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Lecture 4:
Medical Images: 

Classification (Part 2), 
Segmentation, Detection



2Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Announcements
- A0 was due yesterday
- A1 was also released yesterday, due in 2 weeks (Tue 10/6)

- You will need to download several datasets to do the assignment. Make sure to start early!
- 3 parts:

- Medical image classification
- Medical image segmentation in 2D
- Medical image segmentation in 3D, with semi-supervised learning

- Tensorflow Review Session this Fri 1pm, helpful for A1



3Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Announcements - Course project
- Start thinking about your course project

- Project proposal due Fri 10/9
- See http://biods220.stanford.edu/finalproject.html for all course project components and 

requirements
- We have released some project ideas (curated from the Stanford community) on Piazza

- Project ideas are not vetted, you need to do your due diligence
- Is the dataset easily accessible and well suited to machine learning? Access 

and play with the data before the project proposal.
- Is there a clearly defined task for which you can apply deep learning?
- Can you evaluate your method?
- Will need to answer these questions in the project proposal

- If you are not sure, come to any of the teaching staff office hours. We are happy to 
discuss your project with you!

http://biods220.stanford.edu/finalproject.html
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Google dataset search
  datasetsearch.research.google.com
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Announcements - Course project
- Preview of graded components:

- Proposal: Due Fri 10/9.
- Milestone: Due Fri 10/30.
- Project milestone presentations (4-5 min): During Mon 11/2 class time.
- TA project advising sessions: Sign-up by Fri 11/6.
- Final project presentations (4-5 min): During Wed 11/18 class time.
- Final report due: Fri 11/20.
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Last time: Deep learning models for image classification

X-rays (invented 1895). CT (invented 1972). MRI (invented 1977).

E.g.:
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32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
Convolutional layer

Slide credit: CS231n
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Preview: ConvNet (or CNN) is a sequence of Convolution Layers, interspersed 
with activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

Slide credit: CS231n
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner

Slide credit: CS231n
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VGGNet
[Simonyan and Zisserman, 2014]

Small filters, Deeper networks
 
8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

AlexNet VGG16 VGG19
Slide credit: CS231n
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GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- Avoids expensive FC layers using 

a global averaging layer
- 12x less params than AlexNet

Slide credit: CS231n

Also called “Inception Network”
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..

.

ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers

Slide credit: CS231n
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..

.

ResNet
[He et al., 2015]

Total depths of 34, 50, 101, or 
152 layers for ImageNet

Slide credit: CS231n
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Common loss functions
You will find these in tensorflow!

In Keras:

Mean squared error (MSE) is another 
name for regression loss

Covers both BCE and Softmax loss 
(remember softmax is a multiclass 
extension of BCE)

Hinge is another name for 
SVM loss, due to the loss 
function shape.

https://keras.io/losses/

https://keras.io/losses/
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How much data do you need for deep learning?

A: A lot.
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer 
features

You’re in 
trouble… Try 
linear classifier 
on different layer 
features

quite a lot of 
data

Finetune a few 
layers

Finetune a large 
number 
of layers

Slide credit: CS231n

Transfer learning from a large dataset to your dataset...

Often good idea to try this first, try fine-tuning all layers of the network 
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Today:
Medical Images: Classification

● Deep learning models for image classification
● Data considerations for image classification models
● Evaluating image classification models
● Case studies

Medical Images: Advanced Vision Models (Detection and Segmentation)
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Evaluating image classification models



19Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Q: When might evaluating 
purely accuracy be 
problematic?
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Q: When might evaluating 
purely accuracy be 
problematic?

A: Imbalanced datasets.
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives

As we vary our classifier’s score threshold to 
predict a positive, we can trade-off different 
values of these metrics 
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives

Q: As prediction threshold increases, how does 
that generally affect sensitivity? Specificity?
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Evaluation metrics

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives

Q: As prediction threshold increases, how does 
that generally affect sensitivity? Specificity?
A: Sensitivity goes down, specificity up
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- Receiver Operating Characteristic (ROC) 
curve:

- Plots sensitivity and specificity 
(specifically, 1 - specificity) as prediction 
threshold is varied

- Gives trade-off between sensitivity and 
specificity

- Also report summary statistic AUC (area 
under the curve)

Evaluation metrics
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- Receiver Operating Characteristic (ROC) 
curve:

- Plots sensitivity and specificity 
(specifically, 1 - specificity) as prediction 
threshold is varied

- Gives trade-off between sensitivity and 
specificity

- Also report summary statistic AUC (area 
under the curve)

Evaluation metrics

True 
Positive 
Rate (TPR)

False Positive Rate (FPR)
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- Sometimes also see precision recall 
curve

- More informative when dataset is 
heavily imbalanced (specificity = 
true negative rate less meaningful 
in this case)

Evaluation metrics

Figure credit: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png
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- Selecting optimal trade-off points
- Maximize Youden’s Index

- J = sensitivity + specificity - 1
- Gives equal weight to 

optimizing true positives and 
true negatives

Evaluation metrics

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png
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- Selecting optimal trade-off points
- Maximize Youden’s Index

- J = sensitivity + specificity - 1
- Gives equal weight to 

optimizing true positives and 
true negatives

Evaluation metrics

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

Also equal to distance above chance line for a 
balanced dataset: sensitivity - (1 - specificity) = 
sensitivity + specificity - 1

https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png
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- Selecting optimal trade-off points
- Maximize Youden’s Index

- J = sensitivity + specificity - 1
- Gives equal weight to 

optimizing true positives and 
true negatives

- Sometimes also see F-measure (or 
F1 score)

- F1 = 2*(precision*recall) / 
(precision + recall)

- Harmonic mean of precision 
and recall

Evaluation metrics

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

Also equal to distance above chance line for a 
balanced dataset: sensitivity - (1 - specificity) = 
sensitivity + specificity - 1

https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png
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- Selecting optimal trade-off points
- Maximize Youden’s Index

- J = sensitivity + specificity - 1
- Gives equal weight to 

optimizing true positives and 
true negatives

- Sometimes also see F-measure (or 
F1 score)

- F1 = 2*(precision*recall) / 
(precision + recall)

- Harmonic mean of precision 
and recall

Evaluation metrics

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png

Also equal to distance above chance line for a 
balanced dataset: sensitivity - (1 - specificity) = 
sensitivity + specificity - 1

But selected trade-off points could 
also depend on application

https://en.wikipedia.org/wiki/File:ROC_Curve_Youden_J.png
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Case Studies of CNNs for 
Medical Imaging Classification
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Early steps of deep learning in medical imaging: 
using ImageNet CNN features
Bar et al. 2015

- Input: Chest x-ray images
- Output: Several binary 

classification tasks
- Right pleural effusion or not
- Enlarged heart or not
- Healthy or abnormal

- Very small dataset: 93 frontal 
chest x-ray images

Healthy

Enlarged heart

Right effusion

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Early steps of deep learning in medical imaging: 
using ImageNet CNN features
Bar et al. 2015

- Input: Chest x-ray images
- Output: Several binary 

classification tasks
- Right pleural effusion or not
- Enlarged heart or not
- Healthy or abnormal

- Very small dataset: 93 frontal 
chest x-ray images

Healthy

Enlarged heart

Right effusion

Q: How might 
we approach 
this problem?

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015
- Did not train a deep learning model 

on the medical data
- Instead, extracted features from an 

AlexNet trained on ImageNet
- 5th, 6th, and 7th layers

- Used extracted features with an 
SVM classifier

- Performed zero-mean unit-variance 
normalization of all features

- Evaluated combination with other 
hand-crafted image features

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015 Q: How might we 
interpret the AUC vs. 
CNN feature trends? 

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.



39Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Ciompi et al. 2015

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an 
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis,  2015.

- Task: classification of lung nodules 
in 3D CT scans as peri-fissural 
nodules (PFN, likely to be benign) 
or not

- Dataset: 568 nodules from 1729 
scans at a single institution. (65 
typical PFNs, 19 atypical PFNs, 484 
non-PFNs).

- Data pre-processing: prescaling 
from CT hounsfield units (HU) into 
[0,255]. Replicate 3x across R,G,B 
channels to match input dimensions 
of ImageNet-trained CNNs.
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Ciompi et al. 2015
- Also extracted features from a deep learning model trained on ImageNet

- Overfeat feature extractor (similar to AlexNet, but trained using additional losses 
for localization and detection)

- To capture 3D information, extracted features from 3 different 2D views of each 
nodule, then input into 2-stage classifier (independent predictions on each view 
first, then outputs combined into second classifier).

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an 
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis,  2015.
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Gulshan et al. 2016
- Task: Binary classification of referable 

diabetic retinopathy from retinal fundus 
photographs

- Input: Retinal fundus photographs
- Output: Binary classification of referable 

diabetic retinopathy (y in {0,1})
- Defined as moderate and worse 

diabetic retinopathy, referable diabetic 
macular edema, or both

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016
- Dataset:

- 128,175 images, each graded by 3-7 
ophthalmologists.

- 54 total graders, each paid to grade between 
20 to 62508 images.

- Data preprocessing: 
- Circular mask of each image was detected 

and rescaled to be 299 pixels wide
- Model:

- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different 

binary prediction problems, which were then 
used for final determination of referable 
diabetic retinopathy Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 

Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016
- Dataset:

- 128,175 images, each graded by 3-7 
ophthalmologists.

- 54 total graders, each paid to grade between 
20 to 62508 images.

- Data preprocessing: 
- Circular mask of each image was detected 

and rescaled to be 299 pixels wide
- Model:

- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different 

binary prediction problems, which were then 
used for final determination of referable 
diabetic retinopathy 

Graders provided finer-grained 
labels which were then 
consolidated into (easier) binary 
prediction problems

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016
- Results:

- Evaluated using ROC curves, 
AUC, sensitivity and specificity 
analysis

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

AUC = 0.991

Looked at different operating points
- High-specificity point 

approximated ophthalmologist 
specificity for comparison. Should 
also use high-specificity to make 
decisions about high-risk actions.

- High-sensitivity point should be 
used for screening applications.

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016
Q: What could explain the difference in 
trends for reducing # grades / image on 
training set vs. tuning set, on tuning set 
performance?

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Esteva et al. 2017
- Two binary classification tasks on 

dermatology images: malignant vs. 
benign lesions of epidermal or melanocytic 
origin

- Inception-v3 (GoogLeNet) CNN with 
ImageNet pre-training

- Fine-tuned on dataset of 129,450 lesions 
(from several sources) comprising 2,032 
diseases

- Evaluated model vs. 21 or more 
dermatologists in various settings

Esteva*, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature, 2017.
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Esteva et al. 2017
- Train on finer-grained classification (757 classes) but perform binary classification at 

inference time by summing probabilities of fine-grained sub-classes
- The stronger fine-grained supervision during the training stage improves inference 

performance!

Esteva*, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature, 2017.
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Esteva et al. 2017
- Evaluation of algorithm vs. 

dermatologists

Esteva*, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature, 2017.
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Lakhani and Sundaram 2017

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.

- Binary classification of pulmonary tuberculosis from x-rays
- Four de-identified datasets
- 1007 chest x-rays (68% train, 17.1% validation, 14.9% test)
- Tried training CNNs from scratch as well as fine-tuning from ImageNet
-
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Lakhani and Sundaram 2017
- Binary classification of pulmonary tuberculosis from x-rays
- Four de-identified datasets
- 1007 chest x-rays (68% train, 17.1% validation, 14.9% test)
- Tried training CNNs from scratch as well as fine-tuning from ImageNet
-

All training images were resized to 256x256 and underwent 
base data augmentation of random 227x227 cropping and 
mirror images. Additional data augmentation experiments in 
results table.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017
- Binary classification of pulmonary tuberculosis from x-rays
- Four de-identified datasets
- 1007 chest x-rays (68% train, 17.1% validation, 14.9% test)
- Tried training CNNs from scratch as well as fine-tuning from ImageNet

All training images were resized to 256x256 and underwent 
base data augmentation of random 227x227 cropping and 
mirror images. Additional data augmentation experiments in 
results table.

Often resize to match input size of 
pre-trained networks. Also fine approach to 
making high-res dataset easier to work with!

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.

Performed further analysis at optimal 
threshold determined by the Youden 
Index.
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Rajpurkar et al. 2017
- Binary classification of pneumonia 

presence in chest X-rays
- Used ChestX-ray14 dataset with over 

100,000 frontal X-ray images with 14 
diseases

- 121-layer DenseNet CNN
- Compared algorithm performance with 4 

radiologists
- Also applied algorithm to other diseases to 

surpass previous state-of-the-art on 
ChestX-ray14

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest 
X-Rays with Deep Learning. 2017.
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McKinney et al. 2020
- Binary classification of breast cancer in mammograms
- International dataset and evaluation, across UK and US

McKinney et al. International evaluation of an AI system for breast cancer screening. Nature, 2020.
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Advanced Vision Models: 
Segmentation and Detection
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Richer visual recognition tasks: segmentation and detection

Figures: Chen et al. 2016. https://arxiv.org/pdf/1604.02677.pdf

Classification

Output: 
one category label for 
image (e.g., colorectal 

glands)

Semantic 
Segmentation

Detection Instance
Segmentation

Output: 
category label for each pixel 

in the image

Output: 
Spatial bounding box for 

each instance of a 
category object in the 

image

Output: 
Category label and instance 

label for each pixel in the 
image

https://arxiv.org/pdf/1604.02677.pdf
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Richer visual recognition tasks: segmentation and detection

Figures: Chen et al. 2016. https://arxiv.org/pdf/1604.02677.pdf

Classification

Output: 
one category label for 
image (e.g., colorectal 

glands)

Semantic 
Segmentation

Detection Instance
Segmentation

Output: 
category label for each pixel 

in the image

Output: 
Spatial bounding box for 

each instance of a 
category object in the 

image

Output: 
Category label and instance 

label for each pixel in the 
image

Distinguishes between different instances of an object

https://arxiv.org/pdf/1604.02677.pdf
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Output is an image 
mask: width x height x 
# classes
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Output is an image 
mask: width x height x 
# classes

Output image size a little 
smaller than original, due to 
convolutional operations w/o 
padding
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Output is an image 
mask: width x height x 
# classes

Output image size a little 
smaller than original, due to 
convolutional operations w/o 
padding

Gives more “true” context for 
reasoning over each image area. 
Can tile to make predictions for 
arbitrarily large images
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Max pooling 
enables 
aggregation of 
increasingly 
more context 
(higher level 
features)
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

A few conv 
layers at 
every 
resolution
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Highest-level features 
encoding large spatial 
context



68Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Up-convolutions to go from 
the global information 
encoded in highest-level 
features, back to individual 
pixel predictions
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Input: 4 x 4 Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Up-convolutions
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Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Up-convolutions
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Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Filter moves 2 pixels in 
the input for every one 
pixel in the output

Stride gives ratio between 
movement in input and 
output

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Up-convolutions
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3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Up-convolutions
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

3 x 3 up-convolution, stride 2 pad 1

Up-convolutions
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

3 x 3 up-convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Up-convolutions
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps3 x 3 up-convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Up-convolutions
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps3 x 3 up-convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Other names:
-Transpose 
convolution
-Fractionally strided 
convolution
-Backward strided 
convolution

Up-convolutions
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Concatenate with 
same-resolution feature map 
during downsampling 
process to combine 
high-level information with 
low-level (local) information
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Train with classification loss 
(e.g. binary cross entropy) 
on every pixel, sum over all 
pixels to get total loss
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Semantic segmentation: IOU evaluation

Intersection over Union:
# pixels included in both 
target and prediction 
maps

Total # pixels in the 
union of both masks



80Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Semantic segmentation: IOU evaluation

Intersection over Union:
# pixels included in both 
target and prediction 
maps

Total # pixels in the 
union of both masks

Can compute this over all masks in the 
evaluation set, or at individual mask and image 
levels to get finer-grained understanding of 
performance.
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Semantic segmentation: IOU evaluation

Intersection over Union:
# pixels included in both 
target and prediction 
maps

Total # pixels in the 
union of both masks

Can compute this over all masks in the 
evaluation set, or at individual mask and image 
levels to get finer-grained understanding of 
performance. Also known as Jaccard 

Index
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Semantic segmentation: Pixel Accuracy evaluation



83Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Semantic segmentation: Pixel Accuracy evaluation

TP + TN

Total pixels 
in image
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Semantic segmentation: Pixel Accuracy evaluation

TP + TN

Total pixels 
in imageQ: What is a potential 

problem with this?
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Semantic segmentation: Pixel Accuracy evaluation

TP + TN

Total pixels 
in imageQ: What is a potential 

problem with this?

A: Think about what 
happens when there is class 
imbalance.
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Semantic segmentation: Dice coefficient evaluation
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Semantic segmentation: Dice coefficient evaluation

2 * intersection

Sum of target mask size 
+ prediction mask size

Very similar to IOU / 
Jaccard, can derive one 
from the other
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Semantic segmentation: summary of evaluation 
metrics

● Most commonly use IOU / Jaccard or Dice Coefficient
● Sometimes will also see pixel accuracy
● If multi-class segmentation task, typically report all these metrics per-class, 

and then a mean over all classes
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Semantic segmentation: U-Net cell segmentation

Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Very small dataset: 30 training images of size 512x512, 
in the ISBI 2012 Electron Microscopy (EM) segmentation 
challenge. Used excessive data augmentation to 
compensate.
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Aside: segmentation through sliding-window pixel classification 

Ciresan et al. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. NeurIPS, 2012.

Note: a simple approach to segmentation can also be applying a classification CNN on image 
patches in a dense, sliding-window fashion (e.g. Ciresan et al.). But fully convolutional 
approaches such as U-Net generally achieve better performance.

Image patch: input to 
classification network

Classification 
output is 
prediction for the 
center pixel of 
the patch
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Novikov et al. 2018
- Chest x-ray segmentation of lungs, clavicles, and heart
- JSRT dataset of 247 chest-xrays at 2048x2048 resolution. (But 

downsampled to 128x128 and 256x256!)
- Used a U-Net based segmentation network with a few modifications

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Novikov et al. 2018
- Chest x-ray segmentation of lungs, clavicles, and heart
- JSRT dataset of 247 chest-xrays at 2048x2048 resolution. (But 

downsampled to 128x128 and 256x256!)
- Used a U-Net based segmentation network with a few modifications

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.

Q: What loss function 
would be appropriate 
here?
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Novikov et al. 2018
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss 

based on the Dice coefficient.
- Class imbalance -> weight loss terms corresponding to each ground-truth class 

by inverse of class frequency: (# class pixels) / (total # pixels in data)

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Novikov et al. 2018
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss 

based on the Dice coefficient.
- Class imbalance -> weight loss terms corresponding to each ground-truth class 

by inverse of class frequency: (# class pixels) / (total # pixels in data)

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.

Image ground truth class mask

Image pixel class probabilities

Note: this Dice loss is often useful to try!
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Novikov et al. 2018
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss 

based on the Dice coefficient.
- Class imbalance -> weight loss terms corresponding to each ground-truth class 

by inverse of class frequency: (# class pixels) / (total # pixels in data)

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.

Dice and 
Jaccard 
evaluation

Image ground truth class mask

Image pixel class probabilities

Note: this Dice loss is often useful to try!
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Dong et al. 2017
- Segmentation of tumors in brain MR image slices
- BRATS 2015 dataset: 220 high-grade brain tumor and 54 low-grade brain tumor MRIs
- U-Net architecture, Dice loss function

Dong et al. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. MIUA, 2017.
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Other segmentation architectures
- Fully convolutional networks (FCN)
- Pre-cursor to U-Net, similar in 

structure but simpler upsampling 
pathway

Chen et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, 
Atrous Convolution, and Fully Connected CRFs. IEEE TPAMI, 2017.
Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. 2917. 

- DeepLab (v1-v3)
- Uses “atrous convolutions” to control a 

filter’s field of view
- Parallel atrous convolutions with 

different rates for multi-scale features

Shelhamer*, Long*, et al. Fully Convolutional Networks for Semantic 
Segmentation. CVPR 2015.

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
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Other segmentation architectures
- Fully convolutional networks (FCN)
- Pre-cursor to U-Net, similar in 

structure but simpler upsampling 
pathway

Chen et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, 
Atrous Convolution, and Fully Connected CRFs. IEEE TPAMI, 2017.
Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. 2917. 

- DeepLab (v1-v3+)
- Uses “atrous convolutions” to control a 

filter’s field of view
- Parallel atrous convolutions with 

different rates for multi-scale features

Shelhamer*, Long*, et al. Fully Convolutional Networks for Semantic 
Segmentation. CVPR 2015.

Can try DeepLab v3+ 
for segmentation 
projects!

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
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Richer visual recognition tasks: segmentation and detection

Figures: Chen et al. 2016. https://arxiv.org/pdf/1604.02677.pdf

Classification

Output: 
one category label for 
image (e.g., colorectal 

glands)

Semantic 
Segmentation

Detection Instance
Segmentation

Output: 
category label for each pixel 

in the image

Output: 
Spatial bounding box for 

each instance of a 
category object in the 

image

Output: 
Category label and instance 

label for each pixel in the 
image

Distinguishes between different instances of an object

https://arxiv.org/pdf/1604.02677.pdf
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Object detection: 
Faster R-CNN

CNN backbone (any 
CNN network that 
produces spatial feature 
map outputs)
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Object detection: 
Faster R-CNN

Regress to bounding box “candidates” 
from “anchor boxes” at each location
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Object detection: 
Faster R-CNN

In each of top 
bounding box 
candidate locations, 
crop features within 
box (treat as own 
image) and perform 
further refinement of 
bounding box + 
classification
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Girshick, “Fast R-CNN”, ICCV 2015. Image features

“Snap” to 
grid cells

Divide into grid of (roughly) 
equal subregions, 
corresponding to fixed-size 
input required for final 
classification / bounding box 
regression networks

Max-pool within 
each subregion

Cropping Features: RoI Pool



104Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

Obtain from 
model outputs
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Remember: ROC and precision recall curves
- Receiver Operating Characteristic (ROC) 

curve:
- Plots sensitivity and specificity 

(specifically, 1 - specificity) as prediction 
threshold is varied

- Gives trade-off between sensitivity and 
specificity

- Also report summary statistic AUC (area 
under the curve)

Figure credit: Gulshan et al. 2016
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Remember: ROC and precision recall curves
- Receiver Operating Characteristic (ROC) 

curve:
- Plots sensitivity and specificity 

(specifically, 1 - specificity) as prediction 
threshold is varied

- Gives trade-off between sensitivity and 
specificity

- Also report summary statistic AUC (area 
under the curve)

Plot curve is based on TP, TN, FP, FN when 
varying the prediction threshold -- i.e., class 
confidence threshold

Figure credit: Gulshan et al. 2016
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Remember: ROC and precision recall curves

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives
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- Sometimes also see precision recall 
curve

- More informative when dataset is 
heavily imbalanced (specificity = 
true negative rate less meaningful 
in this case)

Figure credit: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png

Remember: ROC and precision recall curves
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- Sometimes also see precision recall 
curve

- More informative when dataset is 
heavily imbalanced (specificity = 
true negative rate less meaningful 
in this case)

Figure credit: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png

Remember: ROC and precision recall curves

Object detection is typically heavily imbalanced 
(most of the data is background) -> PR curves 
most common evaluation
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- Sometimes also see precision recall 
curve

- More informative when dataset is 
heavily imbalanced (specificity = 
true negative rate less meaningful 
in this case)

Figure credit: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png

Remember: ROC and precision recall curves

Object detection is typically heavily imbalanced 
(most of the data is background) -> PR curves 
most common evaluation

Report AUC per-class. 
Usually called “average 
precision (AP)”. Also 
report average of APs 
over all classes, called 
“mean AP”.
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

Obtain from 
model outputs
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

Obtain from 
model outputs

We have the class confidences to vary the threshold in 
plotting the PR curve. But how do we get TP, TN, FP, FN?
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

Obtain from 
model outputs

We have the class confidences to vary the threshold in 
plotting the PR curve. But how do we get TP, TN, FP, FN?

A: Choose an IOU threshold with ground truth boxes to 
determine if bounding box prediction is TP, TN, FP, or FN. 
Then can plot PR curve and obtain AP metric.



115Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

We have the class confidences to vary the threshold in 
plotting the PR curve. But how do we get TP, TN, FP, FN?

A: Choose an IOU threshold with ground truth boxes to 
determine if bounding box prediction is TP, TN, FP, or FN. 
Then can plot PR curve and obtain AP metric.
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

We have the class confidences to vary the threshold in 
plotting the PR curve. But how do we get TP, TN, FP, FN?

A: Choose an IOU threshold with ground truth boxes to 
determine if bounding box prediction is TP, TN, FP, or FN. 
Then can plot PR curve and obtain AP metric.

mAP (over all 
classes), with IOU 
threshold of 0.5. 
Often report mAP at 
multiple IOUs.
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

We have the class confidences to vary the threshold in 
plotting the PR curve. But how do we get TP, TN, FP, FN?

A: Choose an IOU threshold with ground truth boxes to 
determine if bounding box prediction is TP, TN, FP, or FN. 
Then can plot PR curve and obtain AP metric.

mAP (over all 
classes), with IOU 
threshold of 0.5. 
Often report mAP at 
multiple IOUs.

If IOU threshold not specified in 
experiments description for a paper, 
may need to look in dataset evaluation 
documentation. Default is often 0.5.
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

We have the class confidences to vary the threshold in 
plotting the PR curve. But how do we get TP, TN, FP, FN?

A: Choose an IOU threshold with ground truth boxes to 
determine if bounding box prediction is TP, TN, FP, or FN. 
Then can plot PR curve and obtain AP metric.

mAP (over all 
classes), with IOU 
threshold of 0.5. 
Often report mAP at 
multiple IOUs.

Average of mAP 
values at IOU 
thresholds regularly 
sampled in the 
interval between 
[.5, .95].

If IOU threshold not specified in 
experiments description for a paper, 
may need to look in dataset evaluation 
documentation. Default is often 0.5.
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Jin et al. 2018
- Detection of surgical instruments in 

surgery videos (in each video frame)

- Surgical instrument movement over the 
course of a video can be used to extract 
metrics such as tool switching, and 
spatial trajectories, that can be used to 
assess and provide feedback on 
operative skill.

- Used M2cai16-tool dataset of 15 surgical 
videos. Annotated 2532 frames with 
bounding boxes of 7 tools.

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.
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Jin et al. 2018

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.
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Jin et al. 2018

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.
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Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.

http://www.youtube.com/watch?v=5ZX0KzUkGew
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Other object detection architectures
- RCNN, Fast RCNN: older and slower predecessors to Faster-RCNN

- YOLO, SSD: single-stage detectors that change region proposal generation -> 
region classification two-stage pipeline into a single stage. 

- Faster, but lower performance. Struggles more with class imbalance relative to two-stage 
networks that filter only top object candidate boxes for the second stage.

- RetinaNet: single-stage detector that uses a “focal loss” to adaptively weight 
harder examples over easy background examples. Able to outperform Faster 
R-CNN on some benchmark tasks, while being more efficient.
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Other object detection architectures
- RCNN, Fast RCNN: older and slower predecessors to Faster-RCNN

- YOLO, SSD: single-stage detectors that change region proposal generation -> 
region classification two-stage pipeline into a single stage. 

- Faster, but lower performance. Struggles more with class imbalance relative to two-stage 
networks that filter only top object candidate boxes for the second stage.

- RetinaNet: single-stage detector that uses a “focal loss” to adaptively weight 
harder examples over easy background examples. Able to outperform Faster 
R-CNN on some benchmark tasks, while being more efficient.

RetinaNet also worth trying 
for object detection projects!
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Richer visual recognition tasks: segmentation and detection

Figures: Chen et al. 2016. https://arxiv.org/pdf/1604.02677.pdf

Classification

Output: 
one category label for 
image (e.g., colorectal 

glands)

Semantic 
Segmentation

Detection Instance
Segmentation

Output: 
category label for each pixel 

in the image

Output: 
Spatial bounding box for 

each instance of a 
category object in the 

image

Output: 
Category label and instance 

label for each pixel in the 
image

Distinguishes between different instances of an object

https://arxiv.org/pdf/1604.02677.pdf
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Instance segmentation:
Mask R-CNN

Mask Prediction

Add a small mask 
network that operates 
on each RoI to predict 
a segmentation mask



127Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -127

Cropping Features: RoI Align

Image features
(e.g. 512 x 20 x 15)

Sample at regular points 
in each subregion using 
bilinear interpolationNo “snapping”!

Improved version of RoI 
Pool since we now care 
about pixel-level 
segmentation accuracy!
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Cropping Features: RoI Align

Image features

Sample at regular points 
in each subregion using 
bilinear interpolationNo “snapping”!

Feature fxy for point (x, y) 
is a linear combination of 
features at its four 
neighboring grid cells

Improved version of RoI 
Pool since we now care 
about pixel-level 
segmentation accuracy!



129Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance
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Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance
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Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance

Average AP over different 
IOU thresholds



132Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance

Average AP over different 
IOU thresholds

AP at specific thresholds (“mean AP” is implicit here)
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Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance

Average AP over different 
IOU thresholds

AP at specific thresholds (“mean AP” is implicit here)

AP for small, 
medium, large 
objects
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Example: instance segmentation of cell nuclei
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Many interesting extensions

Hollandi et al. A deep learning framework for nucleus segmentation using image style transfer. 2019.

- E.g. Hollandi et al. 2019

- Used “style transfer” 
approaches for rich 
data augmentation

- Refined Mask-RCNN 
instance segmentation 
results with further 
U-Net-based boundary 
refinement
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Lung nodule segmentation

Liu et al. Segmentation of Lung Nodule in CT Images Based on Mask R-CNN. 2018.

- E.g. Liu et al. 2018

- Dataset: Lung Nodule Analysis (LUNA) challenge, 888 512x512 CT scans from the 
Lung Image Data Consortium database (LIDC-IDRI).

- Performed 2D instance segmentation in 2D CT slices

We will see other ways 
to handle 3D medical 
data types in the next 
lecture
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Summary
Finished up medical image classification

Beyond classification to richer visual recognition tasks

- Semantic segmentation
- Object detection
- Instance segmentation

Next time: Advanced vision models (3D and video)


