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Lecture 3:
Medical Images: Classification
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Administrative
- A0 due Tue 9/22 11:59pm
- A1 will also be released Tue, due in 2 weeks (Tue 10/6)

- You will need to download several datasets to do the assignment. Make sure to start early!
- 3 parts:

- Medical image classification
- Medical image segmentation in 2D
- Medical image segmentation in 3D, with semi-supervised learning

- Tensorflow Review Session this Fri 1pm, helpful for A1
- Start thinking about your class project! We will release a piazza post soon 

with some ideas to help guide your thinking.
- Project guidelines already posted on class website, will go over more on Wed
- First due date: Project proposal, due Fri 10/9
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Last time: Deep learning framework

Deep Learning Model

Traditional machine learning

Input Feature 
extractor

Machine learning 
model

Output

Deep learning

Input Output

(e.g.,                    ) (e.g., color and 
texture histograms)

(e.g., support vector machines 
and random forests)

(e.g., presence or 
not or disease)

(e.g.,                    ) (e.g., presence or 
not or disease)

(e.g., convolutional and 
recurrent neural networks)

Directly learns what are useful (and better!) 
features from the training data
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A simple example
Loss function:

Gradient of loss w.r.t. weights:

Per-example:

Over M examples:

Partial derivative of loss w.r.t. kth weight:

Neural network parameters: 

Output:

Full gradient expression:
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Gradient descent algorithm
Let the gradient of the loss function with respect to the model parameters w be:

Then we can minimize the loss function by iteratively updating the model parameters (“taking steps”) in 
the direction of the negative gradient, until convergence: 

“step size” hyperparameter (design choice) 
indicating how big of a step in the negative 
gradient direction we want to take at each 
update. Too big -> may overshoot minima; too 
small -> optimization takes too long
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Neural network parameters: 

Output:

Loss function (regression loss, same as before):

Per-example:

Over M examples:

Gradient of loss w.r.t. weights:
Function more complex -> now much harder to 
derive the expressions! Instead… computational 
graphs and backpropagation.

Now: a two-layer fully-connected neural network
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Computing gradients with backpropagation

Think of computing loss function as staged computation of 
intermediate variables:

Now, can use a repeated application of the chain 
rule, going backwards through the computational 
graph, to obtain the gradient of the loss with 
respect to each node of the computation graph.

Network output:

“Forward pass”: 

“Backward pass”: 

Plug in from earlier 
computations via chain rule

Local gradients 
to derive

(not all gradients 
shown)
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Training our two-layer neural 
network in code, in Tensorflow 2.0

Evaluate gradients using 
automatic differentiation 
and perform gradient 
update
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Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs: 

In Tensorflow 2.0: In Keras:

Specify hyperparameters for 
the training procedure



10Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Training hyperparameters: control knobs for the art of training neural 
networks

Optimization methods: SGD, SGD with 
momentum, RMSProp, Adam

SGD

SGD+Momentum
RMSProp

Adam

- Adam is a good default choice in many cases; it 
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may 
require more tuning of LR and schedule
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Note on hyperparameter discussion in Lecture 2
- In this class, we will not dive deeper into theory or derivations for these 

hyperparameters (this is covered in other classes), and don’t worry if you feel 
you do not have full understanding on these aspects

- Our goal is to develop your ability to practically use deep learning as 
effectively as possible to solve diverse problems in healthcare. So we have 
given you a “menu” of hyperparameters that you can utilize when you try to 
improve performance on your models

- See https://piazza.com/class/kevndkjwzyx57j?cid=20 for further clarification

https://piazza.com/class/kevndkjwzyx57j?cid=20
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Note on course lectures more generally
- Objective is to establish strong conceptual foundation for developing AI 

models in healthcare

- Assignments are main measure of what you “need to know” from this class

- Lectures teach what you need to know for assignments, but may sometimes 
go a bit deeper. Goal is to give conceptual grounding such that you can refer 
back and have the foundation to explore independently in areas that you 
choose to dive further (e.g. for your class project or other future projects!)
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Today: Medical image data

X-rays (invented 1895). CT (invented 1972). MRI (invented 1977).

E.g.:
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Agenda
Today: Medical Images: Classification

- Deep learning models for image classification
- Data considerations for image classification models
- Evaluating image classification models
- Case studies



15Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Agenda
Today: Medical Images: Classification

- Deep learning models for image classification
- Data considerations for image classification models
- Evaluating image classification models
- Case studies

Wed: Medical Images: Advanced Vision Models (Detection and Segmentation)

Next Mon: Medical Images: Advanced Vision Models (3D and Video)
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Deep Learning Models for Image 
Classification
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Different classes of neural networks

...

Input sequence

Output sequence

Fully connected neural networks
(linear layers, good for “feature vector” inputs)

Convolutional neural networks
(convolutional layers, good for image inputs)

Recurrent neural networks
(linear layers modeling recurrence relation across 

sequence, good for sequence inputs)



18Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Different classes of neural networks

...

Input sequence

Output sequence

Fully connected neural networks
(linear layers, good for “feature vector” inputs)

Convolutional neural networks
(convolutional layers, good for image inputs)

Recurrent neural networks
(linear layers modeling recurrence relation across 

sequence, good for sequence inputs)
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Our first architecture: a single-layer, fully connected neural network 

all inputs of a layer are connected to 
all outputs of a layer

For simplicity, use a 3-dimensional input (N = 3)

Output:

Reminder from last time: fully-connected layers
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Neural network parameters: 

Output:

Two-layer fully-connected neural network
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Neural network parameters: 

Output:

Two-layer fully-connected neural network

Dimensions of the weight matrix for each fully 
connected layer is [output dim. x input dim.]

Dimensions of the bias vector is [output dim x 1]
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3072
1 10 x 3072 

weights

Output (activation) 
valuesInput values 

1
10

Fully-connected layers: in graphical form

Slide credit: CS231n
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3072
1

Output (activation) 
valuesInput values 

1
10

Fully-connected layers: in graphical form

Slide credit: CS231n

In Keras:
Activation function and bias 
configurations included!

10 x 3072 
weights
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32

32

3

32x32x3 image -> preserve spatial structure

width

height

depth

Convolutional layer

Slide credit: CS231n
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32

32

3

32x32x3 image -> preserve spatial structure

width

height

depth

Convolutional layer

Slide credit: CS231n

Input now has spatial height and 
width dimensions!

In contrast to fully-connected 
layers, want to preserve spatial 
structure when processing with a 
convolutional layer
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32

32

3

5x5x3 filter (weights)

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Convolutional layer

Slide credit: CS231n
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32

32

3

5x5x3 filter (weights)

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume

Convolutional layer

Slide credit: CS231n
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32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutional layer

Slide credit: CS231n
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32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Convolutional layer

Slide credit: CS231n
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32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
Convolutional layer

Slide credit: CS231n
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Slide credit: CS231n
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Preview: ConvNet (or CNN) is a sequence of Convolution Layers, interspersed 
with activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters

Slide credit: CS231n
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Preview: ConvNet (or CNN) is a sequence of Convolution Layers, interspersed 
with activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

Slide credit: CS231n
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Slide credit: CS231n
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Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

Slide credit: CS231n
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In Keras
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In Keras Padding options: ‘valid’ does not pad, use ‘same’ 
to pad such that input and output spatial 
dimensions are the same size
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example 5x5 filters
(32 total)

Aside: We call the layer 
convolutional because it is related 
to convolution of two signals:

elementwise multiplication and sum of 
a filter and the signal (image)

one filter => 
one activation map

Figure copyright Andrej Karpathy.

Slide credit: CS231n



39Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

(btw, 1x1 convolution layers make perfect sense -> performs 
dimensionality reduction in the depth dimension)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

Slide credit: CS231n
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Preview: can visualize learned features [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16 

architecture from [Simonyan and Zisserman 2014].

Slide credit: CS231n
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Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:

Slide credit: CS231n
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

Max pooling

Slide credit: CS231n
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Pooling layer: practical implementation

In Keras:

Slide credit: CS231n
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Pooling layer: practical implementation

In Keras:

Common settings:

F = 2, S = 2
F = 3, S = 2

Slide credit: CS231n
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[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

LeNet-5

Slide credit: CS231n
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner

Slide credit: CS231n
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AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

Slide credit: CS231n
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AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives: 
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
Slide credit: CS231n
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

Slide credit: CS231n
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VGGNet

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096[Simonyan and Zisserman, 2014]

Small filters, Deeper networks
 
8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

AlexNet VGG16 VGG19
Slide credit: CS231n
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GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a 
good local network topology 
(network within a network) and 
then stack these modules on 
top of each other

Slide credit: CS231n
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GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- Avoids expensive FC layers using 

a global averaging layer
- 12x less params than AlexNet

Slide credit: CS231n



53Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- Avoids expensive FC layers using 

a global averaging layer
- 12x less params than AlexNet

Slide credit: CS231n

Also called “Inception Network”
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”

Slide credit: CS231n
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ResNet
[He et al., 2015]

Very deep networks using residual 
connections
 

- 152-layer model for ImageNet

- Won all major classification and 
detection benchmark challenges in 
2015

Input

Softmax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

relu

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

X

Slide credit: CS231n
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Tr
ai

ni
ng

 e
rr

or

Iterations

56-layer

20-layer

Te
st

 e
rr

or

Iterations

56-layer

20-layer

ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

Q: What’s strange about these training and test curves?
[Hint: look at the order of the curves]

Slide credit: CS231n
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ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Tr
ai

ni
ng

 e
rr

or

Iterations

56-layer

20-layer

Te
st

 e
rr

or

Iterations

56-layer

20-layer

Slide credit: CS231n
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ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to 
optimize

Slide credit: CS231n
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ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to 
optimize

The deeper model should be able to perform at 
least as well as the shallower model.

A solution by construction is copying the learned 
layers over from the shallower model and setting 
all additional layers to the identity function.

Slide credit: CS231n
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ResNet
[He et al., 2015]

Solution: Structure each network layer to fit a “residual function” with respect to the 
identity function, then add the two functions together

conv

conv

relu

“Plain” layers
X

H(x)

relu

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

X

Slide credit: CS231n
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers

Slide credit: CS231n
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension) 

3x3 conv, 64 
filters

3x3 conv, 128 
filters, /2 
spatially with 
stride 2

Slide credit: CS231n
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension)

- Additional conv layer at 
the beginning 

Beginning 
conv layer

Slide credit: CS231n
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension)

- Additional conv layer at 
the beginning

- No FC layers at the end 
(only FC 1000 to output 
classes)

No FC layers 
besides FC 
1000 to 
output 
classes

Slide credit: CS231n
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolResNet
[He et al., 2015]

Total depths of 34, 50, 101, or 
152 layers for ImageNet

Slide credit: CS231n
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More on loss functions
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Common loss functions
Regression

Label is a continuous value.
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Common loss functions
Regression Binary Cross-Entropy

Label is a continuous value.

Minimize squared difference between 
prediction output and target

Label is binary in {0,1}. Prediction is a real number in (0,1) and 
is the probability of the label being 1. It is usually the output of 
a sigmoid operation after the final layer.



70Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Common loss functions
Regression Binary Cross-Entropy

Label is a continuous value.

Minimize squared difference between 
prediction output and target

Equivalent to the negative log of the 
probability of the correct ground truth class 
being predicted. Think about what the 
expression looks like when y_i = 1 vs. 0.

Label is binary in {0,1}. Prediction is a real number in (0,1) and 
is the probability of the label being 1. It is usually the output of 
a sigmoid operation after the final layer.
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Common loss functions
Regression Binary Cross-Entropy

Label is a continuous value.

Minimize squared difference between 
prediction output and target

Equivalent to the negative log of the 
probability of the correct ground truth class 
being predicted. Think about what the 
expression looks like when y_i = 1 vs. 0.

Label is binary in {0,1}. Prediction is a real number in (0,1) and 
is the probability of the label being 1. It is usually the output of 
a sigmoid operation after the final layer.

Softmax

Label is 1 of K classes in {0, …, K}. Extension of binary 
cross-entropy loss to multiple classes. s_j corresponds to 
the score (e.g. output of final layer) for each class; the 
fraction in the log provides a normalized probability for 
each class. 
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Common loss functions
Regression Binary Cross-Entropy

Label is a continuous value.

Minimize squared difference between 
prediction output and target

Equivalent to the negative log of the 
probability of the correct ground truth class 
being predicted. Think about what the 
expression looks like when y_i = 1 vs. 0.

Label is binary in {0,1}. Prediction is a real number in (0,1) and 
is the probability of the label being 1. It is usually the output of 
a sigmoid operation after the final layer.

Softmax

Label is 1 of K classes in {0, …, K}. Extension of binary 
cross-entropy loss to multiple classes. s_j corresponds to 
the score (e.g. output of final layer) for each class; the 
fraction in the log provides a normalized probability for 
each class. 

Negative log of the probability of the 
true class y_i, as with the BCE loss.
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Common loss functions
Regression Binary Cross-Entropy

Label is a continuous value.

Minimize squared difference between 
prediction output and target

Equivalent to the negative log of the 
probability of the correct ground truth class 
being predicted. Think about what the 
expression looks like when y_i = 1 vs. 0.

Label is binary in {0,1}. Prediction is a real number in (0,1) and 
is the probability of the label being 1. It is usually the output of 
a sigmoid operation after the final layer.

Softmax

Label is 1 of K classes in {0, …, K}. Extension of binary 
cross-entropy loss to multiple classes. s_j corresponds to 
the score (e.g. output of final layer) for each class; the 
fraction in the log provides a normalized probability for 
each class. 

Negative log of the probability of the 
true class y_i, as with the BCE loss.   SVM

Label is 1 of K classes in {0, …, K}. Same use case as 
softmax, but different way of encouraging the model to 
produce outputs that we “like”. In practice, softmax is more 
popular and provides a nice probabilistic interpretation.
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Common loss functions
Regression Binary Cross-Entropy

Label is a continuous value.

Minimize squared difference between 
prediction output and target

Equivalent to the negative log of the 
probability of the correct ground truth class 
being predicted. Think about what the 
expression looks like when y_i = 1 vs. 0.

Label is binary in {0,1}. Prediction is a real number in (0,1) and 
is the probability of the label being 1. It is usually the output of 
a sigmoid operation after the final layer.

Softmax

Label is 1 of K classes in {0, …, K}. Extension of binary 
cross-entropy loss to multiple classes. s_j corresponds to 
the score (e.g. output of final layer) for each class; the 
fraction in the log provides a normalized probability for 
each class. 

Negative log of the probability of the 
true class y_i, as with the BCE loss.   SVM

Label is 1 of K classes in {0, …, K}. Same use case as 
softmax, but different way of encouraging the model to 
produce outputs that we “like”. In practice, softmax is more 
popular and provides a nice probabilistic interpretation.

Incurs lowest loss of 0 (what we want) if the 
score for the true class y_i is greater than the 
score for each incorrect class j by a margin of 1
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Common loss functions
You will find these in tensorflow!

In Keras:

Mean squared error (MSE) is another 
name for regression loss

Covers both BCE and Softmax loss 
(remember softmax is a multiclass 
extension of BCE)

Hinge is another name for 
SVM loss, due to the loss 
function shape.

https://keras.io/losses/

https://keras.io/losses/
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Data Considerations for Image 
Classification Models
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Training, validation, and test sets

Training (50%) Validation (30%) Test (20%)

Held-out evaluation set for 
selecting best hyperparameters 

during training

Do not use until final 
evaluation
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Training, validation, and test sets

Training (50%) Validation (30%) Test (20%)

Held-out evaluation set for 
selecting best hyperparameters 

during training

Do not use until final 
evaluation

Other splits e.g. 60/20/20 also popular. 
Balance sufficient data for training vs. informative 
performance estimate on validation / testing.
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Maximizing training data for the final model

“Trainval” (70%) Test (30%)

Once hyperparameters are selected 
using the validation set, common to 
merge training and validation sets into 
a larger “trainval” set to train a final 
model using the hyperparameters. 

OK since we can use non-test 
data however we want during 
model development! 
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K-fold cross validation: for small datasets
Sometimes we have small labeled datasets in healthcare… in this case K-fold cross validation 
(which is more computationally expensive) may be worthwhile.

TestFold 4Fold 3Fold 2Fold 1

TestFold 4Fold 3Fold 2Fold 1

TestFold 4Fold 3Fold 2Fold 1

TestFold 4Fold 3Fold 2Fold 1

Train model K times with a different fold as the validation set 
each time; then average the validation set results. Allows 
more data to be used for each training of the model, while 
still using enough data to get accurate validation result.



81Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Data preprocessing
Min-max scaling: 

x_scaled = (x_orig - x_min) / (x_max - x_min)

where x_min and x_max are min and max values in the original data

- Maps original range of data to [0,1] range
- Neural networks generally expect small numbers as input (not too extreme 

relative to scale of initialized weights)

Slide credit: CS231n
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Data preprocessing
Common to also normalize mean and variance of features, such that features are 
treated equally. Most common: make all features zero-mean, unit variance.

Slide credit: CS231n
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Data preprocessing: for images
For images, common to perform simpler normalization:  

Slide credit: CS231n

- Subtract the mean image (used in original AlexNet model)
(mean image = [32,32,3] array)

- Subtract per-channel mean (used in original VGG model)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Divide by per-channel std (used in original ResNet model)
(mean along each channel = 3 numbers)

e.g. consider a dataset with [32,32,3] images
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How much data do you need for deep learning?
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How much data do you need for deep learning?

A: A lot.

Premise of deep learning 
uses many parameters (e.g. 
millions) to fit complex 
functions -> if the dataset is 
too small, easiest solution 
that model ends up learning 
can be overfitting to 
memorizing the labels of the 
training examples 
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How much data do you need for deep learning?

A: A lot.

Premise of deep learning 
uses many parameters (e.g. 
millions) to fit complex 
functions -> if the dataset is 
too small, easiest solution 
that model ends up learning 
can be overfitting to 
memorizing the labels of the 
training examples 

ImageNet dataset 
consists of 1M 
images: 1000 
classes with 1000 
images each
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Transfer learning: amplifying training data

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on big dataset 
(e.g. ImageNet)

Slide credit: CS231n
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Transfer learning: amplifying training data

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Slide credit: CS231n

1. Train on big dataset 
(e.g. ImageNet)
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Transfer learning: amplifying training data

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and keep 
training on 
target dataset

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Slide credit: CS231n

1. Train on big dataset 
(e.g. ImageNet)
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data

quite a lot of 
data

Slide credit: CS231n

Transfer learning from a large dataset to your dataset...
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer 
features

quite a lot of 
data

Slide credit: CS231n

Transfer learning from a large dataset to your dataset...
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer 
features

You’re in 
trouble… Try 
linear classifier 
on different layer 
features

quite a lot of 
data

Slide credit: CS231n

Transfer learning from a large dataset to your dataset...



94Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer 
features

You’re in 
trouble… Try 
linear classifier 
on different layer 
features

quite a lot of 
data

Finetune a few 
layers

Slide credit: CS231n

Transfer learning from a large dataset to your dataset...
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
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MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer 
features

You’re in 
trouble… Try 
linear classifier 
on different layer 
features

quite a lot of 
data

Finetune a few 
layers

Finetune a large 
number 
of layers

Slide credit: CS231n

Transfer learning from a large dataset to your dataset...
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer 
features

You’re in 
trouble… Try 
linear classifier 
on different layer 
features

quite a lot of 
data

Finetune a few 
layers

Finetune a large 
number 
of layers

Slide credit: CS231n

Transfer learning from a large dataset to your dataset...

Often good idea to try this first, try fine-tuning all layers of the network 
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How much data do you need for deep learning?
Examples per class of your dataset (take with 
grain of salt, really depends on problem), in 
addition to transfer learning:

- Low dozens: generally too small to learn a 
meaningful model, using standard 
supervised deep learning

- High dozens to low hundreds: may see 
models with some predictive ability, unlikely 
to really wow or be “superhuman” though

- High hundreds to thousands: “happy 
regime” for deep learning
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grain of salt, really depends on problem), in 
addition to transfer learning:

- Low dozens: generally too small to learn a 
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How much data do you need for deep learning?

In general, deep learning is data 
hungry -- the more data the better

Examples per class of your dataset (take with 
grain of salt, really depends on problem), in 
addition to transfer learning:

- Low dozens: generally too small to learn a 
meaningful model, using standard 
supervised deep learning

- High dozens to low hundreds: may see 
models with some predictive ability, unlikely 
to really wow or be “superhuman” though

- High hundreds to thousands: “happy 
regime” for deep learning
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How much data do you need for deep learning?
Examples per class of your dataset (take with 
grain of salt, really depends on problem), in 
addition to transfer learning:

- Low dozens: generally too small to learn a 
meaningful model, using standard 
supervised deep learning

- High dozens to low hundreds: may see 
models with some predictive ability, unlikely 
to really wow or be “superhuman” though

- High hundreds to thousands: “happy 
regime” for deep learning

In general, deep learning is data 
hungry -- the more data the better

Almost always leverage transfer learning unless you have 
extremely different or huge (e.g. ImageNet-scale) dataset
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What counts as a data example?

1 3D CT volume with 200 slices ≠ 200 
data examples

5 surgery videos with thousands of 
frames each ≠ thousands of data 
examples
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What counts as a data example?

1 3D CT volume with 200 slices ≠ 200 
data examples

5 surgery videos with thousands of 
frames each ≠ thousands of data 
examples

Guidelines for amount of training data refers to # of unique instances representative of diversity 
expected during testing / deployment. E.g. # of independent CT scans or surgery videos. 
Additional correlated data (e.g. different slices of the same tumor or different suturing instances 
within the same video) provide relatively less incremental value in comparison.
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What if there are multiple possible sources of data?
E.g., some with noisier / less accurate labels than others, from different hospital sites, etc.

- Expected diversity of data during deployment should be reflected in both training and 
test sets

- Need to see these during training to learn how to handle them
- Need to see these during testing to accurately evaluate the model
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What if there are multiple possible sources of data?
E.g., some with noisier / less accurate labels than others, from different hospital sites, etc.

- Expected diversity of data during deployment should be reflected in both training and 
test sets

- Need to see these during training to learn how to handle them
- Need to see these during testing to accurately evaluate the model

- Want test set labels to be as accurate as possible
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What if there are multiple possible sources of data?
E.g., some with noisier / less accurate labels than others, from different hospital sites, etc.

- Expected diversity of data during deployment should be reflected in both training and 
test sets

- Need to see these during training to learn how to handle them
- Need to see these during testing to accurately evaluate the model

- Want test set labels to be as accurate as possible

- Noisy labels is often still useful during training -- can provide useful signal in aggregate. 
More, but noisy data, often better than small but clean data.

- “Weakly supervised learning” is a major area of research focused on learning with 
large amounts of noisy or imprecise labels
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Preview: advanced approaches for handling limited labeled data

● Semi-supervised learning
● Weakly supervised learning
● Domain adaptation

Will talk more about these in later lectures...
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Evaluating image classification models
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Q: When might evaluating 
purely accuracy be 
problematic?



111Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Q: When might evaluating 
purely accuracy be 
problematic?

A: Imbalanced datasets.
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives



113Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives

We can trade-off different values of these 
metrics as we vary our classifier’s score 
threshold to predict a positive
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives

Q: As prediction threshold increases, how does 
that generally affect sensitivity? Specificity?
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives

Q: As prediction threshold increases, how does 
that generally affect sensitivity? Specificity?
A: Sensitivity goes down, specificity up
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- Receiver Operating Characteristic (ROC) 
curve:

- Plots sensitivity and specificity 
(specifically, 1 - specificity) as prediction 
threshold is varied

- Gives trade-off between sensitivity and 
specificity

- Also report summary statistic AUC (area 
under the curve)

Evaluation metrics
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- Receiver Operating Characteristic (ROC) 
curve:

- Plots sensitivity and specificity 
(specifically, 1 - specificity) as prediction 
threshold is varied

- Gives trade-off between sensitivity and 
specificity

- Also report summary statistic AUC (area 
under the curve)

Evaluation metrics

True 
Positive 
Rate (TPR)

False Positive Rate (FPR)
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- Sometimes also see precision recall 
curve

- More informative when dataset is 
heavily imbalanced (sensitivity = 
true negative rate less meaningful 
in this case)

Evaluation metrics

Figure credit: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png
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- Selecting optimal trade-off points
- Maximize Youden’s Index

- J = sensitivity + specificity - 1
- Gives equal weight to 

optimizing true positives and 
true negatives

Evaluation metrics

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png
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- Selecting optimal trade-off points
- Maximize Youden’s Index

- J = sensitivity + specificity - 1
- Gives equal weight to 

optimizing true positives and 
true negatives

Evaluation metrics

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

Also equal to distance above chance line for a 
balanced dataset: sensitivity - (1 - specificity) = 
sensitivity + specificity - 1

https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png
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- Selecting optimal trade-off points
- Maximize Youden’s Index

- J = sensitivity + specificity - 1
- Gives equal weight to 

optimizing true positives and 
true negatives

- Sometimes also see F-measure (or 
F1 score)

- F1 = 2*(precision*recall) / 
(precision + recall)

- Harmonic mean of precision 
and recall

Evaluation metrics

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

Also equal to distance above chance line for a 
balanced dataset: sensitivity - (1 - specificity) = 
sensitivity + specificity - 1

https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png
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- Selecting optimal trade-off points
- Maximize Youden’s Index

- J = sensitivity + specificity - 1
- Gives equal weight to 

optimizing true positives and 
true negatives

- Sometimes also see F-measure (or 
F1 score)

- F1 = 2*(precision*recall) / 
(precision + recall)

- Harmonic mean of precision 
and recall

Evaluation metrics

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

Also equal to distance above chance line for a 
balanced dataset: sensitivity - (1 - specificity) = 
sensitivity + specificity - 1

But selected trade-off points could 
also depend on application

https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png
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Case Studies of CNNs for 
Medical Imaging Classification
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Early steps of deep learning in medical imaging: 
using ImageNet CNN features
Bar et al. 2015

- Input: Chest x-ray images
- Output: Several binary 

classification tasks
- Right pleural effusion or not
- Enlarged heart or not
- Healthy or abnormal

- Very small dataset: 93 frontal 
chest x-ray images

Healthy

Enlarged heart

Right effusion

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Early steps of deep learning in medical imaging: 
using ImageNet CNN features
Bar et al. 2015

- Input: Chest x-ray images
- Output: Several binary 

classification tasks
- Right pleural effusion or not
- Enlarged heart or not
- Healthy or abnormal

- Very small dataset: 93 frontal 
chest x-ray images

Healthy

Enlarged heart

Right effusion

Q: How might 
we approach 
this problem?

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015
- Did not train a deep learning model 

on the medical data
- Instead, extracted features from an 

AlexNet trained on ImageNet
- 5th, 6th, and 7th layers

- Used extracted features with an 
SVM classifier

- Performed zero-mean unit-variance 
normalization of all features

- Evaluated combination with other 
hand-crafted image features

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015 Q: How might we 
interpret the AUC vs. 
CNN feature trends? 

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Ciompi et al. 2015

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an 
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis,  2015.

- Task: classification of lung nodules 
in 3D CT scans as peri-fissural 
nodules (PFN, likely to be benign) 
or not

- Dataset: 568 nodules from 1729 
scans at a single institution. (65 
typical PFNs, 19 atypical PFNs, 484 
non-PFNs).

- Data pre-processing: prescaling 
from CT hounsfield units (HU) into 
[0,255]. Replicate 3x across R,G,B 
channels to match input dimensions 
of ImageNet-trained CNNs.
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Ciompi et al. 2015
- Also extracted features from a deep learning model trained on ImageNet

- Overfeat feature extractor (similar to AlexNet, but trained using additional losses 
for localization and detection)

- To capture 3D information, extracted features from 3 different 2D views of each 
nodule, then input into 2-stage classifier (independent predictions on each view 
first, then outputs combined into second classifier).

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an 
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis,  2015.



131Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Gulshan et al. 2016
- Task: Binary classification of referable 

diabetic retinopathy from retinal fundus 
photographs

- Input: Retinal fundus photographs
- Output: Binary classification of referable 

diabetic retinopathy (y in {0,1})
- Defined as moderate and worse 

diabetic retinopathy, referable diabetic 
macular edema, or both

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016
- Dataset:

- 128,175 images, each graded by 3-7 
ophthalmologists.

- 54 total graders, each paid to grade between 
20 to 62508 images.

- Data preprocessing: 
- Circular mask of each image was detected 

and rescaled to be 299 pixels wide
- Model:

- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different 

binary prediction problems, which were then 
used for final determination of referable 
diabetic retinopathy Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 

Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016
- Dataset:

- 128,175 images, each graded by 3-7 
ophthalmologists.

- 54 total graders, each paid to grade between 
20 to 62508 images.

- Data preprocessing: 
- Circular mask of each image was detected 

and rescaled to be 299 pixels wide
- Model:

- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different 

binary prediction problems, which were then 
used for final determination of referable 
diabetic retinopathy 

Graders provided finer-grained 
labels which were then 
consolidated into (easier) binary 
prediction problems

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016
- Results:

- Evaluated using ROC curves, 
AUC, sensitivity and specificity 
analysis

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

AUC = 0.991

Looked at different operating points
- High-specificity point 

approximated ophthalmologist 
specificity for comparison. Should 
also use high-specificity to make 
decisions about high-risk actions.

- High-sensitivity point should be 
used for screening applications.

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.



136Serena Yeung BIODS 220: AI in Healthcare Lecture 3 -

Gulshan et al. 2016

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016
Q: What could explain the difference in 
trends for reducing # grades / image on 
training set vs. tuning set, on tuning set 
performance?

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Esteva et al. 2017
- Two binary classification tasks: malignant 

vs. benign lesions of epidermal or 
melanocytic origin

- Inception-v3 (GoogLeNet) CNN with 
ImageNet pre-training

- Fine-tuned on dataset of 129,450 lesions 
(from several sources) comprising 2,032 
diseases

- Evaluated model vs. 21 or more 
dermatologists in various settings

Esteva*, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature, 2017.
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Esteva et al. 2017
- Train on finer-grained classification (757 classes) but perform binary classification at 

inference time by summing probabilities of fine-grained sub-classes
- The stronger fine-grained supervision during the training stage improves inference 

performance!

Esteva*, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature, 2017.
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Esteva et al. 2017
- Evaluation of algorithm vs. 

dermatologists

Esteva*, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature, 2017.
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Lakhani and Sundaram 2017

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.

- Binary classification of pulmonary tuberculosis from x-rays
- Four de-identified datasets
- 1007 chest x-rays (68% train, 17.1% validation, 14.9% test)
- Tried training CNNs from scratch as well as fine-tuning from ImageNet
-
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Lakhani and Sundaram 2017
- Binary classification of pulmonary tuberculosis from x-rays
- Four de-identified datasets
- 1007 chest x-rays (68% train, 17.1% validation, 14.9% test)
- Tried training CNNs from scratch as well as fine-tuning from ImageNet
-

All training images were resized to 256x256 and underwent 
base data augmentation of random 227x227 cropping and 
mirror images. Additional data augmentation experiments in 
results table.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017
- Binary classification of pulmonary tuberculosis from x-rays
- Four de-identified datasets
- 1007 chest x-rays (68% train, 17.1% validation, 14.9% test)
- Tried training CNNs from scratch as well as fine-tuning from ImageNet

All training images were resized to 256x256 and underwent 
base data augmentation of random 227x227 cropping and 
mirror images. Additional data augmentation experiments in 
results table.

Often resize to match input size of 
pre-trained networks. Also fine approach to 
making high-res dataset easier to work with!

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.

Performed further analysis at optimal 
threshold determined by the Youden 
Index.
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Rajpurkar et al. 2017
- Binary classification of pneumonia 

presence in chest X-rays
- Used ChestX-ray14 dataset with over 

100,000 frontal X-ray images with 14 
diseases

- 121-layer DenseNet CNN
- Compared algorithm performance with 4 

radiologists
- Also applied algorithm to other diseases to 

surpass previous state-of-the-art on 
ChestX-ray14

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest 
X-Rays with Deep Learning. 2017.
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McKinney et al. 2020
- Binary classification of breast cancer in mammograms
- International dataset and evaluation, across UK and US

McKinney et al. International evaluation of an AI system for breast cancer screening. Nature, 2020.
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Summary
Today we saw:

● Deep learning models for image classification
● Data considerations for image classification models
● Evaluating image classification models
● Case studies

Next time: Medical Images: Advanced Vision Models (Detection and 
Segmentation)


