradient

Loss

Figure credit: https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png

37Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Goal: find the “best” values of the model parameters that minimize the loss function

The approach we will take: gradient descent

Optimizing the loss function: gradient descent

“Loss landscape”: the value of the
loss function at every value of the
model parameters

Main idea: iteratively update the model
parameters, to take steps in the local
direction of steepest (negative) slope,
i.e., the negative gradient

We will be able to use gradient
descent to iteratively optimize the
complex loss function landscapes
corresponding to deep neural
networks!

Loss

Figure credit: https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png

38Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients

39Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients

40Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients

41Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients

42Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

The gradient of a function of multiple variables is the vector of
partial derivatives of the function with respect to each variable.

Ex:

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients

43Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

The gradient of a function of multiple variables is the vector of
partial derivatives of the function with respect to each variable.

Ex:

The gradient evaluated at a particular point is the direction of steepest ascent of the function.

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients

44Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

The gradient of a function of multiple variables is the vector of
partial derivatives of the function with respect to each variable.

Ex:

The gradient evaluated at a particular point is the direction of steepest ascent of the function.

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients

The negative of the gradient is the direction of steepest descent -> direction we want to move
in the loss function landscape!

45Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Gradient descent algorithm
Let the gradient of the loss function with respect to the model parameters w be:

46Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Gradient descent algorithm
Let the gradient of the loss function with respect to the model parameters w be:

For ease of notation, rewrite
parameter as
corresponding to :

47Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Gradient descent algorithm
Let the gradient of the loss function with respect to the model parameters w be:

Then we can minimize the loss function by iteratively updating the model parameters (“taking steps”) in
the direction of the negative gradient, until convergence:

For ease of notation, rewrite
parameter as
corresponding to :

48Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Gradient descent algorithm
Let the gradient of the loss function with respect to the model parameters w be:

Then we can minimize the loss function by iteratively updating the model parameters (“taking steps”) in
the direction of the negative gradient, until convergence:

For ease of notation, rewrite
parameter as
corresponding to :

“Step size” hyperparameter (design choice)
indicating how big of a step in the negative
gradient direction we want to take at each update.
Too big -> may overshoot minima.
Too small -> optimization takes too long.

49Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Gradient descent algorithm: in code

50Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Stochastic gradient descent (SGD)
Evaluating gradient involves iterating over all data examples, which can be slow!

In practice, usually use stochastic gradient descent: estimate gradient over a sample of data
examples (usually as many as can fit on GPU at one time, e.g. 32, 64, 128)

51Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Optimizing the loss function:
our example

Loss function:

Per-example:

Over M examples:

Neural network parameters:

Output:

52Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Optimizing the loss function:
our example

Loss function:

Per-example:

Over M examples:

Neural network parameters:

Output:

Gradient of loss w.r.t. weights:

Partial derivative of loss w.r.t. kth weight:

53Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Optimizing the loss function:
our example

Loss function:

Per-example:

Over M examples:

Neural network parameters:

Output:

Gradient of loss w.r.t. weights:

Partial derivative of loss w.r.t. kth weight:Chain rule

54Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Optimizing the loss function:
our example

Loss function:

Gradient of loss w.r.t. weights:

Per-example:

Over M examples:

Partial derivative of loss w.r.t. kth weight:

Neural network parameters:

Output:

Over M examples

55Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Optimizing the loss function:
our example

Loss function:

Gradient of loss w.r.t. weights:

Per-example:

Over M examples:

Partial derivative of loss w.r.t. kth weight:

Neural network parameters:

Output:

Full gradient expression:

56Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Now: a two-layer fully-connected neural network
Output:

57Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Output:

Sigmoid “activation
function”

Now: a two-layer fully-connected neural network

58Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Output:

Full function expression:

Now: a two-layer fully-connected neural network

59Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Output:

Sigmoid “activation
function”Activation functions

Introduce non-linearity into
the model -- allowing it to
represent highly complex
functions.

Full function expression:

Now: a two-layer fully-connected neural network

60Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Output:

Sigmoid “activation
function”Activation functions

introduce non-linearity into
the model -- allowing it to
represent highly complex
functions.

A fully-connected neural network (also known
as multi-layer perceptron) is a stack of [affine
transformation + activation function] layers.

Full function expression:

Now: a two-layer fully-connected neural network

61Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Output:

Now: a two-layer fully-connected neural network

62Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Neural network parameters:

Output:

Now: a two-layer fully-connected neural network

63Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Neural network parameters:

Output:

Loss function (regression loss, same as before):

Per-example:

Over M examples:

Now: a two-layer fully-connected neural network

64Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Neural network parameters:

Output:

Loss function (regression loss, same as before):

Per-example:

Over M examples:

Gradient of loss w.r.t. weights:
Function more complex -> now much harder to
derive the expressions! Instead… computational
graphs and backpropagation.

Now: a two-layer fully-connected neural network

65Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Computing gradients with backpropagation

66Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Computing gradients with backpropagation

Think of computing loss function as staged computation of
intermediate variables:

Network output:

67Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Computing gradients with backpropagation

Think of computing loss function as staged computation of
intermediate variables:

Network output:

“Forward pass”:

68Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Computing gradients with backpropagation

Think of computing loss function as staged computation of
intermediate variables:

Now, can use a repeated application of the chain
rule, going backwards through the computational
graph, to obtain the gradient of the loss with
respect to each node of the computation graph.

Network output:

“Forward pass”:

69Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Computing gradients with backpropagation

Think of computing loss function as staged computation of
intermediate variables:

Now, can use a repeated application of the chain
rule, going backwards through the computational
graph, to obtain the gradient of the loss with
respect to each node of the computation graph.

Network output:

“Forward pass”:

“Backward pass”: (not all gradients
shown)
(not all gradients
shown)

70Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Computing gradients with backpropagation

Think of computing loss function as staged computation of
intermediate variables:

Now, can use a repeated application of the chain
rule, going backwards through the computational
graph, to obtain the gradient of the loss with
respect to each node of the computation graph.

Network output:

“Forward pass”:

“Backward pass”: (not all gradients
shown)

Plug in from earlier
computations via chain rule

71Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Computing gradients with backpropagation

Think of computing loss function as staged computation of
intermediate variables:

Now, can use a repeated application of the chain
rule, going backwards through the computational
graph, to obtain the gradient of the loss with
respect to each node of the computation graph.

Network output:

“Forward pass”:

“Backward pass”:

Plug in from earlier
computations via chain rule

Local gradients
to derive

(not all gradients
shown)

72Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Computing gradients with backpropagation

Key idea: Don’t mathematically derive entire math expression for e.g. dL / dW1. By writing it as
nested applications of the chain rule, only have to derive simple “local” gradients representing
relationships between connected nodes of the graph (e.g. dH / dW1).

73Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Computing gradients with backpropagation

Key idea: Don’t mathematically derive entire math expression for e.g. dL / dW1. By writing it as
nested applications of the chain rule, only have to derive simple “local” gradients representing
relationships between connectected nodes of the graph (e.g. dH / dW1).

Can use more or less intermediate variables to
control how difficult local gradients are to derive!

74Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, using
backpropagation

75Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, using
backpropagation

Initialize model
parameters

76Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, using
backpropagation

Forward pass

77Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, using
backpropagation

Backward
pass

78Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, using
backpropagation

Upstream
gradient

Downstream
gradient Backward

pass

79Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, using
backpropagation

Gradient
update

80Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning software frameworks
- Makes our lives easier by providing implementations and higher-level abstractions of many

components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

81Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning software frameworks
- Makes our lives easier by providing implementations and higher-level abstractions of many

components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

- Automatic differentiation: if we define nodes in a computational graph, will automatically
implement backpropagation for us

- Supports many common operations with local gradients already implemented
- Can still define custom operations

82Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning software frameworks
- Makes our lives easier by providing implementations and higher-level abstractions of many

components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

- Automatic differentiation: if we define nodes in a computational graph, will automatically
implement backpropagation for us

- Supports many common operations with local gradients already implemented
- Can still define custom operations

- A number of popular options, e.g. Tensorflow and PyTorch. Recent stable versions (TF 2.0,
PyTorch 1.3) work largely in a similar fashion (not necessarily true for earlier versions). We
will use Tensorflow 2.0 in this class.

83Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning software frameworks
- Makes our lives easier by providing implementations and higher-level abstractions of many

components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

- Automatic differentiation: if we define nodes in a computational graph, will automatically
implement backpropagation for us

- Supports many common operations with local gradients already implemented
- Can still define custom operations

- A number of popular options, e.g. Tensorflow and PyTorch. Recent stable versions (TF 2.0,
PyTorch 1.3) work largely in a similar fashion (not necessarily true for earlier versions). We
will use Tensorflow 2.0 in this class.

- More next Friday, Sept 25, during our Tensorflow section.

84Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, in Tensorflow 2.0

85Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, in Tensorflow 2.0

Convert data to TF tensors,
create a TF dataset

86Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, in Tensorflow 2.0

Initialize parameters to
be learned as tf.Variable
-> allows them to receive
gradient updates during
optimization

87Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, in Tensorflow 2.0

Initialize a TF optimizer

88Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, in Tensorflow 2.0

All operations defined
under the gradient tape
will be used to construct
a computational graph

89Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, in Tensorflow 2.0

The computational graph
for our two-layer neural
network

90Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural
network in code, in Tensorflow 2.0

Evaluate gradients using
automatic differentiation
and perform gradient
update

91Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

In Tensorflow 2.0: In Keras:

92Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

In Tensorflow 2.0: In Keras:

Stack of layers

93Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

In Tensorflow 2.0: In Keras:
Fully-connected layer

94Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

In Tensorflow 2.0: In Keras:

Activation function and bias
configurations included!

95Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

In Tensorflow 2.0: In Keras:

Specify hyperparameters for
the training procedure

96Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices

97Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training hyperparameters: control knobs for the art of training neural
networks

Optimization methods: SGD, SGD with
momentum, RMSProp, Adam

SGD

SGD+Momentum
RMSProp

Adam

- Adam is a good default choice in many cases; it
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule

98Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
rates is best to use?

Slide credit: CS231n

99Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
rates is best to use?

A: All of them! Start with large
learning rate and decay over time

Slide credit: CS231n

100Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Reduce learning rate
Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Learning rate decay

Slide credit: CS231n

101Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Fancy decay schedules like cosine, linear,
inverse sqrt.

Empirical rule of thumb: If you increase the
batch size by N, also scale the initial learning
rate by N

Learning rate decay

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Slide credit: CS231n

102Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Monitor learning curves

Periodically evaluate validation loss

Also useful to plot performance on
final metric

Figure credit: https://www.learnopencv.com/wp-content/uploads/2017/11/cnn-keras-curves-without-aug.jpg

103Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Monitor learning curves

Figure credit: CS231n

Training loss can be noisy. Using
a scatter plot or plotting moving
average can help better
visualize trends.

104Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Overfitting vs. underfitting
Overfitting

Loss

Time

Training loss much better
than validation

Training loss may
continue to get better
while validation
plateaus or gets worse

Training
Validation

105Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Overfitting vs. underfitting
Overfitting Underfitting

Loss

Time

Loss

Time

Training loss much better
than validation

Training loss may
continue to get better
while validation
plateaus or gets worse

Small or no gap between
training and validation loss

May have relatively higher
loss overall (model not
learning sufficiently)

Training
Validation

106Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Overfitting vs. underfitting

Breakout session:
1x 5-minute breakout (~4 students each)

- Introduce yourself!
- What are some ways to combat overfitting?
- What are some ways to combat underfitting?

107Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Overfitting vs. underfitting
Overfitting Underfitting

Loss

Time

Loss

Time

Training loss much better
than validation

Training loss may
continue to get better
while validation
plateaus or gets worse

Small or no gap between
training and validation loss

May have relatively higher
loss overall (model not
learning sufficiently)

Training
Validation

108Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Overfitting vs. underfitting
Overfitting

Loss

Time

Training loss much better
than validation

Training loss may
continue to get better
while validation
plateaus or gets worse

Model is “overfitting” to the training data. Best
strategy: Increase data or regularize model.
Second strategy: decrease model capacity
(make simpler)

Training
Validation

109Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Overfitting vs. underfitting
Overfitting Underfitting

Loss

Time

Loss

Time

Training loss much better
than validation

Training loss may
continue to get better
while validation
plateaus or gets worse

Model is “overfitting” to the training data. Best
strategy: Increase data or regularize model.
Second strategy: decrease model capacity
(make simpler)

Small or no gap between
training and validation loss

May have relatively higher
loss overall (model not
learning sufficiently)

Model is not able to sufficiently learn to fit the
data well. Best strategy: Increase complexity
(e.g. size) of the model. Second strategy: make
problem simpler (easier task, cleaner data)

Training
Validation

110Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Overfitting vs. underfitting: more intuition

Overfitting Underfitting

Figure credit: https://qph.fs.quoracdn.net/main-qimg-412c8556aacf7e25b86bba63e9e67ac6-c

https://qph.fs.quoracdn.net/main-qimg-412c8556aacf7e25b86bba63e9e67ac6-c

111Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Healthy learning curves

Loss

Time

Steep improvement at
beginning

Continue to gradually improve

112Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Healthy learning curves

Loss

Time

In practice, models with best final
metric (e.g. accuracy) often have
slight overfitting.

Intuition: slightly push complexity of
model to the highest that the data can
handle

Steep improvement at
beginning

Continue to gradually improve

113Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

More debugging

Loss

Time

Training
Validation

114Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

More debugging

Loss

Time

Plateau may be bad
weight initialization

Training
Validation

115Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

More debugging

Loss

Time

Loss

Time

Plateau may be bad
weight initialization

Training
Validation

116Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

More debugging

Loss

Time

Loss

Time

Plateau may be bad
weight initialization

Loss decreasing but
slowly -> try higher
learning rate

Training
Validation

117Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

More debugging

Loss

Time

Loss

Time

Plateau may be bad
weight initialization Loss

Time

Loss decreasing but
slowly -> try higher
learning rate

Training
Validation

118Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

More debugging

Loss

Time

Loss

Time

Plateau may be bad
weight initialization Loss

Time

Healthy loss curve
plateaus -> try further
learning rate decay at
plateau point

Loss decreasing but
slowly -> try higher
learning rate

Training
Validation

119Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

More debugging

Loss

Time

Loss

Time

Loss

Time

Plateau may be bad
weight initialization Loss

Time

Healthy loss curve
plateaus -> try further
learning rate decay at
plateau point

Loss decreasing but
slowly -> try higher
learning rate

Training
Validation

120Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

More debugging

Loss

Time

Loss

Time

Loss

Time

Plateau may be bad
weight initialization Loss

Time

Healthy loss curve
plateaus -> try further
learning rate decay at
plateau point

Loss decreasing but
slowly -> try higher
learning rate

If you further decay learning
rate too early, may look like
this -> inefficient learning vs.
keeping higher learning rate
longer

Training
Validation

121Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

More debugging

Loss

Time

Loss

Time

Accuracy

Time

Loss

Time

Plateau may be bad
weight initialization Loss

Time

Healthy loss curve
plateaus -> try further
learning rate decay at
plateau point

Loss decreasing but
slowly -> try higher
learning rate

If you further decay learning
rate too early, may look like
this -> inefficient learning vs.
keeping higher learning rate
longer

Final metric is still
improving -> keep
training!

Training
Validation

122Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Iteration

Loss

Iteration

Accuracy

Stop training here

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot
that worked best on val.

Early stopping: always do this

Slide credit: CS231n

Training
Validation

123Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: network architectures

Major design choices:
- Architecture type

(ResNet, DenseNet, etc.
for CNNs)

- Depth (# layers)
- For MLPs, # neurons in

each layer (hidden layer
size)

- For CNNs, # filters, filter
size, filter stride in each
layer

- Look at argument options
in Tensorflow when
defining network layers

124Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: network architectures

Major design choices:
- Architecture type

(ResNet, DenseNet, etc.
for CNNs)

- Depth (# layers)
- For MLPs, # neurons in

each layer (hidden layer
size)

- For CNNs, # filters, filter
size, filter stride in each
layer

- Look at argument options
in Tensorflow when
defining network layers

If trying to make network bigger (when underfitting) or
smaller (when overfitting), network depth and hidden layer
size best to adjust first. Don’t waste too much time early on
fiddling with choices that only minorly change architecture.

125Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:

126Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too
well to the training data). Used to combat overfitting:

Data loss Regularization
loss

importance of reg. term

127Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too
well to the training data). Used to combat overfitting:

Examples
L2 regularization: (weight decay)
L1 regularization:
Elastic net (L1 + L2):

Data loss Regularization
loss

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

importance of reg. term

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

128Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too
well to the training data). Used to combat overfitting:

Examples
L2 regularization: (weight decay)
L1 regularization:
Elastic net (L1 + L2):

Data loss Regularization
loss

L2 most popular: low loss when all weights are relatively
small. More strongly penalizes large weights vs L1.
Expresses preference for simple models (need large
coefficients to fit a function to extreme outlier values).

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

importance of reg. term

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

129Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too
well to the training data). Used to combat overfitting:

Examples
L2 regularization: (weight decay)
L1 regularization:
Elastic net (L1 + L2):

Data loss Regularization
loss

L2 most popular: low loss when all weights are relatively
small. More strongly penalizes large weights vs L1.
Expresses preference for simple models (need large
coefficients to fit a function to extreme outlier values).

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

Next: implicit regularizers that do not add an explicit
term; instead do something implicit in network to
prevent it from fitting too well to training data

importance of reg. term

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

130Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (dropout)
First example of an implicit regularizer.
During training, at each iteration of forward pass randomly set some neurons to zero
(i.e., change network architecture such that paths to some neurons are removed).

During testing, all neurons are active. But scale neuron outputs by dropout probability p,
such that expected output during training and testing match.

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014. Figure credit: CS231n.

131Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (dropout)
First example of an implicit regularizer.
During training, at each iteration of forward pass randomly set some neurons to zero
(i.e., change network architecture such that paths to some neurons are removed).

During testing, all neurons are active. But scale neuron outputs by dropout probability p,
such that expected output during training and testing match.

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014. Figure credit: CS231n.

Probability of “dropping out” each neuron
at a forward pass is hyperparameter p.
0.5 and 0.9 are common (high!).

132Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (dropout)
First example of an implicit regularizer.
During training, at each iteration of forward pass randomly set some neurons to zero
(i.e., change network architecture such that paths to some neurons are removed).

During testing, all neurons are active. But scale neuron outputs by dropout probability p,
such that expected output during training and testing match.

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014. Figure credit: CS231n.

Probability of “dropping out” each neuron
at a forward pass is hyperparameter p.
0.5 and 0.9 are common (high!).

Intuition: dropout is equivalent to training
a large ensemble of different models that
share parameters.

133Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (batch normalization)
Another example of an implicit regularizer.
Insert BN layers after FC or conv layers, before activation function.
During training, at each iteration of forward pass normalize neuron activations by mean and variance of
minibatch. Also learn scale and shift parameter to get final output.

During testing, normalize by a fixed mean and variance computed
from the entire training set. Use learned scale and shift
parameters.

134Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: regularization (batch normalization)
Another example of an implicit regularizer.
Insert BN layers after FC or conv layers, before activation function.
During training, at each iteration of forward pass normalize neuron activations by mean and variance of
minibatch. Also learn scale and shift parameter to get final output.

During testing, normalize by a fixed mean and variance computed
from the entire training set. Use learned scale and shift
parameters.

Intuition: batch normalization allows keeping the weights in
a healthy range. Also some randomness at training due to
different effect from each minibatch sampling ->
regularization!

135Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: data augmentation
Augment effective training data size by simulating more diversity from
existing data. Random combinations of:

- Translation and scaling
- Distortion
- Image color adjustment
- Etc.

136Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Design choices: data augmentation
Augment effective training data size by simulating more diversity from
existing data. Random combinations of:

- Translation and scaling
- Distortion
- Image color adjustment
- Etc.

Think about the domain of
your data: what makes
sense as realistic
augmentation operations?

137Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning for healthcare: the rise of medical data

Q: What are other examples of potential data
augmentations?

(Raise hand or type in chat box)

138Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Model inference

139Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Maximizing test-time performance: apply data augmentation
operations

Main idea: apply model on multiple variants of a data example, and then take
average or max of scores

Can use data augmentation operations we saw during training! E.g.:

- Evaluate at different translations and scales
- Common approach for images: evaluate image crops at 4 corners and center,

+ horizontally flipped versions -> average 10 scores

140Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Model ensembles

Slide credit: CS231n

141Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Instead of training independent models, use multiple
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Model ensembles: tips and tricks

Slide credit: CS231n

142Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Instead of training independent models, use multiple
snapshots of a single model during training!

Cyclic learning rate schedules can
make this work even better!Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Model ensembles: tips and tricks

Slide credit: CS231n

143Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deeper models

144Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training more complex neural networks is a straightforward extension

Now a 6-layer network

145Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

“Deep learning”
Can continue to stack more layers to get deeper models!

146Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer

147Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer
“Hidden” layers - will see lots of diversity
in size (# neurons), type (linear,
convolutional, etc.), and activation
function (sigmoid, ReLU, etc.)

148Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer

Output layer - will differ for
different types of tasks (e.g.
regression). Should match with
loss function.“Hidden” layers - will see lots of diversity

in size (# neurons), type (linear,
convolutional, etc.), and activation
function (sigmoid, ReLU, etc.)

149Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer

Output layer - will differ for
different types of tasks (e.g.
regression). Should match with
loss function.“Hidden” layers - will see lots of diversity

in size (# neurons), type (linear,
convolutional, etc.), and activation
function (sigmoid, ReLU, etc.)

Vanilla fully-connected neural
networks (MLPs) usually pretty
shallow -- otherwise too many
parameters! ~2-3 layers. Can have
wide range in size of layers (16, 64,
256, 1000, etc.) depending on how
much data you have.

150Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer

Output layer - will differ for
different types of tasks (e.g.
regression). Should match with
loss function.“Hidden” layers - will see lots of diversity

in size (# neurons), type (linear,
convolutional, etc.), and activation
function (sigmoid, ReLU, etc.)

Vanilla fully-connected neural
networks (MLPs) usually pretty
shallow -- otherwise too many
parameters! ~2-3 layers. Can have
wide range in size of layers (16, 64,
256, 1000, etc.) depending on how
much data you have.

Will see different classes of neural
networks that leverage structure in
data to reduce parameters +
increase network depth

151Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning

Q: What tasks other than regression are
there?

(Raise hand or type in chat box)

152Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Common activation functions
You will see these extensively, typically after linear or convolutional layers.
They add nonlinearity to allow the model to express complex nonlinear functions.

Sigmoid

Tanh Leaky ReLU

ReLU

and many
more...

You can find these in Keras:
https://keras.io/layers/advanced-activations/

https://keras.io/layers/advanced-activations/

153Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Common activation functions
You will see these extensively, typically after linear or convolutional layers.
They add nonlinearity to allow the model to express complex nonlinear functions.

Sigmoid

Tanh Leaky ReLU

ReLU

and many
more...

You can find these in Keras:
https://keras.io/layers/advanced-activations/

Typical in modern CNNs
and MLPs

https://keras.io/layers/advanced-activations/

154Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Common activation functions
You will see these extensively, typically after linear or convolutional layers.
They add nonlinearity to allow the model to express complex nonlinear functions.

Sigmoid

Tanh Leaky ReLU

ReLU

and many
more...

You can find these in Keras:
https://keras.io/layers/advanced-activations/

Will see in
recurrent
neural
networks.
Also used in
early MLPs
and CNNs.

https://keras.io/layers/advanced-activations/

155Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Will see different classes of neural networks

...

Input sequence

Output sequence

Fully connected neural networks
(linear layers, good for “feature vector” inputs)

Convolutional neural networks
(convolutional layers, good for image inputs)

Recurrent neural networks
(linear layers modeling recurrence relation across

sequence, good for sequence inputs)

156Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Project

Zoom Poll:
- Do you have a project in mind?
- Are you looking for project partners?

157Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Summary
- Went over how to define, train, and tune a neural network

- This Friday’s section (Zoom link on Canvas) will be a project partner finding section

- Next Friday’s section will provide an in-depth tutorial on Tensorflow

- Next class: will go in-depth into
- Medical image data
- Classification models
- Data, model, evaluation considerations

