Lecture 3:
Medical Images: Classification
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Administrative

- AO due Tue 9/22 11:59pm

- A1 will also be released Tue, due in 2 weeks (Tue 10/6)
- You will need to download several datasets to do the assignment. Make sure to start early!
- 3 parts:
- Medical image classification
- Medical image segmentation in 2D
- Medical image segmentation in 3D, with semi-supervised learning

- Tensorflow Review Session this Fri 1pm, helpful for A1
- Start thinking about your class project! We will release a piazza post soon

with some ideas to help guide your thinking.
- Project guidelines already posted on class website, will go over more on Wed
- First due date: Project proposal, due Fri 10/9
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Last time: Deep learning framework

Traditional machine learning

Input ‘ Feature ‘ Machine learning ‘ Output

; extractor model
(e.g., | y 1 \ ) (e.g., colorand (e.g., support vector machines  (e.g., presence or
t j texture histograms) and random forests) not or disease)

Directly learns what are useful (and better!)

Deep learning ___— features from the training data

Input ) Deep Learning Model mm) Output

& ¥ N
(e.g., | Y | | ) (e.g., convolutional and (e.g., presence or
t : recurrent neural networks) not or disease)
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A simple example

s
O
5| §
<

Output: 9 = wix, + weXo + w3x3 + b
—wlz+b
Neural network parameters:

W = {[w1>w2,w3] 1b}

Loss function:

Per-example: L'(W) = (4§ — y*)?
1 i
Over M examples: L = u 21: L'(W)

Gradient of loss w.r.t. weights:

Partial derivative of loss w.r.t. kth weight:
oL  OL' 9y
Oow, 07t Owy

oL
- T g = T

owy,

=2(" — y")z},

Full gradient expression:

oL  8L] |1 .
VLW = l—,..., —:| = —22(3}2 - Y

wo w3

Lecture 3 - 4

Serena Yeung BIODS 220: Al in Healthcare




Gradient descent algorithm

Let the gradient of the loss function with respect to the model parameters w be:

0L OL oL
ow, 0wy’ Owg

VL, =

Then we can minimize the loss function by iteratively updating the model parameters (“taking steps”) in
the direction of the negative gradient, until convergence:

W =W — aV.Ly,

% 2oy
el V ;Oolllilmn’ - :§i§§§§ oplty
“step size” hyperparameter (design choice) N TSt
indicating how big of a step in the negative ‘

gradient direction we want to take at each
update. Too big -> may overshoot minima; too
small -> optimization takes too long
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Now: a two-layer fully-connected neural network

output: § = W?(c(W'z 4 b)) + b?

Neural network parameters:

W = {W',b', W?b%}

Loss function (regression loss, same as before):

Per-example: L'(W) = (§* — y*)?

-1 1 1 1
S ot it ] IR 1
W™= |wy wyy wyz| b = |b Over Mexamples: L= — > L'W)
1 1 1 bl M &~
W31 Wgzg W33 3 i

Gradient of loss w.r.t. weights:

W2 = 'fw%l w?, w%3] b? = [b2] Function more complex -> now much harder to
- derive the expressions! Instead... computational
graphs and backpropagation.
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Computing gradients with backpropagation

Network output:  § = W2(a(W'z + b')) + b*

Think of computing loss function as staged computation of
intermediate variables:

w) @)
> z*»@} ee
O O

“Forward pass”: z = W'z + b
h=0(z)
g =W?h+ b?
L )2

Plug in from earlier
computations via cha

BIODS 220: Al in Healthcare

Now, can use a repeated application of the chain
rule, going backwards through the computational
graph, to obtain the gradient of the loss with
respect to each node of the computation graph.

“Backward pass”: oL =2(j —y) (notall gradients
o] shown)
OL oL 0y
2 3_?) OW 2
8L— 0L 0
0H ~ 09 0H " |ocal gradients
~ 0L OH /to derive
o2 ]
OL ™ 0L 0z
oWl  0Z ow?
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Training our two-layer neural
network in code, in Tensorflow 2.0

# Our (X,Y) training set converted to TF tensors

X tf = tf.convert_to_tensor(X, np.float32)

Y tf = tf.convert to_tensor(Y, np.float32)

# Create a TF dataset with specified minibatch size
batch_size = 50

dataset = tf.data.Dataset.from tensor_slices((X tf, Y tf))
dataset = dataset.batch(batch_size)

# initialize model parameters to be learned

Wl = tf.Variable(tf.random.uniform((input_dim, hid dim)))
W2 = tf.Variable(tf.random.uniform((hid dim, output dim)))
bl = tf.Variable(tf.random.uniform((1, hid dim)))

b2 = tf.Variable(tf.random.uniform( (1, output_dim)))

# perform gradient descent

epochs = 5000

optimizer = tf.optimizers.SGD(learning rate=le-2)
losses = []

for epoch in range(epochs):
for batch in dataset:
X batch, Y batch = batch
with tf.GradientTape() as tape:

# forward pass

Z_batch = tf.add(tf.matmul (X batch, Wl1), bl)

H batch = tf.math.sigmoid(Z_batch)

Out_batch = tf.add(tf.matmul(H batch, W2), b2)

loss = tf.losses.MSE(Y batch, Out_batch) Evaluate gradients using

# backward pass and gradient update automatic differentiation

gradients = tape.gradient(loss, [Wl, W2, bl, b2]) and perform gradient
optimizer.apply gradients(zip(gradients, [W1l, W2, bl, b2]))

update
Serena Yeung BIODS 220: Al in Healthcare Lecture 3- 8




Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

In Tensorflow 2.0: In Keras:
for epoch in range(epochs): keras model = tf.keras.models.Sequential([
for batch in dataset: tf.keras.layers.Dense(units=3, activation='sigmoid', use_bias=True),
X batch, Y batch = batch tf.keras.layers.Dense(units=1, use bias=True)
with tf.GradientTape() as tape: 1)
keras_model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=le-2),
# forward pass loss="'mse')
Z_batch = tf.add(tf.matmul(X_batch, W1), bl) keras_model.fit(dataset, epochs=1000)
H batch = tf.math.sigmoid(Z_batch)
Out_batch = tf.add(tf.matmul(H batch, W2), b2) \

loss = tf.losses.MSE(Y batch, Out_batch)
Specify hyperparameters for

# backward pass and gradient date ..
= Hemnieg the training procedure

gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [Wl1l, W2, bl, b2]))
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Training hyperparameters: control knobs for the art of training neural

networks

- Adam is a good default choice in many cases; it
often works ok even with constant learning rate

-  SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule

Optimization methods: SGD, SGD with
momentum, RMSProp, Adam

SGD

SGD+Momentum
RMSProp

Adam
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Note on hyperparameter discussion in Lecture 2

- In this class, we will not dive deeper into theory or derivations for these
hyperparameters (this is covered in other classes), and don’t worry if you feel
you do not have full understanding on these aspects

- Our goal is to develop your ability to practically use deep learning as
effectively as possible to solve diverse problems in healthcare. So we have
given you a “menu” of hyperparameters that you can utilize when you try to
improve performance on your models

- See https://piazza.com/class/kevndkjwzyx57i{?cid=20 for further clarification
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https://piazza.com/class/kevndkjwzyx57j?cid=20

Note on course lectures more generally

- Obijective is to establish strong conceptual foundation for developing Al
models in healthcare

- Assignments are main measure of what you “need to know” from this class

- Lectures teach what you need to know for assignments, but may sometimes
go a bit deeper. Goal is to give conceptual grounding such that you can refer
back and have the foundation to explore independently in areas that you
choose to dive further (e.g. for your class project or other future projects!)
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Today: Medical image data

o

X-rays (invented 1895). CT (invented 1972). MRI (invented 1977).
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Agenda
Today: Medical Images: Classification

- Deep learning models for image classification

- Data considerations for image classification models
- Evaluating image classification models

- Case studies
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Agenda

Today: Medical Images: Classification

Deep learning models for image classification

Data considerations for image classification models
Evaluating image classification models

Case studies

Wed: Medical Images: Advanced Vision Models (Detection and Segmentation)

Next Mon: Medical Images: Advanced Vision Models (3D and Video)
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Deep Learning Models for Image
Classification
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Different classes of neural networks

oo e

&

Fully connected neural networks
(linear layers, good for “feature vector” inputs)

Recurrent neural networks

(linear layers modeling recurrence relation across

sequence, good for sequence inputs)

4 Fag C3: f. maps 16@10x10

: feature maps S4: f. maps 16@5x5

INPUT 6@26%28 ps 16@
S2: f. maps

32x32
6@14x1

I
Full conAection ‘ Gaussian connections

Subsampling Convolutions  Subsampling Full connection

Convolutional neural networks
(convolutional layers, good for image inputs)

Convolutions

Output sequence

I R AR I
[ A N

Input sequence
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Different classes of neural networks

CH-Fasi C3: f. maps 16@10x10

: feature maps S4: f. maps 16@5x5

INPUT 6@26%28 ps 16@
S2: f. maps

OO0
A =

OO
B

&

I
Full conAection ‘ Gaussian connections

Subsampling Convolutions  Subsampling Full connection

Fully connected neural networks Convolutional neural networks
(linear layers, good for “feature vector” inputs) (convolutional layers, good for image inputs)

Convolutions

Output sequence

I I IR A

Recurrent neural networks . N N e
(linear layers modeling recurrence relation across
sequence, good for sequence inputs) T T T T T

Input sequence
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Reminder from last time: fully-connected layers

Ouir first architecture: a single-layer, fully connected neural network

For simplicity, use a 3-dimensional input (N = 3)\ all inputs of a layer are connected to
all outputs of a layer

Output: § = wix1 + WoZo + w3x3 + b

T w1 —wlz+b

5
O
5| §
<
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Two-layer fully-connected neural network

output: § = W?(c(W'z 4 b)) + b?

Neural network parameters:

W = {W' b, W? b*}

W2 = :wfl w%z 'wi?3] b* = [b%]
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Two-layer fully-connected neural network

output: § = W?(c(W'z 4 b)) + b?

Neural network parameters:

W = {W' b, W? b*}

1 bl Dimensions of the weight matrix for each fully
connected layer is [output dim. x input dim.]

3 Dimensions of the bias vector is [output dim x 1]

W2 = :wfl w%z 'wi?3] b* = [b%]
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Fully-connected layers: in graphical form

Output (activation)
Input values & values
Wx
1 > 1ox3072 — 119

Slide credit: CS231n
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Fully-connected layers: in graphical form

Output (activation)
Input values & values

Wax
1 > 10x 3072 > 110

Activation function and bias
In Keras: configurations included!

keras _model = tf.keras.models.Sequential([ / \

tf.keras.layers.Dense(units=3, activation='sigmoid', use_ bias=True),
tf.keras.layers.Dense(units=1, use_bias=True)
1)
keras_model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=le-2),
loss='mse"')
keras_model.fit(dataset, epochs=1000)
Slide credit: CS231n
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Convolutional layer

32x32x3 image -> preserve spatial structure

32 height

32 width

3 depth

Slide credit: CS231n
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Convolutional layer

32x32x3 image -> preserve spatial structure

Input now has spatial height and
width dimensions!

32 height
In contrast to fully-connected
layers, want to preserve spatial
structure when processing with a
convolutional layer

3 depth

Slide credit: CS231n
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Convolutional layer

32x32x3 image

5x5x3 filter (weights)

32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

3

Slide credit: CS231n
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Convolutional |ayer Filters always extend the full
L depth of the input volume
32x32x3 image /

5x5x3 filter (weights)

32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

3

Slide credit: CS231n
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Convolutional layer
__— 32x32x3 image

5x5x3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wliz+b

™~ 1 number:

Slide credit: CS231n
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Convolutional layer

Ve

I

32

__— 32x32x3 image

5x5x3 filter
2

——0

convolve (slide) over all
spatial locations

activation map

Slide credit: CS231n

Serena Yeung
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_ consider a second, green filter
Convolutional layer

_— 32x32x3 image activation maps

5x5x3 filter
2
@>® ”

convolve (slide) over all
spatial locations

32 / 28

Slide credit: CS231n
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For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

32

28

Convolution Layer

32 28

LINN NN

3 6

We stack these up to get a “new image” of size 28x28x6!

Slide credit: CS231n
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Preview: ConvNet (or CNN) is a sequence of Convolution Layers, interspersed
with activation functions

32

CONYV,
RelLU
e.g.6
5x5x3
filters

32

Slide credit: CS231n
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Preview: ConvNet (or CNN) is a sequence of Convolution Layers, interspersed
with activation functions

32 28 24
CONV, CONV, CONV,
RelU RelLU RelLU
2-95- % e.g. 10
XoX 5x5x6
32 filters 28 filters 24
3 6 10

Slide credit: CS231n
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Summary. To summarize, the Conv Layer:

 Accepts a volume of size W; x Hy; x D,
» Requires four hyperparameters:
Number of filters K,
their spatial extent F',
the stride .S,
the amount of zero padding P.
» Produces a volume of size Wy x Hy x Dy where:
o Wo=(Wy —F+2P)/S+1
o Hy =(Hy — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
o D2 = I
« With parameter sharing, it introduces F' - F' - Dy weights per filter, for a total of (F'- F' - Dy ) - K weights
and K biases.
« In the output volume, the d-th depth slice (of size Wy x H,) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

o

o]

o

o]

Slide credit: CS231n
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Common settings:

Summary. To summarize, the Conv Layer:

K = (powers of 2, e.g. 32, 64, 128, 512)

» Accepts a volume of size W; x H; x D, - F=3,8=1,P=
Requires four hyperparameters:
o Number of filters K, F=95S5=1P ]
o their spatial extent F', - F=5,8=2,P=7 (Whatever fItS)
o the stride S, - F=1,S=1,P
o the amount of zero padding P.
Produces a volume of size W5 x Hy X D5 where:

o Wo=(Wy —F+2P)/S+1

o Hy =(Hy — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)

o D2 = I
With parameter sharing, it introduces F' - F' - D weights per filter, for a total of (F'- F' - Dy ) - K weights
and K biases.
In the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Slide credit: CS231n
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In Keras

Conv2D [source]

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, d:

2D convolution layer (e.g. spatial convolution over images).
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In Ke ras Padding options: ‘valid’ does not pad, use ‘same’
to pad such that input and output spatial
dimensions are the same size

Conv2D [source]

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, d:

2D convolution layer (e.g. spatial convolution over images).
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SRCINEESONZITAEER

one filter =>
one activation map

example 5x5 filters
(32 total)

]
-

Activations:

Aside: We call the layer
convolutional because it is related
to convolution of two signals:

fleylsgleyl = Y, D fln.nl-glx—n,y—n,]

ny=—oco i, =—oco T

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyright Andrej Karpathy.
Slide credit: CS231n
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(btw, 1x1 convolution layers make perfect sense -> performs
dimensionality reduction in the depth dimension)

1x1 CONV

o6 with 32 filters 56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Slide credit: CS231n
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Preview: can visualize learned features  [Zeiler and Fergus 2013] i vom fomonon a2 30041

Linearly
separable
classifier

Low-level Mid-level High-level
features features features

VGG-16 Conv1_ VGG-16 Conv3 2 VGG-16 Conv5 3

Slide credit: CS231n
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Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

| |

> o 112
224 downsampling

112
224

Slide credit: CS231n
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Max pooling

Single depth slice

Jl1]1]2)4
max pool with 2x2 filters
5| 6 |7 |8 and stride 2 6 | 8
312|110 3 | 4
1123 | 4
y Slide credit: CS231n
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Pooling layer: practical implementation

Accepts a volume of size W; x H; x D,
Requires three hyperparameters:
o their spatial extent F',
o the stride S,
Produces a volume of size W5 x Hy x D, where:
o Wy = (W1 —F)/S-I—l
o Hy = (H1 —F)/S+1
o Dy = Dy
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

In Keras:
MaxPooling2D [source]

keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None)

Slide credit: CS231n
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Pooling layer: practical implementation

» Accepts a volume of size W; x H; x D,

» Requires three hyperparameters: Common settings:
o their spatial extent F',

o the stride S,

» Produces a volume of size Wy x Hy x Dy where: F

°W2:(W1—F)/S+1 F
o Hy = (H1 —F)/S+1
o Dy = Dy

« Introduces zero parameters since it computes a fixed function of the input

» Note that it is not common to use zero-padding for Pooling layers

I
w N
nww

[

2
2

In Keras:
MaxPooling2D [source]

keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None)

Slide credit: CS231n
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LeNet-5

[LeCun et al., 1998]

Image Maps
Input

L e
7 \ =

Convolutions

x
Fully Connected
Subsampling

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Slide credit: CS231n
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
- First CNN-based winner 152 layers| |152 layers| |152 layers
/ Ao Ao A
20
16.4
15
11.7  |191ayers| |22 layers |
10 7
7.3 6.7
B 5.1
Alaea
=
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & | Krizhevsky etal| Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)

Slide credit: CS231n
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AlexNet %}

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: N
[227x227x3] INPUT St
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOLA1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] ~C&: 1000 neurons (class scores)

=
=

SI ' BT dense
7 58 203t 2038
- b R 1

dense idens
e 1000
128 Max L L
Max 28 Max pooling 294 048
pooling pooling

48

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
Slide credit: CS231n
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AlexNet E}
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: 228 S“,

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOLA1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC&: 1000 neurons (class scores)

=
=

58 204t Joag \dense
\ 13

13 dense idens

1000

128 Max L L
Max 28 Max pooling 294 048
pooling pooling

48

Details/Retrospectives:

- first use of RelLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
Slide credit: CS231n
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
25 -

20

16.4

15

10

5
2010 2011 2012
Lin et al Sanchez &  Krizhevsky et al
Perronnin (AlexNet)

Serena Yeung

Deeper Networks

152 layers| |152 layers

152 layers

\

11.7 |19 layers| |22 layers|

8 layers

\

7.3 67

2013 2014 2014

Zeiler & Simonyan & Szegedy et al
Fergus Zisserman (VGG) (GooglLeNet)

Ak
3.6 3
2015 2016
He et al Shao et al
(ResNet)
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5.1
2.3
2017 Human
Hu et al Russakovsky et al

(SENet)
Slide credit: CS231n
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VGGNet

Softmax FC 4096
[Simonyan and Zisserman, 2014] FC 1000 FCa0%
FC 4096 Pool
FC 4096 3x3 conv, 512
Pool 3x3 conv, 512

Small filters, Deeper networks

3x3 conv, 512 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
3x3 conv, 512
3x3 conv, 512

Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512

8 layers (AlexNet) ___
-> 16 - 19 layers (VGG 16Net) T

FC 4096
FC 4096

3x3 conv, 512

l |
| ]
| ]
l ]
l ]
l ]
l ]
l ]
l ]
l ]
l ]
| 3x3conv, 512 |
l ]
l ]
l ]
| ]
l ]
l ]
l ]
l ]
l ]
l ]

Pool Pool
3x3 conv, 256

3x3 conv, 256

3x3 conv, 256
3x3 conv, 256

Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2 56 o o5

3x3 conv, 384

Pool Pool
3x3 conv, 128

3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

Pool Pool
5x5 conv, 256 3x3 conv, 64 3x3 conv, 64
11x11 conv, 96 3x3 conv, 64 3x3 conv, 64
Input Input Input

AlexNet VGG16 VGG19

Slide credit: CS231n
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GooglLeNet

[Szegedy et al., 2014]

“Inception module”: design a
good local network topology
(network within a network) and
then stack these modules on
top of each other

Filter
concatenation
XC Ix1
convolution

? 4

3x3 max
pooling

Previous Layer

Inception module

Slide credit: CS231n
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GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- Avoids expensive FC layers using
a global averaging layer e

- 12x less params than AlexNet

Inception module

Slide credit: CS231n L
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GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- Avoids expensive FC layers using
a global averaging layer e

- 12x less params than AlexNet

Inception module

Also called “Inception Network”

Slide credit: CS231n L
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
“Revolution of Depth”

30 282
152 layers| |152 layers| |152 layers
25
Ao Ao A
20
16.4
15
19 layers| (22 layers,
10 7
7.3 6.7
5 3.6 =
i, = B a s B
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy et a He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GooglLeNet (ResNet) (SENet)

Slide credit: CS231n
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oftma

ResNet

[He et al., 2015] X3 conv, 64

|

i

Very deep networks using residual
connections

X3 conv, 64
3x3 conv, 64
——

- 152-layer model for ImageNet X

identity %)

X3 conv, 128
—

- Won all major classification and
detection benchmark challenges in 4

2015

Residual block

3x3 conv, 64

___3x3conv. 64 |
—

| Pool |
/x7.conv, 64 /2

Slide credit: CS231n
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ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer
% 56-layer .
> o
= (0]
£ 3 20-layer
@ o}
= [
20-layer
lterations lterations

Q: What's strange about these training and test curves?
[Hint: look at the order of the curves]

Slide credit: CS231n
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ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer
% 56-layer .
> o
= (0]
£ 3 20-layer
@ o}
= [
20-layer
lterations lterations

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

Slide credit: CS231n
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ResNet

[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

Slide credit: CS231n
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ResNet

[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at
least as well as the shallower model.

A solution by construction is copying the learned

layers over from the shallower model and setting
all additional layers to the identity function.

Slide credit: CS231n
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ResNet

[He et al., 2015]

Solution: Structure each network layer to fit a “residual function” with respect to the
identity function, then add the two functions together

H(x)

|

conv

relu

conv

T

X
“Plain” layers

T relu
F(x) + x

conv

Fx) relu ide)rftity

conv

X
Residual block

Slide credit: CS231n

Serena Yeung
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ResNet =

3x3 conv, 512
3x3 cony, 512

3x3 conv, 512
3x3 conv, 512

3x3 cony, 512
3x3 conv, 512, /2

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

3Xx3 conv

A

F(x) relu

X
identity

O
3x3 conv, 128
3x3 conv, 128, / 2
O

3Xx3 conv

X
Residual block
| Pool |
TV

Slide credit: CS231n
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ResNet

[He et al., 2015]

3x3 conv, 512
3x3 cony, 512

3x3 conv, 512
3x3 conv, 512

3x3 cony, 512
3x3 conv, 512, /2

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

- Periodically, double # of 3x3 conv 53 comy. 128
filters and downsample F(x) relu X flters, /2
spatially using stride 2 Identity ‘ Spatialy win

. . . 3x3 conv iﬁfnovn:z;zf 2 stride 2
(/2 in each dimension) —
3x3 conv, 64
filters

X
Residual block
| Pool |
TV

Slide credit: CS231n
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ResNet i

3x3 conv, 512
3x3 cony, 512

3x3 conv, 512
3x3 conv, 512

3x3 cony, 512
3x3 conv, 512, /2

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers
- Periodically, double # of 3x3 conv
filters and downsample F(x) Irelu
spatially using stride 2
(/2 in each dimension)
- Additional conv layer at
the beginning X
Residual block

X
identity

O
3x3 conv, 128
3x3 conv, 128, / 2

O
| 3x3conv. 64 | .
O
3x3 conv, 64
| 3x3conv. 64 |
O

3Xx3 conv

I —
Beginning
o conv layer

Slide credit: CS231n
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CEEi0 Je——
R e S N et | Pool | 'l;lgs::di Slalzlce:rs
[He et al., 2015] ? 1000 to

output
classes

3x3 conv, 512
3x3 cony, 512

3x3 conv, 512
3x3 conv, 512

3x3 cony, 512
3x3 conv, 512, /2

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

- Periodically, double # of 3x3 conv
filters and downsample F(x) Irelu X
spatially using stride 2 Identity ——
(/2 in each dimension) oo ——
- Additional conv layer at m;.
the beginning X
- No FC layers at the end Residual block e
(only FC 1000 to output _ = =
classes) ]

C o]

Slide credit: CS231n
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ResNet

[He et al., 2015] .

Total depths of 34, 50, 101, or
152 layers for ImageNet

3x3 conv, 64 .

O

/x7.conv, 64, /2

Slide credit: CS231n
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More on loss functions
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Common loss functions

Regression

1 v .
Lregression = s Z(yz - y2)2

Label is a continuous value.
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Common loss functions

Minimize squared difference between
prediction output and target

1 A
Lregression — M Z(y —Y )2

Label is a continuous value.

Regression
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Common loss functions

R . Minimize squared difference between Bi C Ent
egression prediction output and target Inary Lross-Entropy

N T
_ 1 Z(gz — y)? Lpcg = % Z —(yilog(9:) + (1 — y;) log(1 — 9;))

Lre ression
J M

Label is a continuous value. Label is binary in {0,1}. Prediction is a real number in (0,1) and
is the probability of the label being 1. It is usually the output of

a sigmoid operation after the final layer.

Lecture 3 - 69
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Equivalent to the negative log of the
probability of the correct ground truth class

COm mon IOSS fu nCtlonS being predicted. Think about what the
o _ expression looks like wheny i=1vs. 0.
Regression mzérizltfnsgSgr;dai'g?;?ggte between Binary Cross-Entropy /
1 v L 9 1 X X
Lregression = 7+ > @ -y Lpce = 77 > —(yilog(#:) + (1 — yi) log(1 — §:))
7 i

Label is binary in {0,1}. Prediction is a real number in (0,1) and
is the probability of the label being 1. It is usually the output of
a sigmoid operation after the final layer.

Label is a continuous value.
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Equivalent to the negative log of the
probability of the correct ground truth class
being predicted. Think about what the

Common loss functions edicted. T n
expression looks like wheny_i =1 vs. 0.

Regression ngiziﬁ:nsgSér;daiig?;?ggte between Binary Cross-Entropy /
1 L 0 1 ) X
Lregression = M Z(yz — y"’) Lpce = M ; _(yilog(yz') + (1 - yz) log(l - y'&))
1

Label is a continuous value. Label is binary in {0,1}. Prediction is a real number in (0,1) and
is the probability of the label being 1. It is usually the output of

a sigmoid operation after the final layer.

Softmax
1 eSvi
L oftmax — —1 — ..
Soft M ; Og(zj esi)

Label is 1 of K classes in {0, ..., K}. Extension of binary
cross-entropy loss to multiple classes. s_j corresponds to
the score (e.g. output of final layer) for each class; the
fraction in the log provides a normalized probability for

each class.
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Equivalent to the negative log of the
probability of the correct ground truth class
being predicted. Think about what the

Common loss functions edicted. T n
expression looks like wheny_i =1 vs. 0.

Regression ngiziﬁ:nsgSt?)rlida?\ig?;?ggte between Binary Cross-Entropy /
1 L 0 1 ) X
Lregression = M Z(yz — yz) Lpce = M ; _(yz’log(yz') + (1 - yz) log(l - y'&))
1

Label is a continuous value. Label is binary in {0,1}. Prediction is a real number in (0,1) and
is the probability of the label being 1. It is usually the output of

a sigmoid operation after the final layer.

Negative log of the probability of the
true class y_i, as with the BCE loss.

Softmax
\
1 eSvi
L oftmax — 5 E —1

Label is 1 of K classes in {0, ..., K}. Extension of binary
cross-entropy loss to multiple classes. s_j corresponds to
the score (e.g. output of final layer) for each class; the
fraction in the log provides a normalized probability for

each class.
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Equivalent to the negative log of the
probability of the correct ground truth class

COm mon IOSS fu nCtlonS being predicted. Think about what the
expression looks like wheny_i =1 vs. 0.

Regression "\)/Iri:(;rizitfnsgSt?)rlida?\ig?;?ggte between Binary Cross-Entropy /
1 L 0 1 ) X
Lregression — M Z(yz — yz) LBC’E = M Z —(yz'log(yz') + (1 — yz) log(l —_ yz))

Label is binary in {0,1}. Prediction is a real number in (0,1) and
is the probability of the label being 1. It is usually the output of
a sigmoid operation after the final layer.

Label is a continuous value.

Negative log of the probability of the
Softmax  trueclassy_i, as with the BCE loss. SVM

\
1 esvi
LSoftmam — MZ log(z 633) Lsyy = —ZZmaXO S — Syz-l-l)

v J i jAY
Label is 1 of K classes in {0, ..., K}. Extension of binary Label is 1 of K classes in {0, ..., K}. Same use case as
cross-entropy loss to multiple classes. s_j corresponds to  softmax, but different way of encouraging the model to

the score (e.g. output of final layer) for each class; the produce outputs that we “like”. In practice, softmax is more
fraction in the log provides a normalized probability for popular and provides a nice probabilistic interpretation.

each class.
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Equivalent to the negative log of the
probability of the correct ground truth class

COm mon IOSS fu nCtlonS being predicted. Think about what the
expression looks like wheny_i =1 vs. 0.

Regression "\)/Iri:(;rizitfnsgSt?)rlida?\ig?;?ggte between Binary Cross-Entropy /
1 L 0 1 ) X
Lregression — M Z(yz — yz) LBC’E = M Z —(yz'log(yz') + (1 — yz) log(l —_ yz))

Label is binary in {0,1}. Prediction is a real number in (0,1) and
is the probability of the label being 1. It is usually the output of
a sigmoid operation after the final layer.

Label is a continuous value.

Negative log of the probability of the )
Softmax true class y_i, as with the BCE loss. SVM Incurs lowest loss of 0 (wha_t we want) if the
score for the true class y_i is greater than the
1 * eSvi score for eact\;incorrect class j by a margin of 1
Lsoftmas = 37 D~ 1og(Z eir)  Lsva =173 3 max(0,5; — s, +1)
¢ J i Ay

Label is 1 of K classes in {0, ..., K}. Extension of binary Label is 1 of K classes in {0, ..., K}. Same use case as
cross-entropy loss to multiple classes. s_j corresponds to  softmax, but different way of encouraging the model to

the score (e.g. output of final layer) for each class; the produce outputs that we “like”. In practice, softmax is more
fraction in the log provides a normalized probability for popular and provides a nice probabilistic interpretation.

each class.
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Common loss functions

You will find these in tensorflow!

In Keras:

mean_squared_error .
ik - Mean squared error (MSE) is another
keras.losses.mean_squared_error(y_true, y_pred) name fOI’ regreSS|on IOSS

categorical_crossentropy Covers both BCE and Softmax loss

—» (remember softmax is a multiclass
extension of BCE)

keras.losses.categorical_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)

hinge . .
Hinge is another name for
keras.losses.hinge(y_true, y_pred) SVM IOSS, due tO the IOSS
function shape.

Sj
https://keras.io/losses/
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Data Considerations for Image
Classification Models
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Training, validation, and test sets

Training (50%)

Validation (30%)

Test (20%)

Held-out evaluation set for
selecting best hyperparameters
during training

Do not use until final
evaluation

Serena Yeung

BIODS 220: Al in Healthcare
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Training, validation, and test sets

Training (50%) Validation (30%) Test (20%)
Held-out evaluation set for Do not use until final
selecting best hyperparameters evaluation

during training

Other splits e.g. 60/20/20 also popular.
Balance sufficient data for training vs. informative
performance estimate on validation / testing.
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Maximizing training data for the final model

“Trainval” (70%) Test (30%)
Once hyperparameters are selected
using the validation set, common to OK since we can use non-test
merge training and validation sets into data however we want during
a larger “trainval” set to train a final model development!

model using the hyperparameters.

Serena Yeung BIODS 220: Al in Healthcare
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K-fold cross validation: for small datasets

Sometimes we have small labeled datasets in healthcare... in this case K-fold cross validation

(which is more computationally expensive) may be worthwhile.

Fold 1 Fold 2 Fold 3 Fold 4 Test
Fold 1 Fold 2 Fold 3 Fold 4 Test
Fold 1 Fold 2 Fold 3 Fold 4 Test
Fold 1 Fold 2 Fold 3 Fold 4 Test

Train model K times with a different fold as the validation set
each time; then average the validation set results. Allows
more data to be used for each training of the model, while
still using enough data to get accurate validation result.

BIODS 220: Al in Healthcare
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Data preprocessing

Min-max scaling:
X_scaled = (x_orig - x_min) / (x_max - X_min)

where X_min and x_max are min and max values in the original data

- Maps original range of data to [0,1] range

- Neural networks generally expect small numbers as input (not too extreme
relative to scale of initialized weights)

Slide credit: CS231n
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Data preprocessing

Common to also normalize mean and variance of features, such that features are
treated equally. Most common: make all features zero-mean, unit variance.

original data zero-centered data normalized data

10 10

-10 -10 -10

1g =10 -5 5 1g -10 5 5 10

X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

Slide credit: CS231n
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Data preprocessing: for images
For images, common to perform simpler normalization:

e.g. consider a dataset with [32,32,3] images

- Subtract the mean image (used in original AlexNet model)
(mean image = [32,32,3] array)

- Subtract per-channel mean (used in original VGG model)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Divide by per-channel std (used in original ResNet model)
(mean along each channel = 3 numbers)

Slide credit: CS231n
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How much data do you need for deep learning?
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How much data do you need for deep learning?

A: Alot.

YEAH::I'M/GONNA'NEED'MORE

,

—
] makeameme.org
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How much data do you need for deep learning?

A: Alot.

YEAHCZI'M GONNA NEED MORE Premise of deep learning

uses many parameters (e.g.
millions) to fit complex
functions -> if the dataset is
too small, easiest solution
that model ends up learning
can be overfitting to
memorizing the labels of the
training examples

S THATWOULD BEGREAT

makeameme.org
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How much data do you need for deep learning?

A: Alot.

YEAHCZI'M GONNA NEED MORE Premise of deep learning

uses many parameters (e.g.
millions) to fit complex
functions -> if the dataset is
too small, easiest solution
that model ends up learning

ImageNet dataset
consists of 1M

images: 1000 ne
classes with 1000 can be overfitting to

. h memorizing the labels of the
Images eac training examples

S THATWOULD BEGREAT

makeameme.org
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Transfer learning: amplifying training data

1. Train on big dataset
e.g. ImageNet)

—

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Slide credit: CS231n
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Transfer learning: amplifying training data

1. Train on big dataset

e.g. ImageNet) 2. Small Dataset (C classes)

FC-4096 V\\

FC-4096

—

FC-4096
FC-4096

Reinitialize

this and train
MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool > Freeze these
Conv-256

Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

MaxPool
Conv-64
Conv-64 )

T
T
= (9]

Slide credit: CS231n
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Transfer learning: amplifying training data

1. Train on big dataset
e.g. ImageNet)

—

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

2. Small Dataset (C classes)

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

T
T
= (9]

BIODS 220: Al in Healthcare

‘\\

Reinitialize
this and keep
training on
target dataset

> Freeze these

J

3. Bigger dataset

With bigger
dataset, train
more layers

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

«—— Train these

Lower learning rate

-
7
2 6

when finetuning;
\ 1/10 of original LR
is good starting
point

> Freeze these

J

Slide credit: CS231n
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

YoxPoo More specific

Conv-512
Conv-512

b

MaxPool
Conv-256

Conv-256 More generic

MaxPool

Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Transfer learning from a large dataset to your dataset...

very similar
dataset

very different
dataset

very little data

quite a lot of
data

BIODS 220: Al in Healthcare

Slide credit: CS231n
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

b

More specific

More generic

/

Transfer learning from a large dataset to your dataset...

very similar
dataset

very different
dataset

very little data

Use Linear
Classifier on
top layer
features

quite a lot of
data

BIODS 220: Al in Healthcare
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

YoxPoo More specific

Conv-512
Conv-512

b

MaxPool
Conv-256
Conv-256

More generic

/

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Transfer learning from a large dataset to your dataset...

very similar very different
dataset dataset

very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
features on different layer

features

quite a lot of
data

BIODS 220: Al in Healthcare

Slide credit: CS231n
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

b

MaxPool
Conv-512
Conv-512

More specific

MaxPool
Conv-256
Conv-256

More generic

/

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Transfer learning from a large dataset to your dataset...

very similar very different
dataset dataset

very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
features on different layer

features

quite a lot of
data

Finetune a few
layers

BIODS 220: Al in Healthcare

Slide credit: CS231n
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

b

More specific

More generic

/

Transfer learning from a large dataset to your dataset...

very similar very different
dataset dataset

very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
features on different layer

features

quite a lot of
data

Finetune a few
layers

Finetune a large
number
of layers

BIODS 220: Al in Healthcare
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Transfer learning from a large dataset to your dataset...

very similar very different
dataset dataset
3 very little data | Use Linear You're in
More specific Classifi trouble. . T
assifier on rouble... Try
top layer linear classifier
__MaxPooI .
features on different layer
More generic features
[ MaxPool |
quite a lot of Finetune a few || Finetune a large
data layers number
of layers
v
——
Often good idea to try this first, try fine-tuning all layers of the network Slide credit: CS231n
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How much data do you need for deep learning?

Examples per class of your dataset (take with
grain of salt, really depends on problem), in
addition to transfer learning:

- Low dozens: generally too small to learn a
meaningful model, using standard
supervised deep learning

- High dozens to low hundreds: may see
models with some predictive ability, unlikely
to really wow or be “superhuman” though

- High hundreds to thousands: “happy
regime” for deep learning

very similar very different
dataset dataset

very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
features on different layer

features

quite a lot of
data

Finetune a few
layers

Finetune a large
number
of layers
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How much data do you need for deep learning?

Examples per class of your dataset (take with

grain of salt, really depends on problem), in very similar very different
addition to transfer learning: dataset dataset
- Low qoz?nls: gznlerally tootsmdall ;[jo learn a very little data | Use Linear You're in
;rLepaer;l/r;gelé (rjneoepel,e:rsr:?r?gs andar — ?Iassmer on t.rouble... TW
op layer linear classifier
features on different layer

- High dozens to low hundreds: may see
models with some predictive ability, unlikely

features

to really wow or be “superhuman” though

- High hundreds to thousands: “happy
regime” for deep learning

quite a lot of
data

Finetune a few
layers

Finetune a large
number
of layers
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How much data do you need for deep learning?

Examples per class of your dataset (take with
grain of salt, really depends on problem), in
addition to transfer learning:

- Low dozens: generally too small to learn a
meaningful model, using standard
supervised deep learning

- High dozens to low hundreds: may see
models with some predictive ability, unlikely
to really wow or be “superhuman” though

- High hundreds to thousands: “happy

very similar very different
dataset dataset

very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
features on different layer

features

quite a lot of
data

—

regime” for deep learning

—_—

Finetune a few
layers

Finetune a large
number
of layers
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How much data do you need for deep learning?

Examples per class of your dataset (take with
grain of salt, really depends on problem), in
addition to transfer learning:

- Low dozens: generally too small to learn a
meaningful model, using standard
supervised deep learning

- High dozens to low hundreds: may see
models with some predictive ability, unlikely
to really wow or be “superhuman” though

- High hundreds to thousands: “happy
regime” for deep learning

In general, deep learning is data
hungry -- the more data the better

very similar very different
dataset dataset

very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
features on different layer

features

quite a lot of
data

Finetune a few
layers

Finetune a large
number
of layers
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How much data do you need for deep learning?

Examples per class of your dataset (take with
grain of salt, really depends on problem), in
addition to transfer learning:

- Low dozens: generally too small to learn a
meaningful model, using standard
supervised deep learning

- High dozens to low hundreds: may see
models with some predictive ability, unlikely
to really wow or be “superhuman” though

- High hundreds to thousands: “happy

very similar very different
dataset dataset

very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
features on different layer

features

quite a lot of
data

Finetune a few
layers

Finetune a large
number

. ) of layers
regime” for deep learning y
In general, deep learning is data Almost always leverage transfer learning unless you have
hungry -- the more data the better extremely different or huge (e.g. ImageNet-scale) dataset
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What counts as a data example?

~200
(# of images)

B e e dinat

-

) ) 5 surgery videos with thousands of
1 3D CT volume with 200 slices # 200 gery

frames each # thousands of data
data examples

examples

Serena Yeung
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What counts as a data example?

~200
(# of images)

B e e dinat

-

) ) 5 surgery videos with thousands of
1 3D CT volume with 200 slices # 200 gery

frames each # thousands of data
data examples

examples

Guidelines for amount of training data refers to # of unique instances representative of diversity
expected during testing / deployment. E.g. # of independent CT scans or surgery videos.

Additional correlated data (e.g. different slices of the same tumor or different suturing instances
within the same video) provide relatively less incremental value in comparison.

Serena Yeung
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What if there are multiple possible sources of data?

E.g., some with noisier / less accurate labels than others, from different hospital sites, etc.

- Expected diversity of data during deployment should be reflected in both training and
test sets
- Need to see these during training to learn how to handle them
- Need to see these during testing to accurately evaluate the model
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What if there are multiple possible sources of data?

E.g., some with noisier / less accurate labels than others, from different hospital sites, etc.

- Expected diversity of data during deployment should be reflected in both training and

test sets
- Need to see these during training to learn how to handle them

- Need to see these during testing to accurately evaluate the model

- Want test set labels to be as accurate as possible
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What if there are multiple possible sources of data?

E.g., some with noisier / less accurate labels than others, from different hospital sites, etc.

- Expected diversity of data during deployment should be reflected in both training and
test sets
- Need to see these during training to learn how to handle them
- Need to see these during testing to accurately evaluate the model

- Want test set labels to be as accurate as possible

- Noisy labels is often still useful during training -- can provide useful signal in aggregate.
More, but noisy data, often better than small but clean data.
- “Weakly supervised learning” is a major area of research focused on learning with
large amounts of noisy or imprecise labels
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Preview: advanced approaches for handling limited labeled data

e Semi-supervised learning
e Weakly supervised learning
e Domain adaptation

Will talk more about these in later lectures...
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Evaluating image classification models
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Evaluation metrics

Confusion matrix Accuracy: (TP + TN) / total
Prediction
0 1
0 TN FP
Ground
Truth
1 FN TP
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Evaluation metrics

Confusion matrix Accuracy: (TP + TN) / total

Prediction

0 1 Q: When might evaluating
purely accuracy be
problematic?

0 TN FP
Ground
Truth
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Evaluation metrics

Confusion matrix Accuracy: (TP + TN) / total

Prediction

0 1 Q: When might evaluating
purely accuracy be
problematic?

0 TN FP
Ground A: Imbalanced datasets.
Truth
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Evaluation metrics

Confusion matrix Accuracy: (TP + TN) / total
Prediction Sensitivity / Recall (true positive rate):
0 1 TP / total positives
Specificity (true negative rate):
0 TN FP TN / total negatives
Ground
Truth _ . o
Precision (positive predictive value):
1 EN TP TP / total predicted positives

Negative predictive value:
TN / total predicted negatives

Serena Yeung BIODS 220: Al in Healthcare Lecture 3 - 112



We can trade-off different values of these

Evaluation metrics metrics as we vary our classifier's score

threshold to predict a positive

Confusion matrix Accuracy: (TP + TN) / total
Prediction Sensitivity / Recall (true positive rate):
0 1 TP / total positives
Specificity (true negative rate):
0 TN FP TN / total negatives
Ground
Truth _ . o
Precision (positive predictive value):
1 EN TP TP / total predicted positives

Negative predictive value:
TN / total predicted negatives
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Q: As prediction threshold increases, how does

Evaluation metrics that generally affect sensitivity? Specificity?
Confusion matrix Accuracy: (TP + TN) / total
Prediction Sensitivity / Recall (true positive rate):
0 1 TP / total positives
Specificity (true negative rate):
0 TN FP TN / total negatives
Ground
Truth . . . .
Precision (positive predictive value):
1 EN P TP / total predicted positives

Negative predictive value:
TN / total predicted negatives
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Q: As prediction threshold increases, how does

Evaluation metrics that generally affect sensitivity? Specificity?

A: Sensitivity goes down, specificity up

Confusion matrix Accuracy: (TP + TN) / total
Prediction Sensitivity / Recall (true positive rate):
0 1 TP / total positives
Specificity (true negative rate):
0 TN FP TN / total negatives
Ground
Truth _ . o
Precision (positive predictive value):
1 EN TP TP / total predicted positives

Negative predictive value:
TN / total predicted negatives
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Evaluation metrics

EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

- Receiver Operating Characteristic (ROC) B Y
curve: o —n

- Plots sensitivity and specificity 80 o —
(specifically, 1 - specificity) as prediction o
threshold is varied s 601 so | sy epestnspant

- Gives trade-off between sensitivity and g g5
specificity % w0, % gl

- Also report summary statistic AUC (area R
under the curve) 2 ’Sr'

7022) é lb 1Y5 210 2|5 3]0
°1 T T T T T 1
0 20 40 60 80 100

1 - Specificity, %
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Evaluation metrics

EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

- Receiver Operating Characteristic (ROC) R Y
curve, -
- Plots sensitivity and specificity 80 o —
(specifically, 1 - specificity) as prediction o
threshold is varied s 60° so | sy epestnspant
- Gives trade-off between sensitivity and g g5
specificity True * T
- Also report summary statistic AUC (areaPositive || . |
under the curve) Rate (TRR) ”T-
7022) é lb 1Y5 2]0 2|5 3|0

1 - Specificity, %

False Positive Rate (FPR)
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Evaluation metrics

1.0 —=- No Skill
—o— Logistic

- Sometimes also see precision recall
curve 0.9
- More informative when dataset is

. . g s c 0.8 A
heavily imbalanced (sensitivity =
true negative rate less meaningful £
in this case)
0.6 1
0.5 - ----------------T ------------------------
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure credit: https://3geqgpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png
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Evaluation metrics

- Selecting optimal trade-off points
- Maximize Youden’s Index
- J = sensitivity + specificity - 1
- Gives equal weight to
optimizing true positives and
true negatives

1.0

0.8 4

0.6 4

Sensitivity

0.4 1

0.2 1

0.0

ROC Chart
J
7/
N | Y
/
/
/
/
J 4
/
/
/
/
/
/
/
/
/V
/
/
0.0 0.2 04 06 0.8 1.0
1-Specificity

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve Youden_J.png
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https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

Also equal to distance above chance line for a

Evaluation metrics balanced dataset: sensitivity - (1 - specificity) =
_ _ _ sensitivity + specificity - 1
- Selecting optimal trade-off points
T ROC Chart
- Maximize Youden’s Index 10 —
e e o /
- J = sensitivity + specificity - 1 i
- Gives equal weight to 081 s
optimizing true positives and i //
true negatives = v
Sensitivity /
/
0.4 4 //
/
'/
//
0.2 1 /
/
/
/
/
0.0 T T T T T T T T T
0.0 0.2 04 0.6 08 1.0
1-Specificity

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve Youden_J.png
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Evaluation metrics

- Selecting optimal trade-off points
- Maximize Youden’s Index

Also equal to distance above chance line for a
balanced dataset: sensitivity - (1 - specificity) =
sensitivity + specificity - 1

ROC Chart
1.0 7
— //
/

- J = sensitivity + specificity - 1 p

- Gives equal weight to 08 s
optimizing true positives and i //
true negatives | P

- Sometimes also see F-measure (or ey e
F1 score) il pad

- F1 = 2*(precision*recall) / 4 //'
(precision + recall) //

- Harmonic mean of precision ol
and recall . 054.3peciﬁcsf;6 & "

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve Youden_J.png

BIODS 220: Al in Healthcare Lecture 3 - 121

Serena Yeung


https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

Evaluation metrics

- Selecting optimal trade-off points
- Maximize Youden’s Index

Also equal to distance above chance line for a
balanced dataset: sensitivity - (1 - specificity) =
sensitivity + specificity - 1

ROC Chart
1.0 7
— //
/

- J = sensitivity + specificity - 1 p

- Gives equal weight to 08 s
optimizing true positives and i //
true negatives | P

- Sometimes also see F-measure (or ey e
F1 score) il pad

- F1 = 2*(precision*recall) / 4 //'
(precision + recall) //

- Harmonic mean of precision ol
and recall . O:.S,,ecmc:; & "

But selected trade-off points could

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve Youden_J.png

also depend on application
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Case Studies of CNNs for
Medical Imaging Classification
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Early steps of deep learning in medical imaging:
using ImageNet CNN features oty

Bar et al. 2015 " ’ ‘ ‘ ‘

- Input: Chest x-ray images
- Output: Several binary Enlarged heart

classification tasks
- Right pleural effusion or not ‘

Enlarged heart or not
Healthy or abnormal nght effusion

- Very small dataset: 93 frontal "'Q ‘p”‘ T T——

chest x-ray images
Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Early steps of deep learning in medical imaging:
using ImageNet CNN features oty
Bar et al. 2015 i “w’ ‘ ‘ ‘ V(igl;g\grggrr:t
this problem?
- Input: Chest x-ray images
- Output: Several binary Enlarged heart

classification tasks
- Right pleural effusion or not ‘

Enlarged heart or not
Healthy or abnormal nght effusion

- Very small dataset: 93 frontal "Q P
chest x-ray images y " \‘

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015

- Did not train a deep learning model

on the medical data Convolution Fully connected
- Instead, extracted features from an K : e I m——
AlexNet trained on ImageNet [ N/ R ol
- 5th, 6th, and 7th layers R~ N ;f;;g;ted Yt ] f;, e :‘ ]
- Used extracted features with an P aver | Pl [ 1 OSO

SVM classifier : VIS it OO
- Performed zero-mean unit-variance
normalization of all features

y

- Evaluated combination with other Input Decafo) L7 (Decaf:)
4096 4096
hand_craf‘ted image features Activations Activations  Activations

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015

Table 1. Right Pleural Effusion Condition.

Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf LS | Decaf L6 | Decaf L7 | PiCoDest+Decaf LS
Sensitivity 0.71 0.79 0.79 0.93 0.86 0.86 0.93
Specificity 0.77 0.92 0.91 0.84 0.86 0.80 0.84
AUC 0.75 0.93 0.91 0.92 0.91 0.84 0.93
Table 2. Healthy vs. Pathology.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf L5 | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.65 0.68 0.59 0.73 0.89 0.76 0.81
Specificity 0.61 0.66 0.79 0.80 0.64 0.64 0.79
AUC 0.63 0.72 0.72 0.78 0.79 0.72 0.79
Table 3. Enlarged Heart Condition.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf L5 | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.75 0.79 0.79 0.88 0.79 0.79 0.83
Specificity 0.78 0.81 0.84 0.78 0.88 0.77 0.84
AUC 0.80 0.82 0.87 0.87 0.84 0.79 0.89

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Q: How might we
interpret the AUC vs.
CNN feature trends?

Bar et al. 2015

Table 1. Right Pleural Effusion Condition.

Low Level High Level Deep _—~— A / Fusion
LBP GIST | PiCoDes Decaf LS | Decaf LeADecat 17 |AiCoDes+Decaf L5
Sensitivity | 0.71 0.79 0.79 0.93 086~ ARG 0.93
Specificity 077 092 [ 0.91 0.84 4~T0.86 4~ | 080 & |0.84
AUC 0.75 0.93 0.91 0.92 0.91 0.84 0.93
Table 2. Healthy vs. Pathology.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf L5 | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.65 0.68 0.59 0.73 0.89 0.76 0.81
Specificity 0.61 0.66 0.79 0.80 0.64 0.64 0.79
AUC 0.63 0.72 0.72 0.78 0.79 0.72 0.79
Table 3. Enlarged Heart Condition.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf LS | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.75 0.79 0.79 0.88 0.79 0.79 0.83
Specificity 0.78 0.81 0.84 0.78 0.88 0.77 0.84
AUC 0.80 0.82 0.87 0.87 0.84 0.79 0.89

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Ciompi et al. 2015

- Task: classification of lung nodules
in 3D CT scans as peri-fissural
nodules (PFN, likely to be benign)
or not

- Dataset: 568 nodules from 1729
scans at a single institution. (65
typical PFNs, 19 atypical PFNs, 484
non-PFNSs).

- Data pre-processing: prescaling
from CT hounsfield units (HU) into
[0,255]. Replicate 3x across R,G,B
channels to match input dimensions

axial

coronal

sagittal

Of |mageNet-tl’alned CN NS- Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 2015.
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Ciompi et al. 2015

- Also extracted features from a deep learning model trained on ImageNet
- Overfeat feature extractor (similar to AlexNet, but trained using additional losses
for localization and detection)
- To capture 3D information, extracted features from 3 different 2D views of each
nodule, then input into 2-stage classifier (independent predictions on each view
first, then outputs combined into second classifier).

%Y
X
V4

OverFeat features test test
axial ol —— | overfeat-a |—— | Hra |
q
' coronal — overfeat-c | —— | Hq-c | ——| Ho |—
sagittal — | overfeat-s | ——| Hi-s =

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 2015.
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Gulshan et al. 2016

- Task: Binary classification of referable
diabetic retinopathy from retinal fundus
photographs

- Input: Retinal fundus photographs

- Output: Binary classification of referable
diabetic retinopathy (y in {0,1})

- Defined as moderate and worse
diabetic retinopathy, referable diabetic
macular edema, or both

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

- Dataset:
- 128,175 images, each graded by 3-7
ophthalmologists.
- 54 total graders, each paid to grade between
20 to 62508 images.
- Data preprocessing:
- Circular mask of each image was detected
and rescaled to be 299 pixels wide
- Model:
- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different
binary prediction problems, which were then
used for final determination of referable

. . . Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
dlabetIC retanpathy Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Graders provided finer-grained

labels which were then
GUIShan et al 201 6 caobneszlidatcéd inetoe(eaesier) binary
- Dataset: / prediction problems
- 128,175 images, each graded by 3-7
ophthalmologists.
- 54 total graders, each paid to grade between
20 to 62508 images.
- Data preprocessing:
- Circular mask of each image was detected
and rescaled to be 299 pixels wide
- Model:
- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different
binary prediction problems, which were then
used for final determination of referable

. . . Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
dlabetIC retanpathy Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

- Results: 100)
- Evaluated using ROC curves, | ¢ el
ege s epr s 1000
AUC, sensitivity and specificity 5
. High-sensitivity operating point
analysis ] 91
& : 904 High-specificity operating point
E -
4 40
"«.:2 80
20 75r'
701 :
0 5 10 15 20 25 30
0_
(I) 2b 4I0 66 SIO 160

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for

1 - Specificity, %
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

E EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

1007
ooy e Looked at different operating points
80- o High-sensitivity operating point - High-specificity point
approximated ophthalmologist
. 60 o e epecfcltyoperating ot specificity for comparison. Should
g o also use high-specificity to make
gl decisions about high-risk actions.
| 80 - High-sensitivity point should be
] AUC = 0.991 used for screening applications.
20 5
7016 5 10 15 2|0 25 30
"
0 20 40 60 80 100
1 - Specificity, % Gulshan, et al. Development and Validation of a Deep Learning Algorithm for

Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

E] Image sampling Grade sampling
110 - Training set
L ® ® 1001 @——
) . . ° ° @ O
0~ . x
2 90 Z 90
:E e = Tuning set
2 80 2 g0
& ° A
3 ®
> 70 S 70
" ®
> o >
T 60+ 5 604
= e
[} ‘o
[« (]
2 50 & 50
E A
- i =
% 40 ° %: 40+
o o
30 T T T T T T T T T T T T T T T T T T T T T 1 30 T T T T T T T 1
0 20 40 60 80 100 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45

No. of Images in Data Set (in Thousands) No. of Grades per Image, Mean

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Q: What could explain the difference in
Gulshan et al. 2016 trends for reducing # grades / image on

training set vs. tuning set, on tuning set

performance?
E] Image sampling Grade sampling
110 - Training set
L ® ® 1001 @——
] ° o ° ° L 4 @
Q. . x
_é' 901 d;‘. 90
:E e = Tuning set
2 80 2 g0
A ° &
X X
> 70 S 70
" ®
> )
£ 60 £ 60-
= e
o [
2 50+ & 50+
E A
- - —
k- 401 o % 40
o o
30 T T T T T T T T T T T T T T T T T T T T T 1 30 - T T T T T T 1
0 20 40 60 80 100 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45

No. of Images in Data Set (in Thousands) No. of Grades per Image, Mean

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Esteva et al. 2017

Melanocytic lesions Melanocytic lesions (dermoscopy)

- Two binary classification tasks: malignant
vs. benign lesions of epidermal or
melanocytic origin

- Inception-v3 (GoogLeNet) CNN with
ImageNet pre-training

- Fine-tuned on dataset of 129,450 lesions
(from several sources) comprising 2,032
diseases

- Evaluated model vs. 21 or more
dermatologists in various settings

Epidermal lesions

-
[ =4
©
[ —4
k=
©
=

Esteva®, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 2017.
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Esteva et al. 2017

- Train on finer-grained classification (757 classes) but perform binary classification at
inference time by summing probabilities of fine-grained sub-classes

- The stronger fine-grained supervision during the training stage improves inference
performance!

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

@ Acral-lentiginous melanoma i
@® Amelanotic melanoma —4® 92% malignant melanocytic lesion
® Lentigo melanoma

i ! : - f\ f\ @
o - b = s W S Y a
e \gyA D A A A AW \ i %
BO0000% Cprpy: MH onmys s 197909 8o 10 o 191 g 19 07 000018 M s @
' i ! v\ | '@ Blue nevus

@ Halo nevus —&— 8% benign melanocytic lesion
= Convolution @® Mongolian spot
= AvgPool o ..
= MaxPool \&;
= Concat
= Dropout
= Fully connected
= Softmax

Esteva®, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 2017.
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Esteva et al. 2017

- Evaluation of algorithm vs.
dermatologists

Specificity

Specificity

0

Carcinoma: 135 images

== Algorithm: AUC = 0.96
® Dermatologists (25)
@ Average dermatologist

Sensitivity

Carcinoma: 707 images

== Algorithm: AUC = 0.96

0
Sensitivity

Esteva*, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep

neural networks. Nature, 2017.
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Specificity

Specificity

Melanoma: 130 images

== Algorithm: AUC = 0.94
® Dermatologists (22)
@ Average dermatologist

Sensitivity

Melanoma: 225 images

== Algorithm: AUC = 0.96

0 1

Sensitivity

BIODS 220: Al in Healthcare

1

Specificity

Melanoma: 111 dermoscopy images

== Algorithm: AUC = 0.91
® Dermatologists (21)
@ Average dermatologist

Sensitivity

Melanoma: 1,010 dermoscopy image:

Specificity

o

== Algorithm: AUC = 0.94

0 1
Sensitivity
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Lakhani and Sundaram 2017

Binary classification of pulmonary tuberculosis from x-rays

Four de-identified datasets

1007 chest x-rays (68% train, 17.1% validation, 14.9% test)

Tried training CNNs from scratch as well as fine-tuning from ImageNet

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation* Pretrained with Augmentation*
AlexNet 0.90 (0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GooglLeNet 0.88 (0.81,0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

Binary classification of pulmonary tuberculosis from x-rays

Four de-identified datasets

1007 chest x-rays (68% train, 17.1% validation, 14.9% test)

Tried training CNNs from scratch as well as fine-tuning from ImageNet

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation® Pretrained with Augmentation*
AlexNet 0.90 {0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GoogLeNet 0.88 (0.81,0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

All training images were resized to 256x256 and underwent
base data augmentation of random 227x227 cropping and
mirror images. Additional data augmentation experiments in
results table.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

Binary classification of pulmonary tuberculosis from x-rays

Four de-identified datasets

1007 chest x-rays (68% train, 17.1% validation, 14.9% test)

Tried training CNNs from scratch as well as fine-tuning from ImageNet

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation® Pretrained with Augmentation*
AlexNet 0.90 {0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GoogLeNet 0.88 (0.81,0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

All training images were resized to 256x256 ard-underwent  fen resize to match input size of
base data augmentation of random 227x227 cropping and pre-trained networks. Also fine approach to

mirror images. Additional data augmentation experiments in making high-res dataset easier to work with!
results table.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017
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Lakhani and Sundaram 2017
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Serena Yeung

0.2

0.4 0.6
1 - Specificity

0.8

1.0

Sensitivity

o
FS

1.0

0.8

o
o

0.2

Performed further analysis at optimal
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Rajpurkar et al. 2017

- Binary classification of pneumonia
presence in chest X-rays

Input

- Used ChestX-ray14 dataset with over Chest X-Ray Image
100,000 frontal X-ray images with 14 CheXNet
diseases 121-layer CNN

- 121-layer DenseNet CNN I?ngzﬂgrt\ia Positive (85%)

- Compared algorithm performance with 4
radiologists

- Also applied algorithm to other diseases to
surpass previous state-of-the-art on
ChestX-ray14

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest
X-Rays with Deep Learning. 2017.
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McKinney et al. 2020

- Binary classification of breast cancer in mammograms
- International dataset and evaluation, across UK and US

Test datasets Ground-truth determination
éE é Positive if biopsy-confirmed
» within T + 3 months Otherwise, negative if a second exam
Number of women 25,856 3,097 occurred after T— A
Interpretation Double reading Single reading
Screening interval 3 years 1 or 2 years I3 2T
Index exam
Cancer follow-up 39 months 27 months Last available data
Number of cancers 414 (1.6%) 686 (22.2%) Screening interval (T)
Evaluation
Comparison with retrospective Generalization Independently conducted
clinical performance across datasets reader study
R1
Al system read < R2
= ~ é R3
- = R4
e Trained on Tested on g5
Clinician read UK training set  US test set R6
UK and 6 radiologists read 500 cases
US test sets from US test set

McKinney et al. International evaluation of an Al system for breast cancer screening. Nature, 2020.
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Summary

Today we saw:

e Deep learning models for image classification

e Data considerations for image classification models
e Evaluating image classification models

e C(Case studies

Next time: Medical Images: Advanced Vision Models (Detection and
Segmentation)
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