Lecture 4
Medical Images:

Classification (Part 2),
Segmentation, Detection
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Announcements

- A0 was due yesterday

- A1 was also released yesterday, due in 2 weeks (Tue 10/6)
- You will need to download several datasets to do the assignment. Make sure to start early!
- 3 parts:
- Medical image classification
- Medical image segmentation in 2D
- Medical image segmentation in 3D, with semi-supervised learning

- Tensorflow Review Session this Fri 1pm, helpful for A1

Serena Yeung BIODS 220: Al in Healthcare Lecture 4 - 2



Announcements - Course project

- Start thinking about your course project
- Project proposal due Fri 10/9
- See hitp://biods220.stanford.edu/finalproject.html for all course project components and
requirements
- We have released some project ideas (curated from the Stanford community) on Piazza
- Project ideas are not vetted, you need to do your due diligence
- Is the dataset easily accessible and well suited to machine learning? Access
and play with the data before the project proposal.
- Is there a clearly defined task for which you can apply deep learning?
- Can you evaluate your method?
- Will need to answer these questions in the project proposal
- If you are not sure, come to any of the teaching staff office hours. We are happy to

discuss your project with you!
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Google dataset search

datasetsearch.research.google.com

Go gIe Q_  lung nodule detection| X o B

~ Updated Date ~ Download Format ~ Usage Rights Free

100+ datasets found
kaggle

kaggle Lung Nodule Malignancy

www.kaggle.com Lung Nodule Malignancy
Updated Sep 21, 2017 From icious nodules to di
LUng Nodule Analysis (LUNA16)
218 scholarly articles cite this dataset (View in Google Scholar)
Alllmages

academictorrents.com
Dataset updated Sep 21,2017
Updated Jul 15,2018

Authors
i o Kevin Madt
Detection of artificial Sece
pulmonary lung nodules in... License
figshare.com Other (specified in description)

Updated Jan 4, 2018 ’ .
4 Available download formats from providers

hdf5 (64618370 bytes), csv (65813 bytes), zip (175233019 bytes), tif (110548836 bytes)

Applying Ant Colony Description
Optimization algorithms and...
Context
www.researchgate.net
Updated Dec 6, 2013 The DataScienceBow! covered the whole process of diagnosing lung cancer and | am to make the individual steps more clear. After segmenting lungs and ident

malignant or benign.
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Announcements - Course project

- Preview of graded components:
- Proposal: Due Fri 10/9.
- Milestone: Due Fri 10/30.
- Project milestone presentations (4-5 min): During Mon 11/2 class time.
- TA project advising sessions: Sign-up by Fri 11/6.
- Final project presentations (4-5 min): During Wed 11/18 class time.
- Final report due: Fri 11/20.
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Last time: Deep learning models for image classification

s

X-rays (invented 1895). CT (invented 1972). MRI (invented 1977).
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_ consider a second, green filter
Convolutional layer

_— 32x32x3 image activation maps

5x5x3 filter
2
@>® ”

convolve (slide) over all
spatial locations

32 / 28

Slide credit: CS231n
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Preview: ConvNet (or CNN) is a sequence of Convolution Layers, interspersed
with activation functions

32 28 24
CONV, CONV, CONV,
RelU RelLU RelLU
2-95- % e.g. 10
XoX 5x5x6
32 filters 28 filters 24
3 6 10

Slide credit: CS231n
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
- First CNN-based winner 152 layers| |152 layers| |152 layers
/ Ao Ao A
20
16.4
15
11.7  |191ayers| |22 layers |
10 7
7.3 6.7
B 5.1
Alaea
=
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & | Krizhevsky etal| Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)

Slide credit: CS231n
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VGGNet

Softmax FC 4096
[Simonyan and Zisserman, 2014] FC 1000 FCa0%
FC 4096 Pool
FC 4096 3x3 conv, 512
Pool 3x3 conv, 512

Small filters, Deeper networks

3x3 conv, 512 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512 Pool

3x3 conv, 512

Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512

8 layers (AlexNet) __
-> 16 - 19 layers (VGG 16Net) T

FC 4096
FC 4096

3x3 conv, 512

3x3 conv, 512

l |
| ]
| ]
l ]
l ]
l ]
l ]
l ]
l ]
l ]
l ]
| 3x3conv, 512 |
l ]
l ]
l ]
| ]
l ]
l ]
l ]
l ]
l ]
l ]

Pool Pool
3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2 56 o 561

3x3 conv, 384

Pool Pool
3x3 conv, 128

3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

Pool Pool
5x5 conv, 256 3x3 conv, 64 3x3 conv, 64
11x11 conv, 96 3x3 conv, 64 3x3 conv, 64
Input Input Input

AlexNet VGG16 VGG19

Slide credit: CS231n
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GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- Avoids expensive FC layers using
a global averaging layer e

- 12x less params than AlexNet

Inception module

Also called “Inception Network”

Slide credit: CS231n L
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ResNet =

3x3 cony, 512
3x3 cony, 512

3x3 conv, 512
3x3 conv, 512

3x3 cony, 512
3x3 conv, 512, /2

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

3x3 conv

A

F(x) relu

X
identity

O
3x3 conv, 128
3x3 conv, 128, / 2
O

3x3 conv

X
Residual block
| Pool |
o]

Slide credit: CS231n
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ResNet
[He et al., 2015]

Total depths of 34, 50, 101, or
152 layers for ImageNet

O

/X7 conv, 64, /2

Slide credit: CS231n
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Common loss functions

You will find these in tensorflow!

In Keras:

mean_squared_error .
ik - Mean squared error (MSE) is another
keras.losses.mean_squared_error(y_true, y_pred) name fOI’ regreSS|on IOSS

categorical_crossentropy Covers both BCE and Softmax loss

—» (remember softmax is a multiclass
extension of BCE)

keras.losses.categorical_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)

hinge . .
Hinge is another name for
keras.losses.hinge(y_true, y_pred) SVM IOSS, due tO the IOSS
function shape.

Sj
https://keras.io/losses/

Serena Yeung BIODS 220: Al in Healthcare Lecture 4 - 14


https://keras.io/losses/

How much data do you need for deep learning?

A: Alot.

YEAH::I'M/GONNA'NEED'MORE

,

—
] makeameme.org
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Transfer learning from a large dataset to your dataset...

very similar very different
dataset dataset
3 very little data | Use Linear You're in
More specific Classifi trouble. . T
assifier on rouble... Try
top layer linear classifier
__MaxPooI .
features on different layer
More generic features
[ MaxPool |
quite a lot of Finetune a few || Finetune a large
data layers number
of layers
v
——
Often good idea to try this first, try fine-tuning all layers of the network Slide credit: CS231n
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Today:

Medical Images: Classification

e Deep learning models for image classification

e Data considerations for image classification models
e Evaluating image classification models

e C(Case studies

Medical Images: Advanced Vision Models (Detection and Segmentation)

Serena Yeung BIODS 220: Al in Healthcare Lecture 4 - 17



Evaluating image classification models
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Evaluation metrics

Confusion matrix Accuracy: (TP + TN) / total
Prediction
0 1
0 TN FP
Ground
Truth
1 FN TP
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Evaluation metrics

Confusion matrix Accuracy: (TP + TN) / total

Prediction

0 1 Q: When might evaluating
purely accuracy be
problematic?

0 TN FP
Ground
Truth
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Evaluation metrics

Confusion matrix Accuracy: (TP + TN) / total

Prediction

0 1 Q: When might evaluating
purely accuracy be
problematic?

0 TN FP
Ground A: Imbalanced datasets.
Truth
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Evaluation metrics

Confusion matrix Accuracy: (TP + TN) / total
Prediction Sensitivity / Recall (true positive rate):
0 1 TP / total positives
Specificity (true negative rate):
0 TN FP TN / total negatives
Ground
Truth _ . o
Precision (positive predictive value):
1 EN TP TP / total predicted positives

Negative predictive value:
TN / total predicted negatives
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As we vary our classifier’s score threshold to

Evaluation metrics predict a positive, we can trade-off different

values of these metrics

Confusion matrix Accuracy: (TP + TN) / total
Prediction Sensitivity / Recall (true positive rate):
0 1 TP / total positives
Specificity (true negative rate):
0 TN FP TN / total negatives
Ground
Truth _ . o
Precision (positive predictive value):
1 EN TP TP / total predicted positives

Negative predictive value:
TN / total predicted negatives
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Q: As prediction threshold increases, how does

Evaluation metrics that generally affect sensitivity? Specificity?
Confusion matrix Accuracy: (TP + TN) / total
Prediction Sensitivity / Recall (true positive rate):
0 1 TP / total positives
Specificity (true negative rate):
0 TN FP TN / total negatives
Ground
Truth . . . .
Precision (positive predictive value):
1 EN P TP / total predicted positives

Negative predictive value:
TN / total predicted negatives
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Q: As prediction threshold increases, how does

Evaluation metrics that generally affect sensitivity? Specificity?

A: Sensitivity goes down, specificity up

Confusion matrix Accuracy: (TP + TN) / total
Prediction Sensitivity / Recall (true positive rate):
0 1 TP / total positives
Specificity (true negative rate):
0 TN FP TN / total negatives
Ground
Truth _ . o
Precision (positive predictive value):
1 EN TP TP / total predicted positives

Negative predictive value:
TN / total predicted negatives
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Evaluation metrics

EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

- Receiver Operating Characteristic (ROC) B Y
curve: o —n

- Plots sensitivity and specificity 80 o —
(specifically, 1 - specificity) as prediction o
threshold is varied s 601 so | sy epestnspant

- Gives trade-off between sensitivity and g g5
specificity 5 a0 T

- Also report summary statistic AUC (area R
under the curve) 2 ’Sr'

7022) é lb 1Y5 210 2|5 3]0
°1 T T T T T 1
0 20 40 60 80 100

1 - Specificity, %
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Evaluation metrics

EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

- Receiver Operating Characteristic (ROC) R Y
curve, -
- Plots sensitivity and specificity 80 o —
(specifically, 1 - specificity) as prediction o
threshold is varied s 60° so | sy epestnspant
- Gives trade-off between sensitivity and g g5
specificity True * T
- Also report summary statistic AUC (areaPositive || . |
under the curve) Rate (TRR) ”T-
7022) é lb 1Y5 2]0 2|5 3|0

1 - Specificity, %

False Positive Rate (FPR)
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Evaluation metrics

1.0 —=- No Skill
—o— Logistic

- Sometimes also see precision recall
curve 0.9
- More informative when dataset is

. . P c 0.8 A
heavily imbalanced (specificity =
true negative rate less meaningful £
in this case)
0.6 1
0.5 - ----------------T ------------------------
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure credit: https://3geqgpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png
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Evaluation metrics

- Selecting optimal trade-off points

o ROC Chart
- Maximize Youden’s Index 10 —
“ge s ip s e 7/
- J = sensitivity + specificity - 1 ) i
- Gives equal weight to o 7
optimizing true positives and i //
true negatives = v
Sensitivity /
/
/
0.4 4 /
/
'/
7/
/
0.2 1 /
/
/
/
/
0.0 T T T T T T T T T
0.0 0.2 04 0.6 08 1.0
1-Specificity

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve Youden_J.png
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Also equal to distance above chance line for a

Evaluation metrics balanced dataset: sensitivity - (1 - specificity) =
_ _ _ sensitivity + specificity - 1
- Selecting optimal trade-off points
T ROC Chart
- Maximize Youden’s Index 10 —
e e o /
- J = sensitivity + specificity - 1 i
- Gives equal weight to 081 s
optimizing true positives and i //
true negatives = v
Sensitivity /
/
0.4 4 //
/
'/
//
0.2 1 /
/
/
/
/
0.0 T T T T T T T T T
0.0 0.2 04 0.6 08 1.0
1-Specificity

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve Youden_J.png
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Evaluation metrics

- Selecting optimal trade-off points
- Maximize Youden’s Index
- J = sensitivity + specificity - 1
- Gives equal weight to
optimizing true positives and
true negatives
- Sometimes also see F-measure (or
F1 score)
- F1 =2%*(precision*recall) /
(precision + recall)
- Harmonic mean of precision
and recall

BIODS 220: Al in Healthcare

Also equal to distance above chance line for a
balanced dataset: sensitivity - (1 - specificity) =
sensitivity + specificity - 1

ROC Chart
1.0 7
— //
/

/
/
/
/
J 4
0.6 1 S
/
Sensitivity //
/
0.4 4 >
/
/
/V
/
0.2 1 /
/
/
/
/
0.0 T T T T T T T T T
0.0 0.2 04 06 0.8 1.0
1-Specificity

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve Youden_J.png
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Evaluation metrics

- Selecting optimal trade-off points
- Maximize Youden’s Index
- J = sensitivity + specificity - 1
- Gives equal weight to
optimizing true positives and
true negatives
- Sometimes also see F-measure (or
F1 score)
- F1 =2%*(precision*recall) /
(precision + recall)
- Harmonic mean of precision
and recall

But selected trade-off points could
also depend on application

BIODS 220: Al in Healthcare

Also equal to distance above chance line for a
balanced dataset: sensitivity - (1 - specificity) =
sensitivity + specificity - 1

ROC Chart
1.0 7
— //
/

/
/
/
/
J 4
0.6 1 S
/
Sensitivity //
/
0.4 1 /
/
/
/V
/
0.2 1 /
/
/
/
/
0.0 T T T T T T T T T
0.0 0.2 04 06 0.8 1.0
1-Specificity

Figure credit: https://en.wikipedia.org/wiki/File:ROC_Curve Youden_J.png
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Case Studies of CNNs for
Medical Imaging Classification
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Early steps of deep learning in medical imaging:
using ImageNet CNN features oty

Bar et al. 2015 " ’ ‘ ‘ ‘

- Input: Chest x-ray images
- Output: Several binary Enlarged heart

classification tasks
- Right pleural effusion or not ‘

Enlarged heart or not
Healthy or abnormal nght effusion

- Very small dataset: 93 frontal "'Q ‘p”‘ T T——

chest x-ray images
Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Early steps of deep learning in medical imaging:
using ImageNet CNN features oty
Bar et al. 2015 i “w’ ‘ ‘ ‘ V(igl;g\grggrr:t
this problem?
- Input: Chest x-ray images
- Output: Several binary Enlarged heart

classification tasks
- Right pleural effusion or not ‘

Enlarged heart or not
Healthy or abnormal nght effusion

- Very small dataset: 93 frontal "Q P
chest x-ray images y " \‘

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.

Serena Yeung BIODS 220: Al in Healthcare Lecture 4 - 35



Bar et al. 2015

- Did not train a deep learning model

on the medical data Convolution Fully connected
- Instead, extracted features from an K : e I m——
AlexNet trained on ImageNet [ N/ R ol
- 5th, 6th, and 7th layers R~ N ;f;;g;ted Yt ] f;, e :‘ ]
- Used extracted features with an P aver | Pl [ 1 OSO

SVM classifier : VIS it OO
- Performed zero-mean unit-variance
normalization of all features

y

- Evaluated combination with other Input Decafo) L7 (Decaf:)
4096 4096
hand_craf‘ted image features Activations Activations  Activations

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015

Table 1. Right Pleural Effusion Condition.

Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf LS | Decaf L6 | Decaf L7 | PiCoDest+Decaf LS
Sensitivity 0.71 0.79 0.79 0.93 0.86 0.86 0.93
Specificity 0.77 0.92 0.91 0.84 0.86 0.80 0.84
AUC 0.75 0.93 0.91 0.92 0.91 0.84 0.93
Table 2. Healthy vs. Pathology.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf L5 | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.65 0.68 0.59 0.73 0.89 0.76 0.81
Specificity 0.61 0.66 0.79 0.80 0.64 0.64 0.79
AUC 0.63 0.72 0.72 0.78 0.79 0.72 0.79
Table 3. Enlarged Heart Condition.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf L5 | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.75 0.79 0.79 0.88 0.79 0.79 0.83
Specificity 0.78 0.81 0.84 0.78 0.88 0.77 0.84
AUC 0.80 0.82 0.87 0.87 0.84 0.79 0.89

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Q: How might we
interpret the AUC vs.
CNN feature trends?

Bar et al. 2015

Table 1. Right Pleural Effusion Condition.

Low Level High Level Deep _—~— A / Fusion
LBP GIST | PiCoDes Decaf LS | Decaf LeADecat 17 |AiCoDes+Decaf L5
Sensitivity | 0.71 0.79 0.79 0.93 086~ ARG 0.93
Specificity 077 092 [ 0.91 0.84 4~T0.86 4~ | 080 & |0.84
AUC 0.75 0.93 0.91 0.92 0.91 0.84 0.93
Table 2. Healthy vs. Pathology.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf L5 | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.65 0.68 0.59 0.73 0.89 0.76 0.81
Specificity 0.61 0.66 0.79 0.80 0.64 0.64 0.79
AUC 0.63 0.72 0.72 0.78 0.79 0.72 0.79
Table 3. Enlarged Heart Condition.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf LS | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.75 0.79 0.79 0.88 0.79 0.79 0.83
Specificity 0.78 0.81 0.84 0.78 0.88 0.77 0.84
AUC 0.80 0.82 0.87 0.87 0.84 0.79 0.89

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Ciompi et al. 2015

- Task: classification of lung nodules
in 3D CT scans as peri-fissural
nodules (PFN, likely to be benign)
or not

- Dataset: 568 nodules from 1729
scans at a single institution. (65
typical PFNs, 19 atypical PFNs, 484
non-PFNSs).

- Data pre-processing: prescaling
from CT hounsfield units (HU) into
[0,255]. Replicate 3x across R,G,B
channels to match input dimensions

axial

coronal

sagittal

Of |mageNet-tl’alned CN NS- Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 2015.
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Ciompi et al. 2015

- Also extracted features from a deep learning model trained on ImageNet
- Overfeat feature extractor (similar to AlexNet, but trained using additional losses
for localization and detection)
- To capture 3D information, extracted features from 3 different 2D views of each
nodule, then input into 2-stage classifier (independent predictions on each view
first, then outputs combined into second classifier).

%Y
X
V4

OverFeat features test test
axial ol —— | overfeat-a |—— | Hra |
q
' coronal — overfeat-c | —— | Hq-c | ——| Ho |—
sagittal — | overfeat-s | ——| Hi-s =

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 2015.
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Gulshan et al. 2016

- Task: Binary classification of referable
diabetic retinopathy from retinal fundus
photographs

- Input: Retinal fundus photographs

- Output: Binary classification of referable
diabetic retinopathy (y in {0,1})

- Defined as moderate and worse
diabetic retinopathy, referable diabetic
macular edema, or both

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

- Dataset:
- 128,175 images, each graded by 3-7
ophthalmologists.
- 54 total graders, each paid to grade between
20 to 62508 images.
- Data preprocessing:
- Circular mask of each image was detected
and rescaled to be 299 pixels wide
- Model:
- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different
binary prediction problems, which were then
used for final determination of referable

. . . Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
dlabetIC retanpathy Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Graders provided finer-grained

labels which were then
GUIShan et al 201 6 caobneszlidatcéd inetoe(eaesier) binary
- Dataset: / prediction problems
- 128,175 images, each graded by 3-7
ophthalmologists.
- 54 total graders, each paid to grade between
20 to 62508 images.
- Data preprocessing:
- Circular mask of each image was detected
and rescaled to be 299 pixels wide
- Model:
- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different
binary prediction problems, which were then
used for final determination of referable

. . . Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
dlabetIC retanpathy Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

- Results: 100)
- Evaluated using ROC curves, | ¢ el
ege s epr s 1000
AUC, sensitivity and specificity 5
. High-sensitivity operating point
analysis ] 91
& : 904 High-specificity operating point
E -
4 40
"«.:2 80
20 75r'
701 :
0 5 10 15 20 25 30
0_
(I) 2b 4I0 66 SIO 160

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for

1 - Specificity, %
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

E EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

1007
ooy e Looked at different operating points
80- o High-sensitivity operating point - High-specificity point
approximated ophthalmologist
. 60 o e epecfcltyoperating ot specificity for comparison. Should
g o also use high-specificity to make
gl decisions about high-risk actions.
| 80 - High-sensitivity point should be
] AUC = 0.991 used for screening applications.
20 5
7016 5 10 15 2|0 25 30
"
0 20 40 60 80 100
1 - Specificity, % Gulshan, et al. Development and Validation of a Deep Learning Algorithm for

Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

E] Image sampling Grade sampling
110 - Training set
L ® ® 1001 @——
) . . ° ° @ O
0~ . x
2 90 Z 90
:E e = Tuning set
2 80 2 g0
& ° A
3 ®
> 70 S 70
" ®
> o >
T 60+ 5 604
= e
[} ‘o
[« (]
2 50 & 50
E A
- i =
% 40 ° %: 40+
o o
30 T T T T T T T T T T T T T T T T T T T T T 1 30 T T T T T T T 1
0 20 40 60 80 100 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45

No. of Images in Data Set (in Thousands) No. of Grades per Image, Mean

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Q: What could explain the difference in
Gulshan et al. 2016 trends for reducing # grades / image on

training set vs. tuning set, on tuning set

performance?
E] Image sampling Grade sampling
110 - Training set
L ® ® 1001 @——
] ° o ° ° L 4 @
Q. . x
_é' 901 d;‘. 90
:E e = Tuning set
2 80 2 g0
A ° &
X X
> 70 S 70
" ®
> )
£ 60 £ 60-
= e
o [
2 50+ & 50+
E A
- - —
k- 401 o % 40
o o
30 T T T T T T T T T T T T T T T T T T T T T 1 30 - T T T T T T 1
0 20 40 60 80 100 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45

No. of Images in Data Set (in Thousands) No. of Grades per Image, Mean

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Esteva et al. 2017

- Two binary classification tasks on — AR < S
dermatology images: malignant vs. - R
benign lesions of epidermal or melanocytic
origin

- Inception-v3 (GoogLeNet) CNN with
ImageNet pre-training

- Fine-tuned on dataset of 129,450 lesions
(from several sources) comprising 2,032
diseases

- Evaluated model vs. 21 or more
dermatologists in various settings

Malignant

Esteva®, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 2017.
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Esteva et al. 2017

- Train on finer-grained classification (757 classes) but perform binary classification at
inference time by summing probabilities of fine-grained sub-classes

- The stronger fine-grained supervision during the training stage improves inference
performance!

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

@ Acral-lentiginous melanoma i
@® Amelanotic melanoma —4® 92% malignant melanocytic lesion
® Lentigo melanoma

i ! : - f\ f\ @
o - b = s W S Y a
e \gyA D A A A AW \ i %
BO0000% Cprpy: MH onmys s 197909 8o 10 o 191 g 19 07 000018 M s @
' i ! v\ | '@ Blue nevus

@ Halo nevus —&— 8% benign melanocytic lesion
= Convolution @® Mongolian spot
= AvgPool o ..
= MaxPool \&;
= Concat
= Dropout
= Fully connected
= Softmax

Esteva®, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 2017.
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Esteva et al. 2017

- Evaluation of algorithm vs.
dermatologists

Specificity

Specificity

0

Carcinoma: 135 images

== Algorithm: AUC = 0.96
® Dermatologists (25)
@ Average dermatologist

Sensitivity

Carcinoma: 707 images

== Algorithm: AUC = 0.96

0
Sensitivity

Esteva*, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep

neural networks. Nature, 2017.
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-t

Specificity

Specificity

Melanoma: 130 images

== Algorithm: AUC = 0.94
® Dermatologists (22)
@ Average dermatologist

Sensitivity

Melanoma: 225 images

== Algorithm: AUC = 0.96

0 1

Sensitivity

BIODS 220: Al in Healthcare

1

Specificity

Melanoma: 111 dermoscopy images

== Algorithm: AUC = 0.91
® Dermatologists (21)
@ Average dermatologist

Sensitivity

Melanoma: 1,010 dermoscopy image:

Specificity

o

== Algorithm: AUC = 0.94

0 1
Sensitivity
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Lakhani and Sundaram 2017

Binary classification of pulmonary tuberculosis from x-rays

Four de-identified datasets

1007 chest x-rays (68% train, 17.1% validation, 14.9% test)

Tried training CNNs from scratch as well as fine-tuning from ImageNet

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation* Pretrained with Augmentation*
AlexNet 0.90 (0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GooglLeNet 0.88 (0.81,0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

Binary classification of pulmonary tuberculosis from x-rays

Four de-identified datasets

1007 chest x-rays (68% train, 17.1% validation, 14.9% test)

Tried training CNNs from scratch as well as fine-tuning from ImageNet

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation® Pretrained with Augmentation*
AlexNet 0.90 {0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GoogLeNet 0.88 (0.81,0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

All training images were resized to 256x256 and underwent
base data augmentation of random 227x227 cropping and
mirror images. Additional data augmentation experiments in
results table.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

Binary classification of pulmonary tuberculosis from x-rays

Four de-identified datasets

1007 chest x-rays (68% train, 17.1% validation, 14.9% test)

Tried training CNNs from scratch as well as fine-tuning from ImageNet

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation® Pretrained with Augmentation*
AlexNet 0.90 {0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GoogLeNet 0.88 (0.81,0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

All training images were resized to 256x256 ard-underwent  fen resize to match input size of
base data augmentation of random 227x227 cropping and pre-trained networks. Also fine approach to

mirror images. Additional data augmentation experiments in making high-res dataset easier to work with!
results table.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

1.0

0.8

L [ -

0.6

Sensitivity
T T l T

0.4

0.2

T 1

=

PR ST |

= AlexNet-U
= GooglLeNet-U
= AlexNet-TA
= GoogleNet-TA

PRSI G TS O T

1

0

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

1.0

0.8

0.6

Sensitivity

0.4

0.2

| SN S LI S (L N S (L L S (LS AL A |

-
t—

= AlexNet-U
= GooglLeNet-U
= AlexNet-TA
= GoogleNet-TA

PTG Y

1

o

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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0.2

0.4 0.6
1 - Specificity

0.8

1.0

Sensitivity

o
FS

1.0

0.8

o
o

0.2

Performed further analysis at optimal
threshold determined by the Youden

Index.
I = AlexNet-TA
i = GoogleNet -TA
- = Ensemble
] PRI DA TH (N T TR T T TR |
0 0.2 0.4 0.6 0.8 1.0
1 - Specificity
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Rajpurkar et al. 2017

- Binary classification of pneumonia
presence in chest X-rays

- Used ChestX-ray14 dataset with over ::r:\[e);tx-Raylmage
100,000 frontal X-ray images with 14 CheXNet
diseases 121-layer CNN

- 121-layer DenseNet CNN I?ngzﬂgrt\ia Positive (85%)

- Compared algorithm performance with 4
radiologists

- Also applied algorithm to other diseases to
surpass previous state-of-the-art on
ChestX-ray14

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest
X-Rays with Deep Learning. 2017.
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McKinney et al. 2020

- Binary classification of breast cancer in mammograms
- International dataset and evaluation, across UK and US

Test datasets Ground-truth determination
éE é Positive if biopsy-confirmed
» within T + 3 months Otherwise, negative if a second exam
Number of women 25,856 3,097 occurred after T— A
Interpretation Double reading Single reading
Screening interval 3 years 1 or 2 years I3 2T
Index exam
Cancer follow-up 39 months 27 months Last available data
Number of cancers 414 (1.6%) 686 (22.2%) Screening interval (T)
Evaluation
Comparison with retrospective Generalization Independently conducted
clinical performance across datasets reader study
R1
Al system read < R2
= ~ é R3
- = R4
e Trained on Tested on g5
Clinician read UK training set  US test set R6
UK and 6 radiologists read 500 cases
US test sets from US test set

McKinney et al. International evaluation of an Al system for breast cancer screening. Nature, 2020.
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Advanced Vision Models:
Segmentation and Detection

Serena Yeung BIODS 220: Al in Healthcare Lecture 6 - 58



Richer visual recognition tasks: segmentation and detection

Semantic Instance

Classification

Detection

Segmentation Segmentation

Output: Output: Output: Output:
one category label for category label for each pixel Spatial bounding box for  Category label and instance
image (e.g., colorectal in the image each instance of a label for each pixel in the
glands) category object in the image
image

Figures: Chen et al. 2016. https://arxiv.ora/pdf/1604.02677.pdf
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Richer visual recognition tasks: segmentation and detection

Semantic Instance

Classification

Detection

Segmentation Segmentation

Output: Output: Output: Output:
one category label for category label for each pixel Spatial bounding box for  Category label and instance
image (e.g., colorectal in the image each instance of a label for each pixel in the
glands) category object in the image
image \ /
Figures: Chen et al. 2016. https://arxiv.ora/pdf/1604.02677.pdf Distinguishes between different instances of an object
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Semantic segmentation: U-Net

64 64
128 64 64 2
input
: output
Image || T g
g ol bl bl segmentation
tile S &l 2
3 &l 3 map
N| Of @© x| ] > x|
N K o g &
x x x
| Of @©
| B8
' 128 128
256 128
o o~ o o
S E o Tea
' 256 256 t

=»conv 3x3, ReLU
= copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

512 256
§ [I I I
- Ll
' 1

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

Output is an image

64 64 mask: width x height x
128 64 64 2 # classes
input
i output
im >> . .
at%: bl il o segmentation
gl o & 8 map
N| Of @© x| ] ] x|
A E
x x x
| Of @©
| B8
' 128 128
256 128
= B 8“2 3
' 256 256 t

o

f S 2 = copy and crop
¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1

512 512 1024 512

512 256
I ¥ W ’I =»conv 3x3, RelLU
S L=

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

64 64
128 64 64 2
input
: output
image || ;
g ol lnl o segmentation
tile Sl S & 2
x x| > x|
N| Of @© N (= o
5k B al A d 3
| Of @©
| B8
' 128 128
256 128
HE E 2k
N N ~N
¥ 256 26 512 256 t
o [l : > > =»conv 3x3, ReLU
S E K Lo 5 d
Ty s 3 =» copy and cro
512 512 1024 py p
wI»I»I E-—-—- ¥ max pool 2x2
¥ 10m 4o 4 up-conv 2x2

e s

=]
™ N

=» conv 1x1

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Output is an image
mask: width x height x
# classes

Output image size a little
smaller than original, due to
convolutional operations w/o
padding
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SemantIC Segmentat|0n U'Net Output is an image

i mask: width x height x
128 64 64 2 # Classes
R output , , ,
i =1 |*] segmentation Output image size a little
gl o o 5 map smaller than original, due to
5515 2l o &8 convolutional operations w/o
BIGIR padding
' 128 128
¥ oo o 512 256 t
2 M Sl 1 =»conv 3x3, ReLU
Rk "B i = Lo ' = 4 copy and crop
wl".’. E,*-*- ¥ max pool 2x2 Gives more “true” context for
%‘,%,_ _: e reasoning over each image area.
. : Can tile to make predictions for
Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015. arbitrarily Iarge images
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Semantic segmentation: U-Net

64 64
128 64 64 2
_Inpit output
|mat?|g i i “ _I*"I*]*| segmentation
A8 me
Max pooling &g §
enables T~ § ..,
aggregation of 286 128
increasingly
more context 1.1. MEE
(higher level I H E Tk
features) ¥ o6 256 t
Il 4

S 8 = copy and cro
512 512 1024 512 1 py p

>

512 256
I % > ’I =»conv 3x3, ReLU
i

o
=]
=]

562

¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

662 i
i

‘ 53 &
1024 i i
- [ v [

o

(2]

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

G & A few conv
layers at 128 64 64 2
every
input / resolution
: e e R output
Imat?lg e / A 6l : : segmentation
g 4 & map
' 128 128
256 128
HE E %ﬂélgl
' 256 256 t

138:W
1362 ¥

1402

N Ol
o o

f S S = copy and crop
¥ max pool 2x2
4 up-conv 2x2

=» conv 1x1

512 512 1024 512
>

512 256
I % > ’I =»conv 3x3, ReLU
i

o
=]
=]

662 i
i

562

o~ o
< o
w wn

1024 ‘

D S —
o
™

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

64 64
128 64 64 2
input
: e e R output
|matgi;|2 e A * : : segmentation
- gl o g & map
~l ol s Highest-level features EERE
KEE encoding large spatial 2l & & &
5| o] & context
¥ 128 128 \
256 128
B E 3 élgl

=i = copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

' 256 256 o e t
I I I [I’I’OI =>conv 3x3, ReLU
i t

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

64 64
128 64 64 2
input
- wla output
|matgi;|§ il 3 Gl ‘: ': segmentation
gl A g g map
552 gl o 4 & Up-convolutions to go from
5518 the global information
¥ 125 128 < encoded in highest-level
features, back to individual
pixel predictions

' 256 256

=»conv 3x3, ReLU
= copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Up-convolutions

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4 Output: 2 x 2
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Up-convolutions

Recall: Normal 3 x 3 convolution, stride 2 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2
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Up-convolutions

Recall: Normal 3 x 3 convolution, stride 2 pad 1

- Filter moves 2 pixels in

Dot product the input for every one

between filter pixel in the output

and input
Stride gives ratio between
movement in input and
output

Input: 4 x 4 Output: 2 x 2
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Up-convolutions

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4
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Up-convolutions

3 x 3 up-convolution, stride 2 pad 1

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4
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Up-convolutions

3 x 3 up-convolution, stride 2 pad 1

- Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4
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Up-convolutions

Sum where

3 x 3 up-convolution, stride 2 pad 1 output overlaps

- Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4
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Up-convolutions

. - Sum where
Other names: 3 x 3 up-convolution, stride 2 pad 1 output overlaps
-Transpose
convolution
-Fractionally strided
convolution
-Backward strided > Filter moves 2 pixels in
convolution Input gives the output for every one
weight for pixel in the input
filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4
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Semantic segmentation: U-Net

Concatenate with
64 64

same-resolution feature map
during downsampling
process to combine

128 64 64 2

input

. > 4 high-level information with
'matfiilg i e . tation low-level (local) information

392 x 392
388 x 388 '

572 x 572
570 x 570
568 x 568

' 128 128

2842
2822
2802

' 256 256

=»conv 3x3, ReLU
=i = copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

Train with classification loss

64 61 (e.g. binary cross entropy)
128 64 64 2 on every pixel, sum over all
pixels to get total loss
input
i P P output
|matgi;|g il | Gl ‘: ': segmentation
al g 4 § map
' 128 128
256 128
slall s %ﬂglgl
' 256 256 512 256 t
& ‘?,OI'EI ?Izl =»conv 3x3, ReLU
.3 9’ S S = copy and crop
[ | ¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: 10U evaluation

# pixels included in both

Intersection over Union: target and prediction
maps

target N prediction
loU = & P

target U prediction

\ Total # pixels in the

union of both masks
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Semantic segmentation: 10U evaluation

# pixels included in both

Intersection over Union: target and prediction
maps

target N prediction
loU = & p

target U prediction

\ Total # pixels in the

union of both masks
Can compute this over all masks in the

evaluation set, or at individual mask and image
levels to get finer-grained understanding of
performance.
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Semantic segmentation: 10U evaluation

# pixels included in both

Intersection over Union: target and prediction
maps

target N prediction
loU = & p

target U prediction

\ Total # pixels in the

union of both masks
Can compute this over all masks in the

evaluation set, or at individual mask and image

levels to get finer-grained understanding of
performance. Also known as Jaccard

Index
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Semantic segmentation: Pixel Accuracy evaluation

# correctly classified pixels

Pixel Accuracy (PA) = # total pixels
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Semantic segmentation: Pixel Accuracy evaluation

TP+ TN

/

# correctly classified pixels

Pixel Accuracy (PA) = # total pixels

\ Total pixels

in image
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Semantic segmentation: Pixel Accuracy evaluation

TP+ TN

/

# correctly classified pixels

Pixel Accuracy (PA) = # total pixels

\ Total pixels

Q: What is a potential in image
problem with this?
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Semantic segmentation: Pixel Accuracy evaluation

TP+ TN

/

# correctly classified pixels
# total pixels

\ Total pixels

Q: What is a potential in image
problem with this?

Pixel Accuracy (PA) =

A: Think about what
happens when there is class
imbalance.
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Semantic segmentation: Dice coefficient evaluation

2 * (target N prediction)

Dice Coefficient =
16 LoeTeen # target mask pixels + # prediction mask pixels
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Semantic segmentation: Dice coefficient evaluation

2 * intersection

~

2 * (target N prediction)

Dice Coefficient =
16 Locteien # target mask pixels + # prediction mask pixels

Sum of target mask size
+ prediction mask size

Very similar to 10U /
Jaccard, can derive one
from the other
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Semantic segmentation: summary of evaluation
metrics

e Most commonly use IOU / Jaccard or Dice Coefficient

Sometimes will also see pixel accuracy
If multi-class segmentation task, typically report all these metrics per-class,

and then a mean over all classes
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Semantic segmentation: U-Net cell segmentation

Name

PhC-U373 DIC-HeLa

IMCB-SG (2014)
KTH-SE (2014)
HOUS-US (2014)
second-best 2015
u-net (2015)

0.2669 0.2935
0.7953 0.4607
0.5323 -

0.83 0.46
0.9203 0.7756

Very small dataset: 30 training images of size 512x512,
in the ISBI 2012 Electron Microscopy (EM) segmentation
challenge. Used excessive data augmentation to

compensate.

Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Aside: segmentation through sliding-window pixel classification

Image patch: input to
classification network

[ Deep Neural Network )

Ees

Y DNN output

g D

.

Classification
output is
prediction for the
center pixel of
the patch Original Image e A )~ Pr(p = membrane)

Calibration

Note: a simple approach to segmentation can also be applying a classification CNN on image
patches in a dense, sliding-window fashion (e.g. Ciresan et al.). But fully convolutional
approaches such as U-Net generally achieve better performance.

Ciresan et al. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. NeurlPS, 2012.
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Novikov et al. 2018

- Chest x-ray segmentation of lungs, clavicles, and heart

- JSRT dataset of 247 chest-xrays at 2048x2048 resolution. (But
downsampled to 128x128 and 256x256!)

- Used a U-Net based segmentation network with a few modifications

,’ .’
~— =t
High Level
Features
Part I: Contraction Part II: Expansion
Input Image Segmented Image

Segmentation Network

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Q: What loss function

Novikov et al. 2018 would be appropriate

here?

- Chest x-ray segmentation of lungs, clavicles, and heart

- JSRT dataset of 247 chest-xrays at 2048x2048 resolution. (But
downsampled to 128x128 and 256x256!)

- Used a U-Net based segmentation network with a few modifications

,’ .’
~— =t
High Level
Features
Part I: Contraction Part II: Expansion
Input Image Segmented Image

Segmentation Network

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Novikov et al. 2018

- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss
based on the Dice coefficient.

- Class imbalance -> weight loss terms corresponding to each ground-truth class
by inverse of class frequency: (# class pixels) / (total # pixels in data)

Body Part Lungs Clavicles Heart
Evaluation Metric D J D J D J
InvertedNet 0.972 | 0.946 | 0902 | 0.821 | 0.935 | 0.879

All-Dropout 0973 | 0948 | 0.896 | 0.812 | 0.941 | 0.888
All-Convolutional | 0971 | 0.944 | 0.876 | 0.780 | 0.938 | 0.883
Original U-Net 0971 | 0944 | 0.880 [ 0.785 | 0.938 | 0.883

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Image ground truth class mask .
. I v, 4) = 1 2 Zi,j Yi,iYi,j
di ) = - ~
NOVIkOV et al . 201 8 e % Zi,j Yij + Zi,j Yi,j
Image pixel class probabilities
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss

based on the Dice coefficient.  Note: this Dice loss is often useful to try!
- Class imbalance -> weight loss terms corresponding to each ground-truth class
by inverse of class frequency: (# class pixels) / (total # pixels in data)

Body Part Lungs Clavicles Heart
Evaluation Metric D J D J D J
InvertedNet 0972 | 0.946 | 0902 | 0.821 | 0935 | 0.879

All-Dropout 0973 | 0948 | 0.896 | 0.812 | 0.941 | 0.888
All-Convolutional | 0971 | 0.944 | 0.876 | 0.780 | 0.938 | 0.883
Original U-Net 0971 | 0944 | 0.880 [ 0.785 | 0.938 | 0.883

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Image ground truth class mask .
. I v, 4) = 1 2 Zi,j Yi,iYi,j
di ) = - ~
NOVIkOV et al . 201 8 e % Zi,j Yij + Zi,j Yi,j
Image pixel class probabilities
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss

based on the Dice coefficient.  Note: this Dice loss is often useful to try!
- Class imbalance -> weight loss terms corresponding to each ground-truth class
by inverse of class frequency: (# class pixels) / (total # pixels in data)

Body Part Lungs Clavicles Heart __— Dice and
4 = ] Jaccard
Evaluation Metric D " 4 D i ¥ 5, J evaluation
InvertedNet 0972 | 0946 | 0.902 | 0.821 | 0.935 | 0.879

All-Dropout 0973 | 0948 | 0.896 | 0.812 | 0.941 | 0.888
All-Convolutional | 0971 | 0.944 | 0.876 | 0.780 | 0.938 | 0.883
Original U-Net 0971 | 0944 | 0.880 [ 0.785 | 0.938 | 0.883

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Dong et al. 2017

- Segmentation of tumors in brain MR image slices
-  BRATS 2015 dataset: 220 high-grade brain tumor and 54 low-grade brain tumor MRlIs
- U-Net architecture, Dice loss function

Ground Truth Segmentation Original Ground Truth Segmentation

0y o

Dong et al. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. MIUA, 2017.

Serena Yeung BIODS 220: Al in Healthcare Lecture 4 - 96



Other segmentation architectures

Fully convolutional networks (FCN)
Pre-cursor to U-Net, similar in
structure but simpler upsampling
pathway

32x upsampled

image convl pooll conv2 pool2 conv3 pool3 conv4 poold convd pool5 conv6-7  prediction (FCN-32s)

Shelhamer*, Long*, et al. Fully Convolutional Networks for Semantic
Segmentation. CVPR 2015.

2x conv7 16x upsampled
—_— T prediction (FCN-16s)
- .

8x upsampled
4x conv? prediction (FCN-8s)

2x poold [

pool3 [

R
-

DeepLab (v1-v3)

Uses “atrous convolutions” to control a
filter’s field of view

Parallel atrous convolutions with
different rates for multi-scale features

rate = 18 rate = 24

s —
rate = 6 rate = 12 -—

it

O
omEOd [ = 0 = 5] O

o

B _F
00
b I
. B caat

Atrous Spatial Pyramid Pooling

Input Feature Map

|

Chen et al. DeeplLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs. IEEE TPAMI, 2017.

Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. 2917.
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Other segmentation architectures

Fully convolutional networks (FCN)
Pre-cursor to U-Net, similar in
structure but simpler upsampling
pathway

32x upsampled

image convl pooll conv2 pool2 conv3 pool3 conv4 poold convd pool5 conv6-7  prediction (FCN-32s)

Shelhamer*, Long*, et al. Fully Convolutional Networks for Semantic
Segmentation. CVPR 2015.

2x conv7 16x upsampled
—_— T prediction (FCN-16s)
- .

8x upsampled
4x conv? prediction (FCN-8s)

2x poold [

pool3 [

R
-

Can try DeeplLab v3+
for segmentation
/ projects!
DeepLab (v1-v3+)
Uses “atrous convolutions” to control a
filter’s field of view

Parallel atrous convolutions with
different rates for multi-scale features

rate = 18 rate = 24

s —
rate = 6 rate = 12 -—

it

O
omEOd [ = 0 = 5] O

o

B _F
00
b I
. B caat

Atrous Spatial Pyramid Pooling

Input Feature Map

|

Chen et al. DeeplLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs. IEEE TPAMI, 2017.

Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. 2917.
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Richer visual recognition tasks: segmentation and detection

Semantic Instance

Classification

Detection

Segmentation Segmentation

Output: Output: Output: Output:
one category label for category label for each pixel Spatial bounding box for  Category label and instance
image (e.g., colorectal in the image each instance of a label for each pixel in the
glands) category object in the image
image \ /
Figures: Chen et al. 2016. https://arxiv.ora/pdf/1604.02677.pdf Distinguishes between different instances of an object
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Object detection: e AP Lok
Faster R-CNN

4
regression loss

A 1 /
. . 4
proposails = // /,
/ Z /

Region Proposal Network

Classification Bounding-box

loss

feature map

CNN backbone (any
CNN network that
produces spatial feature
map outputs)

e T e —
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Object detection: e AP Lok
Faster R-CNN

4
regression loss

Classification Bounding-box

loss

7

Regress to bounding box “candidates” §propot§éls 7 ¥

113 [1] . / - / / //,.
from “anchor boxes™ at each location i
| 2k scores | | 4k coordinates | <mm  kanchor boxes

cls layer \ t reg layer
| 256-d | feature map
t intermediate layer /
£z

[

sliding window:

Region Proposal Network

conv feature map
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ObjeCt deteCtion: Classlificatis_n\ —BC;L.mdi.ngbox
0Ss | | \/; regression loss |
Faster R-CNN -

4
Classification Bounding-box _
loss | regression loss Rol pooling
’ N ‘ |
y . In each of top

bounding box
candidate locations,
crop features within
box (treat as own
image) and perform
further refinement of
bounding box +
classification

N B
proposals / —

Region Proposal Network

feature map
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Cropping Features: Rol Pool

Classification

“Snap” to

Bounding-box

loss | ﬁ regression loss

Classification
loss

Bounding-box

gr ssion loss Rol pooling

Region Proposal Network

feature map

Girshick, “Fast R-CNN”, ICCV 2015.

grid cells

~

Image features

BIODS 220: Al in Healthcare

Divide into grid of (roughly)
equal subregions,
corresponding to fixed-size
input required for final
classification / bounding box
regression networks

Max-pool within
each subregion

>
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Evaluation of object detection

Standard output of object detection

For each class, a set of bounding box
predictions with associated confidences:

- E.g.,(X,y,h,w,C)
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Obtain from
model outputs

Evaluation of object detection N

Classification Bounding-box

loss % /: regression loss
4

4N
Classification Bounding-box

For each class, a set of bounding box i ke ” et

predictions with associated confidences: | 7 | 7

N | ,
proposals/ =4 /
- E.g.,(X,y,h,w,C) A d—

\ ) \ Region Proposal Network

feature map

Standard output of object detection

Bounding Class
box confidence
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Remember: ROC and precision recall curves

E] EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

- Receiver Operating Characteristic (ROC)

.
cuve: M
- Plots sensitivity and specificity ol T
(specifically, 1 - specificity) as prediction g5 kbt
threshold is varied High-specificity operating point
- Gives trade-off between sensitivity and g‘”‘ "
specificity : ¢
- Also report summary statistic AUC (area || so1|
under the curve) Al )
20
7022)r .é) lb 1Y5 2]0 2|5 3|0
° T T T T T 1
0 20 40 60 80 100

1 - Specificity, %
Figure credit: Gulshan et al. 2016
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Remember: ROC and precision recall curves

E EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

- Receiver Operating Characteristic (ROC)

1007
cuve: M T
- Plots sensitivity and specificity ol S ——
(specifically, 1 - specificity) as prediction 5. HiSHE I s P
threShOId IS Varled 90 High-specificity operating point
cee se 60 1
- Gives trade-off between sensitivity and 3
specificity 2 ]
- Also report summary statistic AUC (area  * || s
under the curve) ol :
20+ -:E."-_ r
Plot curve is based on TP, TN, FP, FN when K S S VI VI VR
varying the prediction threshold -- i.e., class o | | | | |
confidence threshold 0 20 40 60 80 100

1 - Specificity, %
Figure credit: Gulshan et al. 2016
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Remember: ROC and precision recall curves

Confusion matrix Accuracy: (TP + TN) / total
Prediction Sensitivity / Recall (true positive rate):
0 1 TP / total positives
Specificity (true negative rate):
0 TN FP TN / total negatives
Ground
Truth _ . o
Precision (positive predictive value):
1 EN TP TP / total predicted positives

Negative predictive value:
TN / total predicted negatives
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Remember: ROC and precision recall curves

1.0 —=- No Skill
—o— Logistic

- Sometimes also see precision recall
curve 0.9
- More informative when dataset is

. . P c 0.8 A
heavily imbalanced (specificity =
true negative rate less meaningful £
in this case)
0.6 1
0.5 - ----------------T ------------------------
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure credit: https://3geqgpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png
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Remember: ROC and precision recall curves

1.0 —=- No Skill
—o— Logistic

- Sometimes also see precision recall
curve 0.9
- More informative when dataset is

heavily imbalanced (specificity = o
true negative rate less meaningful £ ]
in this case)
0.6 A
Object detection is typically heavily imbalanced | .
(most of the data is background) -> PR curves s o o e e 10
most common evaluation Recall

Figure credit: https://3geqgpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png
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Remember: ROC and precision recall curves

1.0 === No Skill
- Sometimes also see precision recall ~ Logltic
curve 0.9
- More informative when dataset is Rebort AUC |
_ e £ 0.8 epo per-class.
heavily |mpalanced (speC|f|C|.ty = Usually called “average
true negative rate less meaningful ~.71  precision (AP)". Also
in this case) report average of APs
.. overall classes, called
‘mean AP”.
Object detection is typically heavily imbalanced | .
0.5 +—

(most of the data is background) -> PR curves
most common evaluation

Recall

Figure credit: https://3geqgpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png
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Obtain from
model outputs

Evaluation of object detection N

. . Classification Bounding-box
Standard output of object detection loss Wy | g regressionloss |
e
For each class, a set of bounding box — . -
Classification Bounding-box )
loss regression loss Rol pooling

predictions with associated confidences: |
* A

S 1 -
- E.g.,(X,y,h,w,C) p“’p"sa-"/ A /

Y \ Region Proposal Network

Bounding Class
box confidence feature map
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Obtain from
model outputs

Evaluation of object detection N

. . Classification Bounding-box
Standard output of object detection loss Wy | g regressionloss |
g S
For each class, a set of bounding box — . -
o i ] ) Classification Bounding-box )
predictions with associated confidences: loss regression loss Rol pooling

N
- Eg., (x,y,h,w,c) prop"sa'-"/ -7 /
Y \ Region Proposal Network

Bounding Class
box confidence feature map

We have the class confidences to vary the threshold in
plotting the PR curve. But how do we get TP, TN, FP, FN?
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Obtain from
model outputs

Evaluation of object detection N

. . Classification Bounding-box
Standard output of object detection loss Wy | g regressionloss |
g S
For each class, a set of bounding box — . -
o i ] ) Classification Bounding-box )
predictions with associated confidences: loss regression loss Rol pooling

N
- Eg., (x,y,h,w,c) prop"sa'-"/ -7 /
Y \ Region Proposal Network

Bounding Class
box confidence feature map

We have the class confidences to vary the threshold in
plotting the PR curve. But how do we get TP, TN, FP, FN?

A: Choose an IOU threshold with ground truth boxes to
determine if bounding box prediction is TP, TN, FP, or FN.
Then can plot PR curve and obtain AP metric.
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Evaluation of object detection

Standard output of object detection

For each class, a set of bounding box COCO test-dev
predictions with associated confidences: mAP@.5 |mAP@[.5, .95]
- E.g., (x,y,h,w, c) ggg B;
: : :
Bounding \Class 42.1 215
box confidence 42.7 21.9

We have the class confidences to vary the threshold in
plotting the PR curve. But how do we get TP, TN, FP, FN?

A: Choose an IOU threshold with ground truth boxes to
determine if bounding box prediction is TP, TN, FP, or FN.
Then can plot PR curve and obtain AP metric.

Serena Yeung BIODS 220: Al in Healthcare Lecture 4 - 115



mAP (over all

Evaluation of object detection  casses). with 10U

threshold of 0.5.
Often report mAP at

Standard output of object detection multiple IOUs.
For each class, a set of bounding box j COCO test-dev
predictions with associated confidences: mAP@.5 |mAP@[.5, .95]
- E.g., (X, y,h,w,c) ggg igg
\ , : :
Bounding \Class 42.1 21.5
box confidence 42.7 21.9

We have the class confidences to vary the threshold in
plotting the PR curve. But how do we get TP, TN, FP, FN?

A: Choose an IOU threshold with ground truth boxes to
determine if bounding box prediction is TP, TN, FP, or FN.
Then can plot PR curve and obtain AP metric.
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mAP (over all

Evaluation of object detection  casses). with 10U

threshold of 0.5.
Often report mAP at

Standard output of object detection multiple IOUs.
For each class, a set of bounding box j COCO test-dev
predictions with associated confidences: mAP@.5 |mAP@[.5, .95]
309 19:7
- E.g., (X, y,h,w,c) 393 19.3
Bounding Class 42.1 21.5
box confidence 42.7 21.9
We have the class confidences to vary the threshold in
pIotting the PR curve. But how do we get TP, TN, FP, FN? If IOU threshold not specified in
_ experiments description for a paper,
A: Choose an IOU threshold with ground truth boxes to may need to look in dataset evaluation
determine if bounding box prediction is TP, TN, FP, or FN. documentation. Default is often 0.5.

Then can plot PR curve and obtain AP metric.
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mAP (over all Average of mAP

Evaluation of object detection classes) withIou  values at 10U

threshold of 0.5. thresholds regularly
Often report mMAP at  sampled in the
Standard output of object detection multiple IOUs. intergal between
[.5, .95].
For each class, a set of bounding box j COCO test-dev ¥
predictions with associated confidences: mAP@.5 |mAP@[.5, .95]
309 19.7
- Eg., (X, y,h,wc
9. (% ¥, h, W ),\ 39.3 19.3
Bounding Class 42.1 21.5
box confidence 42.7 21.9
We have the class confidences to vary the threshold in
plotting the PR curve. But how do we get TP, TN, FP, FN? If 10U threshold not specified in
_ experiments description for a paper,
A: Choose an IOU threshold with ground truth boxes to may need to look in dataset evaluation
determine if bounding box prediction is TP, TN, FP, or FN. documentation. Default is often 0.5.

Then can plot PR curve and obtain AP metric.
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Jin et al. 2018

- Detection of surgical instruments in
surgery videos (in each video frame)

Automatically detect surgical instruments

- Surgical instrument movement over the
course of a video can be used to extract

] . . ‘ Input video of Output video with surgical
metrics such as tool switchi ng, and \_ surgical procedure instruments detected ~/
spatial trajectories, that can be used to | |
assess and provide feedback on Extract metrics using tool detection results to assess operative skill
operative skKill. | M- ——

SRR

H
i
3

- Used M2cai16-tool dataset of 15 surgical
videos. Annotated 2532 frames with —
bounding boxes of 7 tools.

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.
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Jin et al. 2018

Tool AP

Grasper 48.3
Bipolar 67.0
Hook 78.4
Scissors 67.7
Clipper 86.3
Irrigator 17.5
Specimen Bag 76.3
mAP 63.1

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.
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Jin et al. 2018

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACYV, 2018.
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Grasper : 0,994
~

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACYV, 2018.
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http://www.youtube.com/watch?v=5ZX0KzUkGew

Other object detection architectures

- RCNN, Fast RCNN: older and slower predecessors to Faster-RCNN

- YOLO, SSD: single-stage detectors that change region proposal generation ->
region classification two-stage pipeline into a single stage.

Faster, but lower performance. Struggles more with class imbalance relative to two-stage
networks that filter only top object candidate boxes for the second stage.

- RetinaNet: single-stage detector that uses a “focal loss” to adaptively weight
harder examples over easy background examples. Able to outperform Faster
R-CNN on some benchmark tasks, while being more efficient.
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Other object detection architectures

- RCNN, Fast RCNN: older and slower predecessors to Faster-RCNN

- YOLO, SSD: single-stage detectors that change region proposal generation ->
region classification two-stage pipeline into a single stage.

Faster, but lower performance. Struggles more with class imbalance relative to two-stage
networks that filter only top object candidate boxes for the second stage.

- RetinaNet: single-stage detector that uses a “focal loss” to adaptively weight
harder examples over easy background examples. Able to outperform Faster
R-CNN on some benchmark tasks, while being more efficient.

RetinaNet also worth trying
for object detection projects!
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Richer visual recognition tasks: segmentation and detection

Semantic Instance

Classification

Detection

Segmentation Segmentation

Output: Output: Output: Output:
one category label for category label for each pixel Spatial bounding box for  Category label and instance
image (e.g., colorectal in the image each instance of a label for each pixel in the
glands) category object in the image
image \ /
Figures: Chen et al. 2016. https://arxiv.ora/pdf/1604.02677.pdf Distinguishes between different instances of an object
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InStance Segmentation: Classificatipn | Boundi.ngbox Mask Prediction
loss —\ \/; regression loss
Mask R-CNN :

Y .

y

Add a small mask

network that operates
on each Rol to predict
a segmentation mask

Bounding-box
regression loss
N

N 1
proposals ’ —
/ rat

Region Proposal Network

Classification
loss

feature map
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Cropping Features: Rol Align Sample at regular points

in each subregion using

No “snapping”!  bilinear interpolation

Improved version of Rol
Pool since we now care
about pixel-level

segmentation accuracy!

o

® ®
TYIFYS

$3

Image features
(e.g. 512 x 20 x 15)
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Cropping Features: Rol Align Sample at regular points

in each subregion using
No “snapping”!  bilinear interpolation

/ -
Improved version of Rol _T
Pool since we now care -1 o o
about pixel-level
segmentation accuracy! T 1 7% o
— — eese— <
S RN o | o
\\
N
| | ~
[ [ ~
| | .
| |
|| Feature fxy for point (x, y)

is a linear combination of
Image features features at its four
neighboring grid cells
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Instance segmentation evaluation

- Instance-based task, like object detection
- Also use same precision-recall curve and AP evaluation metrics
- Only difference is that IOU is now a mask IOU

- Same as the I0OU for semantic segmentation, but now per-instance
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Instance segmentation evaluation

- Instance-based task, like object detection
- Also use same precision-recall curve and AP evaluation metrics
- Only difference is that IOU is now a mask IOU

- Same as the I0OU for semantic segmentation, but now per-instance

backbone AP AP5o AP7s | APs APp; APp
MNC [10] ResNet-101-C4 24.6 44.3 24.8 4.7 259 43.6
FCIS [26] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [26] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 371 60.0 394 16.9 39.9 53.5
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Instance segmentation evaluation

- Instance-based task, like object detection
- Also use same precision-recall curve and AP evaluation metrics
- Only difference is that IOU is now a mask IOU

- Same as the I0OU for semantic segmentation, but now per-instance

Average AP over different

|IOU thresholds \

backbone AP AP5o AP7s | APs APp; APp
MNC [10] ResNet-101-C4 24.6 44.3 24.8 4.7 259 43.6
FCIS [26] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [26] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 371 60.0 394 16.9 39.9 53.5
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Instance segmentation evaluation

- Instance-based task, like object detection
- Also use same precision-recall curve and AP evaluation metrics
- Only difference is that IOU is now a mask IOU

- Same as the I0OU for semantic segmentation, but now per-instance

Average AP over different AP at specific thresholds (“mean AP” is implicit here)

IOU thresholds

backbone AP AP5o AP7s | APs APp; APp
MNC [10] ResNet-101-C4 24.6 44.3 24.8 4.7 259 43.6
FCIS [26] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [26] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 371 60.0 394 16.9 39.9 53.5
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Instance segmentation evaluation

- Instance-based task, like object detection
- Also use same precision-recall curve and AP evaluation metrics
- Only difference is that IOU is now a mask IOU

- Same as the I0OU for semantic segmentation, but now per-instance

Average AP over different AP at specific thresholds (“mean AP” is implicit here)

IOU thresholds / &
\ AP for small,

backbone AP APsg AP75 | APs AP); APp - medium, Iarge
MNC [10] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6 objects
FCIS [26] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [26] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 371 60.0 394 16.9 39.9 53.5
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Example: instance segmentation of cell nuclei

@ Featured Prediction Competition

2018 Data Science Bowl $100,000
Find the nuclei in divergent images to advance medical discovery Prize Money
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Many interesting extensions

- E.g. Hollandi et al. 2019

Original Clustering Building style models Applying style models

images
i PO
]
Style model for style no. 2

- 4O o
- Refined Mask-RCNN Mg v oo iy ‘
instance Segmentation | Synthetic mask generaF rr P
. - B %]

results with further - E
nuclei mas| synthetic

U-Net-based boundary Cotobese etk ‘
refinement ‘i" =~ F!?g

- Used “style transfer”
approaches for rich
data augmentation

Hollandi et al. A deep learning framework for nucleus segmentation using image style transfer. 2019.
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Lung nodule segmentation
- E.g. Liuetal. 2018

- Dataset: Lung Nodule Analysis (LUNA) challenge, 888 512x512 CT scans from the
Lung Image Data Consortium database (LIDC-IDRI).

- Performed 2D instance segmentation in 2D CT slices

We will see other ways
to handle 3D medical
data types in the next
lecture

Liu et al. Segmentation of Lung Nodule in CT Images Based on Mask R-CNN. 2018.
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Summary
Finished up medical image classification
Beyond classification to richer visual recognition tasks

- Semantic segmentation
- Obiject detection
- Instance segmentation

Next time: Advanced vision models (3D and video)
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