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Lecture 2:
Deep Learning Fundamentals 
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Announcements

- A0 was released yesterday. Due next Tuesday, Sep 22.
- Setup assignment for later homeworks.

- Project partner finding session this Friday, Sep 18.
- Office hours will start next week
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Last time: key ingredients of deep learning success
Algorithms Compute

Data
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Today: Review of deep learning fundamentals

- Machine learning vs. deep learning framework

- Deep learning basics through a simple example
- Defining a neural network architecture
- Defining a loss function
- Optimizing the loss function

- Model implementation using deep learning frameworks

- Design choices
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Machine learning framework

Data-driven learning of a mapping from input to output
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Machine learning framework

Input Feature 
extractor

Machine learning 
model

Output

(e.g.,                    ) (e.g., color and 
texture histograms)

(e.g., support vector machines 
and random forests)

(e.g., presence or 
not or disease)

Data-driven learning of a mapping from input to output

Traditional machine learning approaches
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Machine learning framework

Traditional machine learning

Input Feature 
extractor

Machine learning 
model

Output

(e.g.,                    ) (e.g., color and 
texture histograms)

(e.g., support vector machines 
and random forests)

(e.g., presence or 
not or disease)

Q: What other features could be of interest
in this X-ray? (Raise hand or type in chat box)
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Deep learning (a type of machine learning)
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Deep learning (a type of machine learning)

Traditional machine learning

Input Feature 
extractor

Machine learning 
model

Output

(e.g.,                    ) (e.g., color and 
texture histograms)

(e.g., support vector machines 
and random forests)

(e.g., presence or 
not or disease)
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Deep learning (a type of machine learning)

Deep Learning Model

Traditional machine learning

Input Feature 
extractor

Machine learning 
model

Output

Deep learning

Input Output

(e.g.,                    ) (e.g., color and 
texture histograms)

(e.g., support vector machines 
and random forests)

(e.g., presence or 
not or disease)

(e.g.,                    ) (e.g., presence or 
not or disease)

(e.g., convolutional and 
recurrent neural networks)
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Deep learning (a type of machine learning)

Deep Learning Model

Traditional machine learning

Input Feature 
extractor

Machine learning 
model

Output

Deep learning

Input Output

(e.g.,                    ) (e.g., color and 
texture histograms)

(e.g., support vector machines 
and random forests)

(e.g., presence or 
not or disease)

(e.g.,                    ) (e.g., presence or 
not or disease)

(e.g., convolutional and 
recurrent neural networks)

Directly learns what are useful (and better!) 
features from the training data
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How do deep learning models perform feature extraction?

Input

(e.g.,                    )

Output

(e.g., presence or 
not or disease)
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How do deep learning models perform feature extraction?

Input

(e.g.,                    )

Output

(e.g., presence or 
not or disease)

Hierarchical structure 
of neural networks 

allows compositional 
extraction of 

increasingly complex 
features

Low-level 
features

Mid-level 
features

High-level 
features

Feature visualizations from 
Zeiler and Fergus 2013
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Topics we will cover

1. Preparing data for deep learning
2. Neural network models
3. Training neural networks
4. Evaluating models

Input

(e.g.,                    )

Output

(e.g., presence or 
not or disease)
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First (today): deep learning basics through a simple example

Model input: data vector Model output: prediction (single number) 

Let us consider the task of regression: predicting a single real-valued output from input data  
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Model input: data vector Model output: prediction (single number) 

Let us consider the task of regression: predicting a single real-valued output from input data  

Example: predicting hospital length-of-stay from clinical variables in the electronic health record

[age, weight, …, temperature, oxygen saturation] length-of-stay (days)

Example: predicting expression level of a target gene from the expression levels of N landmark genes

expression levels of N landmark genes expression level of target gene

First (today): deep learning basics through a simple example
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Regression tasks

Breakout session:
1x 5-minute breakout (~4 students each)

- Introduce yourself!
- What other regression tasks are there in the 

medical field?
- What should be the inputs?
- What should be the output?
- What are the key features to extract? 
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Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network 
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Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer
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Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer

For simplicity, use a 3-dimensional input (N = 3)

Output:
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Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

bias term (allows 
constant shift)
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Defining a neural network architecture
Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

bias term (allows 
constant shift)
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Defining a neural network architecture

Neural network parameters: 

Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

bias term (allows 
constant shift)
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Defining a neural network architecture

Neural network parameters: 

Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

bias term (allows 
constant shift)

layer “weights” layer bias
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Defining a neural network architecture

Neural network parameters: 

Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

bias term (allows 
constant shift)

layer “weights” layer bias

Often refer to all parameters together as just 
“weights”. Bias is implicitly assumed.
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Defining a neural network architecture

Neural network parameters: 

Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer

Output:

For simplicity, use a 3-dimensional input (N = 3)

layer inputs

layer output(s)

Caveats of our first (simple) neural network architecture:
- Single layer still “shallow”, not yet a “deep” neural network. Will see how to stack multiple layers.
- Also equivalent to a linear regression model! But useful base case for deep learning.

bias term (allows 
constant shift)

layer “weights” layer bias

Often refer to all parameters together as just 
“weights”. Bias is implicitly assumed.
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Defining a loss function

Neural network parameters: 

Output:
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Defining a loss function

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good” 
the model parameters are).

Neural network parameters: 

Output:
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Defining a loss function

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good” 
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.

Neural network parameters: 

Output:
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Defining a loss function

MSE loss for a single example     , when the prediction is       and the correct (ground truth) output is      : 

Neural network parameters: 

Output:

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good” 
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.
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Defining a loss function

MSE loss for a single example     , when the prediction is       and the correct (ground truth) output is      : 

 the loss is small when the prediction is close to the ground truth

Neural network parameters: 

Output:

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good” 
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.
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Defining a loss function

MSE loss for a single example     , when the prediction is       and the correct (ground truth) output is      : 

MSE loss over a set of examples                              :  

 the loss is small when the prediction is close to the ground truth

Neural network parameters: 

Output:

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good” 
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.



33Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Goal: find the “best” values of the model parameters that minimize the loss function  

Optimizing the loss function: gradient descent
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Goal: find the “best” values of the model parameters that minimize the loss function  

The approach we will take: gradient descent

Optimizing the loss function: gradient descent



35Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Goal: find the “best” values of the model parameters that minimize the loss function  

The approach we will take: gradient descent

Optimizing the loss function: gradient descent

“Loss landscape”: the value of the 
loss function at every value of the 
model parameters

Loss

Figure credit: https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png
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Goal: find the “best” values of the model parameters that minimize the loss function  

The approach we will take: gradient descent

Optimizing the loss function: gradient descent

“Loss landscape”: the value of the 
loss function at every value of the 
model parameters

Main idea: iteratively update the model 
parameters, to take steps in the local 
direction of steepest (negative) slope, 
i.e., the negative gradient

Loss

Figure credit: https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png
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Goal: find the “best” values of the model parameters that minimize the loss function  

The approach we will take: gradient descent

Optimizing the loss function: gradient descent

“Loss landscape”: the value of the 
loss function at every value of the 
model parameters

Main idea: iteratively update the model 
parameters, to take steps in the local 
direction of steepest (negative) slope, 
i.e., the negative gradient

We will be able to use gradient 
descent to iteratively optimize the 
complex loss function landscapes 
corresponding to deep neural 
networks!

Loss

Figure credit: https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png
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The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients
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The derivative of a function is a measure of local slope.
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Review from calculus: derivatives and gradients
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The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients
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The gradient of a function of multiple variables is the vector of 
partial derivatives of the function with respect to each variable.

Ex: 

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients
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The gradient of a function of multiple variables is the vector of 
partial derivatives of the function with respect to each variable.

Ex: 

The gradient evaluated at a particular point is the direction of steepest ascent of the function.

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients
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The gradient of a function of multiple variables is the vector of 
partial derivatives of the function with respect to each variable.

Ex: 

The gradient evaluated at a particular point is the direction of steepest ascent of the function.

The derivative of a function is a measure of local slope.

Ex:

Review from calculus: derivatives and gradients

The negative of the gradient is the direction of steepest descent -> direction we want to move 
in the loss function landscape!
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Gradient descent algorithm
Let the gradient of the loss function with respect to the model parameters w be:
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Gradient descent algorithm
Let the gradient of the loss function with respect to the model parameters w be:

For ease of notation, rewrite 
parameter    as 
corresponding to             :  
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Gradient descent algorithm
Let the gradient of the loss function with respect to the model parameters w be:

Then we can minimize the loss function by iteratively updating the model parameters (“taking steps”) in 
the direction of the negative gradient, until convergence: 

For ease of notation, rewrite 
parameter    as 
corresponding to             :  
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Gradient descent algorithm
Let the gradient of the loss function with respect to the model parameters w be:

Then we can minimize the loss function by iteratively updating the model parameters (“taking steps”) in 
the direction of the negative gradient, until convergence: 

For ease of notation, rewrite 
parameter    as 
corresponding to             :  

“Step size” hyperparameter (design choice) 
indicating how big of a step in the negative 
gradient direction we want to take at each update.
Too big -> may overshoot minima.
Too small -> optimization takes too long.
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Gradient descent algorithm: in code
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Stochastic gradient descent (SGD)
Evaluating gradient involves iterating over all data examples, which can be slow!

In practice, usually use stochastic gradient descent: estimate gradient over a sample of data 
examples (usually as many as can fit on GPU at one time, e.g. 32, 64, 128)
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Optimizing the loss function: 
our example

Loss function:

Per-example:

Over M examples:

Neural network parameters: 

Output:
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Optimizing the loss function: 
our example

Loss function:

Per-example:

Over M examples:

Neural network parameters: 

Output:

Gradient of loss w.r.t. weights:

Partial derivative of loss w.r.t. kth weight:
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Optimizing the loss function: 
our example

Loss function:

Per-example:

Over M examples:

Neural network parameters: 

Output:

Gradient of loss w.r.t. weights:

Partial derivative of loss w.r.t. kth weight:Chain rule  



54Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Optimizing the loss function: 
our example

Loss function:

Gradient of loss w.r.t. weights:

Per-example:

Over M examples:

Partial derivative of loss w.r.t. kth weight:

Neural network parameters: 

Output:

Over M examples
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Optimizing the loss function: 
our example

Loss function:

Gradient of loss w.r.t. weights:

Per-example:

Over M examples:

Partial derivative of loss w.r.t. kth weight:

Neural network parameters: 

Output:

Full gradient expression:
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Now: a two-layer fully-connected neural network
Output:
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Output:

Sigmoid “activation 
function”

Now: a two-layer fully-connected neural network
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Output:

Full function expression:

Now: a two-layer fully-connected neural network
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Output:

Sigmoid “activation 
function”Activation functions 

Introduce non-linearity into 
the model -- allowing it to 
represent highly complex 
functions.

Full function expression:

Now: a two-layer fully-connected neural network
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Output:

Sigmoid “activation 
function”Activation functions 

introduce non-linearity into 
the model -- allowing it to 
represent highly complex 
functions.

A fully-connected neural network (also known 
as multi-layer perceptron) is a stack of [affine  
transformation + activation function] layers. 

Full function expression:

Now: a two-layer fully-connected neural network
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Output:

Now: a two-layer fully-connected neural network
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Neural network parameters: 

Output:

Now: a two-layer fully-connected neural network
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Neural network parameters: 

Output:

Loss function (regression loss, same as before):

Per-example:

Over M examples:

Now: a two-layer fully-connected neural network
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Neural network parameters: 

Output:

Loss function (regression loss, same as before):

Per-example:

Over M examples:

Gradient of loss w.r.t. weights:
Function more complex -> now much harder to 
derive the expressions! Instead… computational 
graphs and backpropagation.

Now: a two-layer fully-connected neural network
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Computing gradients with backpropagation
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Computing gradients with backpropagation

Think of computing loss function as staged computation of 
intermediate variables:

Network output:
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Computing gradients with backpropagation

Think of computing loss function as staged computation of 
intermediate variables:

Network output:

“Forward pass”: 
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Computing gradients with backpropagation

Think of computing loss function as staged computation of 
intermediate variables:

Now, can use a repeated application of the chain 
rule, going backwards through the computational 
graph, to obtain the gradient of the loss with 
respect to each node of the computation graph.

Network output:

“Forward pass”: 
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Computing gradients with backpropagation

Think of computing loss function as staged computation of 
intermediate variables:

Now, can use a repeated application of the chain 
rule, going backwards through the computational 
graph, to obtain the gradient of the loss with 
respect to each node of the computation graph.

Network output:

“Forward pass”: 

“Backward pass”: (not all gradients 
shown)
(not all gradients 
shown)
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Computing gradients with backpropagation

Think of computing loss function as staged computation of 
intermediate variables:

Now, can use a repeated application of the chain 
rule, going backwards through the computational 
graph, to obtain the gradient of the loss with 
respect to each node of the computation graph.

Network output:

“Forward pass”: 

“Backward pass”: (not all gradients 
shown)

Plug in from earlier 
computations via chain rule
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Computing gradients with backpropagation

Think of computing loss function as staged computation of 
intermediate variables:

Now, can use a repeated application of the chain 
rule, going backwards through the computational 
graph, to obtain the gradient of the loss with 
respect to each node of the computation graph.

Network output:

“Forward pass”: 

“Backward pass”: 

Plug in from earlier 
computations via chain rule

Local gradients 
to derive

(not all gradients 
shown)
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Computing gradients with backpropagation

Key idea: Don’t mathematically derive entire math expression for e.g. dL / dW1. By writing it as 
nested applications of the chain rule, only have to derive simple “local” gradients representing 
relationships between connected nodes of the graph (e.g. dH / dW1).
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Computing gradients with backpropagation

Key idea: Don’t mathematically derive entire math expression for e.g. dL / dW1. By writing it as 
nested applications of the chain rule, only have to derive simple “local” gradients representing 
relationships between connectected nodes of the graph (e.g. dH / dW1).

Can use more or less intermediate variables to 
control how difficult local gradients are to derive!
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Training our two-layer neural 
network in code, using 
backpropagation
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Training our two-layer neural 
network in code, using 
backpropagation

Initialize model 
parameters
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Training our two-layer neural 
network in code, using 
backpropagation

Forward pass
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Training our two-layer neural 
network in code, using 
backpropagation

Backward
pass



78Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Training our two-layer neural 
network in code, using 
backpropagation

Upstream 
gradient

Downstream 
gradient Backward

pass
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Training our two-layer neural 
network in code, using 
backpropagation

Gradient
update



80Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Deep learning software frameworks
- Makes our lives easier by providing implementations and higher-level abstractions of many 

components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.
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Deep learning software frameworks
- Makes our lives easier by providing implementations and higher-level abstractions of many 

components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

- Automatic differentiation: if we define nodes in a computational graph, will automatically 
implement backpropagation for us

- Supports many common operations with local gradients already implemented
- Can still define custom operations
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Deep learning software frameworks
- Makes our lives easier by providing implementations and higher-level abstractions of many 

components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

- Automatic differentiation: if we define nodes in a computational graph, will automatically 
implement backpropagation for us

- Supports many common operations with local gradients already implemented
- Can still define custom operations

- A number of popular options, e.g. Tensorflow and PyTorch. Recent stable versions (TF 2.0, 
PyTorch 1.3) work largely in a similar fashion (not necessarily true for earlier versions). We 
will use Tensorflow 2.0 in this class.
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Deep learning software frameworks
- Makes our lives easier by providing implementations and higher-level abstractions of many 

components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

- Automatic differentiation: if we define nodes in a computational graph, will automatically 
implement backpropagation for us

- Supports many common operations with local gradients already implemented
- Can still define custom operations

- A number of popular options, e.g. Tensorflow and PyTorch. Recent stable versions (TF 2.0, 
PyTorch 1.3) work largely in a similar fashion (not necessarily true for earlier versions). We 
will use Tensorflow 2.0 in this class.

- More next Friday, Sept 25, during our Tensorflow section.
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Training our two-layer neural 
network in code, in Tensorflow 2.0
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Training our two-layer neural 
network in code, in Tensorflow 2.0

Convert data to TF tensors, 
create a TF dataset
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Training our two-layer neural 
network in code, in Tensorflow 2.0

Initialize parameters to 
be learned as tf.Variable 
-> allows them to receive 
gradient updates during 
optimization
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Training our two-layer neural 
network in code, in Tensorflow 2.0

Initialize a TF optimizer
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Training our two-layer neural 
network in code, in Tensorflow 2.0

All operations defined 
under the gradient tape 
will be used to construct 
a computational graph
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Training our two-layer neural 
network in code, in Tensorflow 2.0

The computational graph 
for our two-layer neural 
network
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Training our two-layer neural 
network in code, in Tensorflow 2.0

Evaluate gradients using 
automatic differentiation 
and perform gradient 
update



91Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs: 

In Tensorflow 2.0: In Keras:
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Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs: 

In Tensorflow 2.0: In Keras:

Stack of layers
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Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs: 

In Tensorflow 2.0: In Keras:
Fully-connected layer
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Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs: 

In Tensorflow 2.0: In Keras:

Activation function and bias 
configurations included!
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Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs: 

In Tensorflow 2.0: In Keras:

Specify hyperparameters for 
the training procedure
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Design choices
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Training hyperparameters: control knobs for the art of training neural 
networks

Optimization methods: SGD, SGD with 
momentum, RMSProp, Adam

SGD

SGD+Momentum
RMSProp

Adam

- Adam is a good default choice in many cases; it 
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may 
require more tuning of LR and schedule
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use?

Slide credit: CS231n
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use?

A: All of them! Start with large 
learning rate and decay over time

Slide credit: CS231n
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Reduce learning rate
Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Learning rate decay

Slide credit: CS231n
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: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Fancy decay schedules like cosine, linear, 
inverse sqrt.

Empirical rule of thumb: If you increase the 
batch size by N, also scale the initial learning 
rate by N

Learning rate decay

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Slide credit: CS231n
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Monitor learning curves

Periodically evaluate validation loss

Also useful to plot performance on 
final metric

Figure credit: https://www.learnopencv.com/wp-content/uploads/2017/11/cnn-keras-curves-without-aug.jpg
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Monitor learning curves

Figure credit: CS231n

Training loss can be noisy. Using 
a scatter plot or plotting moving 
average can help better 
visualize trends.
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Overfitting vs. underfitting
Overfitting

Loss

Time

Training loss much better 
than validation

Training loss may 
continue to get better 
while validation 
plateaus or gets worse

Training
Validation
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Overfitting vs. underfitting
Overfitting Underfitting

Loss

Time

Loss

Time

Training loss much better 
than validation

Training loss may 
continue to get better 
while validation 
plateaus or gets worse

Small or no gap between 
training and validation loss

May have relatively higher 
loss overall (model not 
learning sufficiently)

Training
Validation
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Overfitting vs. underfitting

Breakout session:
1x 5-minute breakout (~4 students each)

- Introduce yourself!
- What are some ways to combat overfitting?
- What are some ways to combat underfitting?
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Overfitting vs. underfitting
Overfitting Underfitting

Loss

Time

Loss

Time

Training loss much better 
than validation

Training loss may 
continue to get better 
while validation 
plateaus or gets worse

Small or no gap between 
training and validation loss

May have relatively higher 
loss overall (model not 
learning sufficiently)

Training
Validation
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Overfitting vs. underfitting
Overfitting

Loss

Time

Training loss much better 
than validation

Training loss may 
continue to get better 
while validation 
plateaus or gets worse

Model is “overfitting” to the training data. Best 
strategy: Increase data or regularize model. 
Second strategy: decrease model capacity 
(make simpler)

Training
Validation
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Overfitting vs. underfitting
Overfitting Underfitting

Loss

Time

Loss

Time

Training loss much better 
than validation

Training loss may 
continue to get better 
while validation 
plateaus or gets worse

Model is “overfitting” to the training data. Best 
strategy: Increase data or regularize model. 
Second strategy: decrease model capacity 
(make simpler)

Small or no gap between 
training and validation loss

May have relatively higher 
loss overall (model not 
learning sufficiently)

Model is not able to sufficiently learn to fit the 
data well. Best strategy: Increase complexity 
(e.g. size) of the model. Second strategy: make 
problem simpler (easier task, cleaner data)

Training
Validation
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Overfitting vs. underfitting: more intuition

Overfitting Underfitting

Figure credit: https://qph.fs.quoracdn.net/main-qimg-412c8556aacf7e25b86bba63e9e67ac6-c

https://qph.fs.quoracdn.net/main-qimg-412c8556aacf7e25b86bba63e9e67ac6-c
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Healthy learning curves

Loss

Time

Steep improvement at 
beginning

Continue to gradually improve
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Healthy learning curves

Loss

Time

In practice, models with best final 
metric (e.g. accuracy) often have 
slight overfitting.

Intuition: slightly push complexity of 
model to the highest that the data can 
handle

Steep improvement at 
beginning

Continue to gradually improve
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More debugging

Loss

Time

Training
Validation
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More debugging

Loss

Time

Plateau may be bad 
weight initialization

Training
Validation
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More debugging

Loss

Time

Loss

Time

Plateau may be bad 
weight initialization

Training
Validation
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More debugging

Loss

Time

Loss

Time

Plateau may be bad 
weight initialization

Loss decreasing but 
slowly -> try higher 
learning rate

Training
Validation
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More debugging

Loss

Time

Loss

Time

Plateau may be bad 
weight initialization Loss

Time

Loss decreasing but 
slowly -> try higher 
learning rate

Training
Validation
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More debugging

Loss

Time

Loss

Time

Plateau may be bad 
weight initialization Loss

Time

Healthy loss curve 
plateaus -> try further 
learning rate decay at 
plateau point 

Loss decreasing but 
slowly -> try higher 
learning rate

Training
Validation
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More debugging

Loss

Time

Loss

Time

Loss

Time

Plateau may be bad 
weight initialization Loss

Time

Healthy loss curve 
plateaus -> try further 
learning rate decay at 
plateau point 

Loss decreasing but 
slowly -> try higher 
learning rate

Training
Validation
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More debugging

Loss

Time

Loss

Time

Loss

Time

Plateau may be bad 
weight initialization Loss

Time

Healthy loss curve 
plateaus -> try further 
learning rate decay at 
plateau point 

Loss decreasing but 
slowly -> try higher 
learning rate

If you further decay learning 
rate too early, may look like 
this -> inefficient learning vs. 
keeping higher learning rate 
longer

Training
Validation
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More debugging

Loss

Time

Loss

Time

Accuracy

Time

Loss

Time

Plateau may be bad 
weight initialization Loss

Time

Healthy loss curve 
plateaus -> try further 
learning rate decay at 
plateau point 

Loss decreasing but 
slowly -> try higher 
learning rate

If you further decay learning 
rate too early, may look like 
this -> inefficient learning vs. 
keeping higher learning rate 
longer

Final metric is still 
improving -> keep 
training!

Training
Validation
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Iteration

Loss

Iteration

Accuracy

Stop training here

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot 
that worked best on val.

Early stopping: always do this

Slide credit: CS231n

Training
Validation
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Design choices: network architectures

Major design choices:
- Architecture type 

(ResNet, DenseNet, etc. 
for CNNs)

- Depth ( # layers)
- For MLPs, # neurons in 

each layer (hidden layer 
size)

- For CNNs, # filters, filter 
size, filter stride in each 
layer

- Look at argument options 
in Tensorflow when 
defining network layers
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Design choices: network architectures

Major design choices:
- Architecture type 

(ResNet, DenseNet, etc. 
for CNNs)

- Depth ( # layers)
- For MLPs, # neurons in 

each layer (hidden layer 
size)

- For CNNs, # filters, filter 
size, filter stride in each 
layer

- Look at argument options 
in Tensorflow when 
defining network layers

If trying to make network bigger (when underfitting) or 
smaller (when overfitting), network depth and hidden layer 
size best to adjust first. Don’t waste too much time early on 
fiddling with choices that only minorly change architecture.
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Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:
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Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too 
well to the training data). Used to combat overfitting:

Data loss Regularization 
loss

importance of reg. term
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Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too 
well to the training data). Used to combat overfitting:

Examples
L2 regularization:                                         (weight decay) 
L1 regularization: 
Elastic net (L1 + L2): 

Data loss Regularization 
loss

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

importance of reg. term

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers
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Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too 
well to the training data). Used to combat overfitting:

Examples
L2 regularization:                                         (weight decay) 
L1 regularization: 
Elastic net (L1 + L2): 

Data loss Regularization 
loss

L2 most popular: low loss when all weights are relatively 
small. More strongly penalizes large weights vs L1. 
Expresses preference for simple models (need large 
coefficients to fit a function to extreme outlier values).

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

importance of reg. term

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers
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Design choices: regularization (loss term)
Remember optimizing loss functions, which express how well model fit training data, e.g.:

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too 
well to the training data). Used to combat overfitting:

Examples
L2 regularization:                                         (weight decay) 
L1 regularization: 
Elastic net (L1 + L2): 

Data loss Regularization 
loss

L2 most popular: low loss when all weights are relatively 
small. More strongly penalizes large weights vs L1. 
Expresses preference for simple models (need large 
coefficients to fit a function to extreme outlier values).

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

Next: implicit regularizers that do not add an explicit 
term; instead do something implicit in network to 
prevent it from fitting too well to training data

importance of reg. term

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers
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Design choices: regularization (dropout)
First example of an implicit regularizer.
During training, at each iteration of forward pass randomly set some neurons to zero 
(i.e., change network architecture such that paths to some neurons are removed).

During testing, all neurons are active. But scale neuron outputs by dropout probability p, 
such that expected output during training and testing match. 

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014. Figure credit: CS231n.
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Design choices: regularization (dropout)
First example of an implicit regularizer.
During training, at each iteration of forward pass randomly set some neurons to zero 
(i.e., change network architecture such that paths to some neurons are removed).

During testing, all neurons are active. But scale neuron outputs by dropout probability p, 
such that expected output during training and testing match. 

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014. Figure credit: CS231n.

Probability of “dropping out” each neuron 
at a forward pass is hyperparameter p. 
0.5 and 0.9 are common (high!). 
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Design choices: regularization (dropout)
First example of an implicit regularizer.
During training, at each iteration of forward pass randomly set some neurons to zero 
(i.e., change network architecture such that paths to some neurons are removed).

During testing, all neurons are active. But scale neuron outputs by dropout probability p, 
such that expected output during training and testing match. 

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014. Figure credit: CS231n.

Probability of “dropping out” each neuron 
at a forward pass is hyperparameter p. 
0.5 and 0.9 are common (high!). 

Intuition: dropout is equivalent to training 
a large ensemble of different models that 
share parameters.
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Design choices: regularization (batch normalization)
Another example of an implicit regularizer.
Insert BN layers after FC or conv layers, before activation function.
During training, at each iteration of forward pass normalize neuron activations by mean and variance of 
minibatch. Also learn scale and shift parameter to get final output.

During testing, normalize by a fixed mean and variance computed 
from the entire training set. Use learned scale and shift 
parameters.
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Design choices: regularization (batch normalization)
Another example of an implicit regularizer.
Insert BN layers after FC or conv layers, before activation function.
During training, at each iteration of forward pass normalize neuron activations by mean and variance of 
minibatch. Also learn scale and shift parameter to get final output.

During testing, normalize by a fixed mean and variance computed 
from the entire training set. Use learned scale and shift 
parameters.

Intuition: batch normalization allows keeping the weights in 
a healthy range. Also some randomness at training due to 
different effect from each minibatch sampling -> 
regularization!
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Design choices: data augmentation
Augment effective training data size by simulating more diversity from 
existing data. Random combinations of:

- Translation and scaling
- Distortion
- Image color adjustment
- Etc.
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Design choices: data augmentation
Augment effective training data size by simulating more diversity from 
existing data. Random combinations of:

- Translation and scaling
- Distortion
- Image color adjustment
- Etc.

Think about the domain of 
your data: what makes 
sense as realistic 
augmentation operations?
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Deep learning for healthcare: the rise of medical data

Q: What are other examples of potential data 
augmentations? 

(Raise hand or type in chat box)
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Model inference
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Maximizing test-time performance: apply data augmentation 
operations

Main idea: apply model on multiple variants of a data example, and then take 
average or max of scores

Can use data augmentation operations we saw during training! E.g.:

- Evaluate at different translations and scales
- Common approach for images: evaluate image crops at 4 corners and center, 

+ horizontally flipped versions -> average 10 scores
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1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Model ensembles

Slide credit: CS231n
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Instead of training independent models, use multiple 
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Model ensembles: tips and tricks

Slide credit: CS231n
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Instead of training independent models, use multiple 
snapshots of a single model during training!

Cyclic learning rate schedules can 
make this work even better!Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Model ensembles: tips and tricks

Slide credit: CS231n
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Deeper models
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Training more complex neural networks is a straightforward extension

Now a 6-layer network
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“Deep learning”
Can continue to stack more layers to get deeper models!
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“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer



147Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer
“Hidden” layers - will see lots of diversity 
in size (# neurons), type (linear, 
convolutional, etc.), and activation 
function (sigmoid, ReLU, etc.)
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“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer

Output layer - will differ for 
different types of tasks (e.g. 
regression). Should match with 
loss function.“Hidden” layers - will see lots of diversity 

in size (# neurons), type (linear, 
convolutional, etc.), and activation 
function (sigmoid, ReLU, etc.)



149Serena Yeung BIODS 220: AI in Healthcare Lecture 2 -

“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer

Output layer - will differ for 
different types of tasks (e.g. 
regression). Should match with 
loss function.“Hidden” layers - will see lots of diversity 

in size (# neurons), type (linear, 
convolutional, etc.), and activation 
function (sigmoid, ReLU, etc.)

Vanilla fully-connected neural 
networks (MLPs) usually pretty 
shallow -- otherwise too many 
parameters! ~2-3 layers. Can have 
wide range in size of layers (16, 64, 
256, 1000, etc.) depending on how 
much data you have. 
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“Deep learning”
Can continue to stack more layers to get deeper models!

Input layer

Output layer - will differ for 
different types of tasks (e.g. 
regression). Should match with 
loss function.“Hidden” layers - will see lots of diversity 

in size (# neurons), type (linear, 
convolutional, etc.), and activation 
function (sigmoid, ReLU, etc.)

Vanilla fully-connected neural 
networks (MLPs) usually pretty 
shallow -- otherwise too many 
parameters! ~2-3 layers. Can have 
wide range in size of layers (16, 64, 
256, 1000, etc.) depending on how 
much data you have. 

Will see different classes of neural 
networks that leverage structure in 
data to reduce parameters + 
increase network depth
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Deep learning 

Q: What tasks other than regression are 
there?

(Raise hand or type in chat box)
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Common activation functions
You will see these extensively, typically after linear or convolutional layers.
They add nonlinearity to allow the model to express complex nonlinear functions.

Sigmoid

Tanh Leaky ReLU

ReLU

and many 
more...

You can find these in Keras: 
https://keras.io/layers/advanced-activations/

https://keras.io/layers/advanced-activations/
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Common activation functions
You will see these extensively, typically after linear or convolutional layers.
They add nonlinearity to allow the model to express complex nonlinear functions.

Sigmoid

Tanh Leaky ReLU

ReLU

and many 
more...

You can find these in Keras: 
https://keras.io/layers/advanced-activations/

Typical in modern CNNs 
and MLPs

https://keras.io/layers/advanced-activations/
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Common activation functions
You will see these extensively, typically after linear or convolutional layers.
They add nonlinearity to allow the model to express complex nonlinear functions.

Sigmoid

Tanh Leaky ReLU

ReLU

and many 
more...

You can find these in Keras: 
https://keras.io/layers/advanced-activations/

Will see in 
recurrent 
neural 
networks. 
Also used in 
early MLPs 
and CNNs.

https://keras.io/layers/advanced-activations/
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Will see different classes of neural networks

...

Input sequence

Output sequence

Fully connected neural networks
(linear layers, good for “feature vector” inputs)

Convolutional neural networks
(convolutional layers, good for image inputs)

Recurrent neural networks
(linear layers modeling recurrence relation across 

sequence, good for sequence inputs)
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Project

Zoom Poll:
- Do you have a project in mind?
- Are you looking for project partners?
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Summary
- Went over how to define, train, and tune a neural network

- This Friday’s section (Zoom link on Canvas) will be a project partner finding section

- Next Friday’s section will provide an in-depth tutorial on Tensorflow

- Next class: will go in-depth into
- Medical image data
- Classification models
- Data, model, evaluation considerations 


