Lecture 7:

Electronic Health Records
(Part 2)
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Announcements

e Upcoming deadlines:
o A1 due tomorrow, Oct 6
o Project proposal due Fri, Oct 9
m Remember that you must train a deep learning model somewhere in
your project!
e A2 will be released Wed Oct 7, due Wed Oct 21 (note change to Wed
schedule)
e Please consider posting homework questions visible to the entire class when
appropriate -- everyone will benefit
e Please be careful of your GCP credits usage -- use the cheapest GPU
feasible for each part of the assignment (this is specified in the assignment),
and turn off your instance when not working on your hw

Serena Yeung BIODS 220: Al in Healthcare Lecture 7 - 2



Last time: overview of electronic health records

Patient Timeline

Patient chart in digital form, = 99 2.2 e
El Labs & Flowsheets. < O OO0 e © =~ o
. . orders HE o ) t X o
containing medical and o
Diagnoses
H Notes. o
treatment history e 55— =2 ° -
ot Vo2 Wonh Vorth Vot & Month 11 i~
Year Yeat
At 24 hours after admission,
Admitted predicted risk of inpatient
to hospital mortality: 19.9%.
. Patient dies }0 days later.
Encounters o [¢] o f H
Labs & Flowsheets @ do @ 000 0 QO® O ; DD WO 00D}
Orders | ! ) X ) !
Procedures | H
Diagnoses
Notes s [ ] H
Medication O : 00X H
04.00 08:00 12:00 : 16:00 20:00 00:00 04:00 08:00 1200 ? 16:00
Day 1 i Day 2 1
«—HouRs BEFORE ADMssioN ( HOURS AFTER AoWISSION — >
00:00 hrs 42400 rs
~11:42 hours
+3:33 hours.
Pegfilgrastim 2:42 hours | Physician Note +7:38 hours +22:47 hours
Medication b S oFanetadhidio Eveast Radiology Report - CT CHEST ABDOMEN PELVIS Pulmonary Consult Note
Vancomycin, cancer, R lung malignant “... FINDINGS : CHEST LUNGS AND PLEURA: “.. has a complicated pleural
Metronidazole effusion, and R lung empyema Redemonstration of a moderate left pleural space that requires IR guidance.
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3:23 hours
Nursing Flowsheet

NUR RS BRADEN
SCALE SCORE : 22
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who presents with increased
drainage from
R lung pleurx tract ... *

Healthcare

effusion. interval removal of a right chest
tube within a loculated right pleural effusion
which contains foci of air. [..]J. IMPRESSION: 1
Interval progression of disease in the chest and
abdomen including increased mediastinal

disease within the right lung, probable new
hepatic metastases and subcutaneous nodule
within the thorax [..]"

CT scan showing increased
loculted effusion on R compared
todate..”

Figure credit: Rajkomar et al. 2018
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A real
example of
EHR data:
MIMIC-III

dataset

Hospital
ICU

Bedside monitoring Chart

* Vital signs * Fluids

* Waveforms * Medications

* Trends * Progress notes
* Alarms

Tests
« Laboratory
* Microbiology

Orders
* Provider order entry (POE)

Billing

«ICDY

* DRG

* Procedures (CPT)

Demographics

* Admission/discharge dates

* Date of birth/death

* Religion/ethnicity/marital status

Notes and reports

* Discharge summaries

* Radiology (X-ray, CT, MRI, Ultrasound)
* Cardiology (ECHO, ECG)

—‘ External =

Social Security Death Index

Data archive

De-identification

Date shifting

Format conversion

1

MIMIC-IIT

User feedback
and

—/

Johnson et al. MIMIC-IIl, a freely accessible critical care database. 2016.

BIODS 220: Al in Healthcare

Serena Yeung

Lecture 7 - 4




Examples of prediction tasks

In-hospital Train  Test
mor‘tahty Negative 15480 2862
Positive 2423 374
in-hospital mortality
o I o—>
Beginning of 48 hours End of the
the ICU stay ICU stay
(a)
Phenotypes  Train Test
35621 6281

25 phenotypes

. b

Beginning of End of the
the ICU stay ICU stay

()

Harutyunyan et al. 2019
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Decompensation

Train Test
Negative 2847401 513525
Positive 61013 9683 o T—
true

false

o—>

ST,

Beginning of
the ICU stay

Train Test

2925434 525912

The moment End of the
patient died ICU stay

(b)
Length-of-stay

remaining length of stay

ST,

Beginning of
the ICU stay
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End of the
ICU stay

(d)
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Remember: “vanilla” neural networks for predictions from
clinical variables

Let us consider the task of regression: predicting a single real-valued output from input data

Model input: data vector * = [:1:1, T2, ... LL'N] Model output: prediction (single number) g

Example: predicting hospital length-of-stay from clinical variables in the electronic health record

r = [age, weight, ..., temperature, oxygen saturation] g = length-of-stay (days)
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

ht = fW(ht—h 21375)
new state / old state input vector at T
some time step
some function X

with parameters W

Slide credit: CS231n
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Long Short Term Memory (LSTM) Recurrent Networks

Unrolled Vanilla RNN Unrolled LSTM
® ® © ®© ® ©
t i _, L . L i
[ - : ﬂ A [ A || el A
| | | P ¢ _/ |
&) ® & & ® &
h; = tanh(Wpphe 1 + Wypxy) Different computation to
obtain ht
Y — Whyht

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Today

- More on EHR data
- More on feature representations
- Afirst look at model interpretability: soft attention
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Sources of EHR data

- Open-source EHR datasets (MIMIC-III, MIMIC-CXR, ...)
- Restricted EHR data from individual institutions
- Major vendors: EPIC, Cerner, etc.
- Also: insurance claims data
- Fills in blanks of patient health outside the hospital!
- Visits with other care providers outside the hospital EHR system
- Pharmacy visits
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Sources of EHR data

- Open-source EHR datasets (MIMIC-III, MIMIC-CXR, ...)
- Restricted EHR data from individual institutions
- Major vendors: EPIC, Cerner, etc.
- Also: insurance claims data
- Fills in blanks of patient health outside the hospital!
- Visits with other care providers outside the hospital EHR system
- Pharmacy visits

Challenge: many of these data sources are in their own formats. How do we
use multiple data sources?
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OMOP Common Data Model

- Observational Medical Outcomes
Partnership (OMOP)

- Created from public-private
partnership involving FDA,
pharmaceutical companies, and
healthcare providers

- Standardized format and

Source 1 Source 2 Source 3

vocabulary
- Allows conversion of patient data =
. . Analysis :
from different sources into a i

common structure for analysis
- Intended to support data analysis

Figure credit: https://www.ohdsi.org/wp-content/uploads/2014/07/Why-CDM.png
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OMOP Common Data Model

| Person b Standardized health Standardized
system data metadata
_>| Okservation_period | =I Location |v\ | CDM_source |
—>| Visit_occurrence Location_history | Metadata |
> Visit_detail «w Care_site |/ Standardized
3 'I Condition_occurrence | Provider V vocabularies
% - - | Concept |
= Drug_exposure I‘ Standardized derived
E — 1 elements | Vocabulary |
£ rocedure_occurrence
) | Condition_era | | Domain |
[ -
g \(| Device_exposure | Drug_era |
N
o |
'E 'I Measurement | Dose_era | | Concept_class |
] - -
° \I I/ Concept_relationship
c * Note Results schema | |
S
(7]

Note NLP Cohort | Relationship |
Cohort_definition
I | Concept_synonym I

> Survey_conduct M

Observation Standardized health | Concept_ancestor |
economics

Specimen | | Cost | | Source_to_concept_map |

Fact_relationship | | Payer_plan_period | | Drug_strength |

Figure credit: https://ohdsi.github.io/TheBookOfOhdsi/images/CommonDataModel/cdmDiagram.png
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STARR: Stanford Hospital Data in OMOP

P Stanford | observational Medical Outcomes Partnership o
ﬁ MEDICIN E | Stanford Research data Repository =i
SUMMARY ACCESS LEARN NERO Q

Stanford Electronic Health Records in OMOP
STARR-OMOP is Stanford Electronic Health Record data from its two
Hospitals in a Observational Medical Outcomes Partnership (OMOP)

Common Data Model (CDM). Use OMOP for observational science,
population health science, collaborative network studies and
reproducible data science.

o Standardized Data

* Standardized vocabulary
* Transparent data transformations
¢ High mapping rate
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FHIR

<Patient xmlns="http://hl7.org/fhir">

<extension url="http://www.goodhealth.org/consent#trials"> Extension
H HH <valueCode value="renal"/> with URL to
- Fast healthcare interoperability e it
<text>
<status value="generated"/>
resou rces (FH I R) <div xmlns="http://www.v3.o0rg/1999/xhtml"> Human
<p>Henry Levin the 7th</p> Readable
- Web-based standards / framework o szsssece oy

</text>

for secure exchange of electronic =~ «aeisice

<use value="usual"/>
<label value="MRN"/>

healthcare information acrOSS <system value="http://www.goodhealth.org/identifiers/mrn"/>

<value value="123456"/>

disparate sources o Standard
<family value="Levin"/> Data:
- Based on “resource” elements that o vasermenns } e MEN

<suffix value="The 7th"/> * Name
</name>

contain information to be S Bte

<text value="Mzle"/> *Provider

</gender>
exchanged as a JSON or XML chicthBate valua=R1032-09-24/5
’ <managingOrganization>
H <reference value="Organization/2"/>
ObJeCt <display value="Good Health Clinic"/>
</managingOrganization>
<active value="true"/>
</Patient>

Figure credit: https://www.hl7.org/fhir/DSTU1/shot.png
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FHIR

OHDSI
Environment

Tech On FHIR
Server

ATLAS
Web
Interface
ACHILLES

Database
Characterization

WebAPI OHDSIR
OMOP v5 CDM packages
Data Repository and tools

CALYPSO

Study
Feasibility

Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.
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FHIR

OHDSI

Environment
FHIR-based ATLAS
information exchange Folee
between different

ACHILLES

sources Ootabese

Characterization

OHDSIR
OMOP v5CDM |2 packages

Data Repository and tools

CALYPSO

Study
Feasibility

Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.
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Data from all sources can be

F H I R written in an OMOP data
repository for analysis OHDSI
Environment
Tech On FHI
Server
ATLAS
Web
Interface
ACHILLES
Database
Characterization
5 OHDSI R
OMOP v5CDM |2 packages
Data Repository and tools
CALYPSO
Study
Feasibility

Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.
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OHDSI (parent of OMOP) also

F H | R provides tools and resources fol
oHpsl data analysis
Environment
Tech On FHIR /
Server /

ATLAS
Web

Interface

ACHILLES

Database
Characterization

WebAPI OHDSIR
OMOP v5 CDM packages
Data Repository and tools

CALYPSO

Study
Feasibility

Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.
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FHIR

OHDSI
Environment
FHIR
Web
Interface
ACHILLES
Database
Characterization
SMART on FHIR
is a platform for ek OHDSIR
building third-party St e
apps that interface
with health data in CASLtIdy%O
e.g. EHRs, Feasibility

through FHIR.

Mandel et al. SMART on FHIR: a
standards-based, interoperable apps
platform for electronic health records.

JAMA, 2016. Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.
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Aside: improving EHR technology and utility major
current issue in healthcare

Have already seen one challenge: interoperability
- EHR systems were built and adopted very quickly -- not enough time to design
for interoperability
Are EHRs being used meaningfully?
- Clinicians spending huge amount of time on documentation and interfacing with
EHR system -> burnout and reduced patient interaction
- Lots of pain points. What are the benefits?
Ongoing efforts to reduce pain points
- Improving user experience and Al-assisted documentation (dictation,
autocomplete, etc.)
Ongoing efforts to improve value
- Data analytics, clinical decision support
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Rajkomar et al. 2018

- Clinical predictions from patients’ entire PATIENT TIMELINE
raw EHR records, in FHIR format T _
_ . isit Starts Physical therapy
- De-identified EHR data from two US Ofslered
academic centers with 216,221 adult @ e 0 (@ o @
patients
- Prediction tasks: in-hospital mortality, e || SEEEEC S RseRas

30-day unplanned readmission,
prolonged length of stay, patients’ final
discharge diagnoses

. Readmission Inpatient Current Any
- 46,864,534,945 total data points across Risk Mortality Diagnosis prediction
data (every event, every word in note,
etC.) Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Data representation

EHIR Resource Feature Typeand TokenID =~ Embedding

medication_order { contained { medication {

code {

text { value: “Zosyn" } 1-< 17> : -8.36 +0.41

coding { \

system { value: "RxNorm" } . .

code { value: "1659133" } } } 2-< 35> ‘
ingredient { item_codeable_concept ({ \_9’49 +9‘72 +9.23 O R
text { value: "Piperacillin” } 3-< 85> - s ) )
coding { [

system { value: "Hospital A. Ingredient Code" } 4-<702> i-0'33 +9.39 | . .

code { value: "203134" } } } )}
ingredient { item_codeable_concept {

text { value: “Tazobactam™ } - 3-< 19> 1

coding { 1-0.31 [+0.41

system { value: "Hospital A, Ingredient Code” ) ‘

code { value: "221167" } } } } } } } 4-<913> 8

effective_period {
start { value_us: 882518400000000 } ) } |

/

Raw data as FHIR
resources

-0.70 |(+0.88 (-0.13 (. . .

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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. Each element is mapped to a token ID
Data represe ntatlon (e.g. medication=zosyn), with a token

“feature type”

EHIR Resource Embedding
medication_order { contained { medication {

code { |
text { value: *Zosyn" } 1-< 17> ‘-930 +0.41
coding { \
system { value: "RxNorm" } .
code { value: "1659133" } } } 2-< 35> ‘
ingredient { item_codeable_concept { _0'49 +9‘72 +a'23 2
text { value: "Piperacillin” } 3-< 85> - 3 )
coding { [
system { value: "Hospital A. Ingredient Code" } 4-<762> | -0.33 +0.39

code { value: "203134" } } } }
ingredient { item_codeable_concept {
text { value: “Tazobactam™ )} 3—< 19>

coding { ' -8.31 +0.41

system { value: "Hospital A. Ingredient Code” ) ;

code { value: "221167" } } } } } } } 4-<913> ; - . =
effective_period { | -p.76 +96.88 [-6.13 | .

start { value_us: 882518400000000 } } }

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Data representation

EHIR Resource Feature Typeand TokenID =~ Embedding

medication_order { contained { medication {

code { [ | 5
text { value: *Zosyn" } 1-< 17> -8.36 +0.41
uodlug {
system { value: "RxNorm" } .
code { value: "1659133" } } } 2-< 35>
ingredient { item_codeable_concept ({ ‘-0’49 +e‘72 +a’23 e
text { value: "Piperacillin” } 3_< 85> L > -
coding {
system { value: "Hospital A. Ingredient Code" } 4-<762> 1 =-0.33 +8.39

code { value: "203134" } } } )}
ingredient { item_codeable_concept {
text { value: "Tazobactam™ )} 3-( 19>

coding { ' -8.31 +0.41
system { value: "Hospital A, Ingredient Code” )
code { value: "221167" } } } } } } } 4-<913> :

effective_period {
start { value_us: 882518400000000 } } }

-0.70 +0.88 |-0.13 | .

pel

Every unique token is numerically represented by an “embedding vector” that will
represent the token in the model. The embedding vector values are learned;

similar tokens will probably have similar embedding vectors.
Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Token embeddings

05 0.2 0.1
06 0.1 06
[0010000....0] X = [0.5 0.8 0.2]
05 0.8 0.2
1xN token input (one-hot D-dim token embedding
. 07 109 03
selection of token)
0.3 |05 | 0.1
0.7 /0.8 0.1

N x D embedding matrix
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Token embeddings

0.5 0.2 01
06 0.1 |06
[0010000....0] X = [05 0.8 0.2]
05 08 0.2
1xN token input (one-hot D-dim token embedding
: 0.7 109 |03
selection of token)
03 05 01
In general, learning embedding
matrices are a useful way to map
07 108 |01 discrete data into a semantically
meaningful, continuous space!
Will see frequently in natural
N x D embedding matrix language processing.

Serena Yeung
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Computational graph input to RNN

W
\ \\\ —>
h0 fW—>h1:>’fW—>h23fW—>h3—>.-.—>hT
reshape reshape reshape
A } :
fE 1:E 1:E
f f f
X, X, Xq
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Computational graph input to RNN

\ ~—_ —>
h f —h f ——h~~f —h > —» h
0 W 1 W 2 W 3 = aon U
MxN
one-hot T T T
token reshape reshape reshape
embedding 5 5 3
s (M
feature f f f
tokens at E E E
the f * f
timestep, N
tokens in X1 X2 X3
vocab)
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Computational graph input to RNN

\ ‘\ —

h f —h f ——h~~f —h > —» h

Y W 1 W 2 W 3 . u o T
N x D reshape reshape reshape €4 1€ | €43
embedding I A A e, e, e,
matrix (N f f f
words in / E E c E = e, e, e,
vocab, f * *
D-dimension e, €, €,
al ; X1 X2 X3
embedding) e, €, €,
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05 02 01

Computational graph ing

[0010000....0] X ; : | = [05 08 0.2]

05 08 02
1xN token input (one-hot '
selection of token)

D-dim token embedding

0.7 09 03

03 05 01

0.7 08 01

N x D embedding matrix

_ reshape reshape reshape €1 C12 | g3
Matrix 5 X X
multiplication of €1 | €21 | €3
f_ with x selects f f f _
E =
embedding E E E E €3 | €3 €y
vectors f * f
corresponding to €1 | €2 | Cu3
tokens (M x D X, X, Xy . o o
Output) 51 52 53
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Computational graph input to RNN

\ \\ —>
h f —h f ——h~~f —h > —» h
0 W 1 W 2 W 3 " = = T
Reshape into reshape reshape reshape € | C12 | C13
alxMD [} * *
vector -> / € | €y | Cy
input into fE fE fE E= e e e
RNN at each * * * 31 32 33
timeste
P € | Cu | Cu3
X X X
] 2 3 eS1 e52 e53
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Embedding matrix has values that

Computational graph input to RNN  are randomiy initialized at the

beginning, then learned through

W training (backpropagation)!
\ \\ —>

h f —h f ——h~~f —h > —» h

0 W 1 W 2 W 3 " = = T
reshape reshape reshape €1 C12 | g3
f+ t t €21 | €21 | €33
: fli fli E= e, e, ey
€41 €2 | Cu

X X X

! 2 2 eS1 e52 e53
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. ] Embedding matrix has values that
Computational graph input to RNN  are randomly initialized at the
beginning, then learned through
W training (backpropagation)!
(shown for N =5, D = 3)
Note that E is used at each timestep in
computational graph of RNN

hO f —»h\:# f :h\3 f +—=h —>4 —» h
VTV 1 VTV 2 \%V 3 " = = T

reshape reshape reshape €1 C12 | g3

t ! t €21 | €21 | €23

fli 1:E 1:E E = €31 | €32 | €33

* * € | Cu | Cu3

X1 X2 X3 e51 e52 e53
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Rajkomar et al. RNN (LSTM) input

-0.30 |+0.41 |-0.49 [+0.72 (+0.23 |. . . [-0.32 (+0.40 . . . |. . . |. .. { . .]-9.81 140.99 (+0.12 | . . .

!

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Rajkomar et al. RNN (LSTM) input

-0.30  +0.41 -8.49 40.72 |40.23 |. . . |-0.32 (+0.48 | . . . . . . .. { .. |-0.81 |+0.99 [+0.12 |. . .
& J
Y

One vector representation for each token
“feature type” (e.g. medication, procedure).
Embeddings of multiple tokens corresponding
to a same feature type are combined through
averaging.

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Rajkomar et al. RNN (LSTM) input

-0.36 -+G.41 --8.49 ‘+9.72 jj+9.23 T. @ i --9.32 '+0.40 — 5 0N p— '. % 5 { . o '-0.81 M0.99 L+0.12 -. =
g J
h'e
One vector representation for each token _ _ _
“feature type” (e.g. medication, procedure). Alittle bit of added complexity: each feature
Embeddings of multiple tokens corresponding type has its own embedding dimension D. A
to a same feature type are combined through hyperparameter!
averaging.

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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] ] Also include an embedding

Raj komar et al . RN N (LSTM) |nput representation of time delta from
last RNN input. Full high-temporal
resolution data are bucketed and
(weight-)averaged into coarser
buckets for RNN input.

\

-0.30 >+9.41 i-6.49 -+9.72 §+9.23 .. « --9.32 .+0.40 5 2 % . -. % 5 ‘ . o ;-9.81 T-0»9.99 -+0.12 .. =
G J
Yo
One vector representation for each token _ _ _
“feature type” (e.g. medication, procedure). Alittle bit of added complexity: each feature
Embeddings of multiple tokens corresponding type has its own embedding dimension D. A
to a same feature type are combined through hyperparameter!
averaging.

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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] ] Also include an embedding

Raj komar et al . RN N (LSTM) |nput representation of time delta from
last RNN input. Full high-temporal
resolution data are bucketed and
(weight-)averaged into coarser
buckets for RNN input.

\

-0.30 >+9.41 i-6.49 -+9.72 §+9.23 .. « --9.32 .+0.40 5 2 % . -. % 5 ‘ . o ;-9.81 T-0»9.99 -+0.12 .. =
G J
Yo
One vector representation for each token _ _ _
“feature type” (e.g. medication, procedure). Alittle bit of added complexity: each feature
Embeddings of multiple tokens corresponding type has its own embedding dimension D. A
to a same feature type are combined through hyperparameter!
averaging.

Refer to paper for other details, e.g. bucketing
of continuous data types into discrete token

S.
Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Rajkomar et al.

Compared deep learning
approach with baselines (e.g.
logistic regression), and using all
variables in data (flattened vector)
vs hand-crafted features from
subset of variables

Inpatient Mortality, AUROCY(95% CI)

Hospital A

Hospital B

Deep learning 24 hours after admission

Full feature enhanced baseline at 24 hours after admission
Full feature simple baseline at 24 hours after admission
Baseline (aEWS?) at 24 hours after admission

0.95(0.94-0.96)
0.93 (0.92-0.95)
0.93(0.91-0.94)
0.85 (0.81-0.89)

0.93(0.92-0.94)
0.91(0.89-0.92)
0.90(0.88-0.92)
0.86 (0.83-0.88)

30-day Readmission, AUROC (95% CI)

Deep learning at discharge

Full feature enhanced baseline at discharge
Full feature simple baseline at discharge
Baseline (mHOSPITALS?) at discharge

0.77(0.75-0.78)
0.75(0.73-0.76)
0.74(0.73-0.76)
0.70 (0.68-0.72)

0.76(0.75-0.77)
0.75(0.74-0.76)
0.73(0.72-0.74)
0.68 (0.67-0.69)

Length of Stay at least 7 days AUROC (95% CI)

Deep learning 24 hours after admission

Full feature enhanced baseline at 24 hours after admission
Full feature simple baseline at 24 hours after admission
Baseline (mLiu?) at 24 hours after admission

0.86(0.86-0.87)
0.85 (0.84-0.85)
0.83(0.82-0.84)
0.76 (0.75-0.77)

0.85(0.85-0.86)
0.83(0.83-0.84)
0.81(0.80-0.82)
0.74(0.73-0.75)

1 Area under the receiver operator curve
2 Augmented early warning score

3 Modified HOSPITAL score

4 Modified Liu score

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Rajkomar et al.

Compared deep learning
approach with baselines (e.g.
logistic regression), and using all
variables in data (flattened vector)
vs hand-crafted features from
subset of variables

Evaluated model at 24 hr before
admission, at admission, and 24
hr after admission

Inpatient Mortality, AUROCY(95% CI)

Hospital A

Hospital B

Deep learning 24 hours after admission

Full feature enhanced baseline at 24 hours after admission
Full feature simple baseline at 24 hours after admission
Baseline (aEWS?) at 24 hours after admission

0.95(0.94-0.96)
0.93 (0.92-0.95)
0.93(0.91-0.94)
0.85 (0.81-0.89)

0.93(0.92-0.94)
0.91(0.89-0.92)
0.90(0.88-0.92)
0.86 (0.83-0.88)

30-day Readmission, AUROC (95% CI)

Deep learning at discharge

Full feature enhanced baseline at discharge
Full feature simple baseline at discharge
Baseline (mHOSPITALS?) at discharge

0.77(0.75-0.78)
0.75(0.73-0.76)
0.74(0.73-0.76)
0.70 (0.68-0.72)

0.76(0.75-0.77)
0.75(0.74-0.76)
0.73(0.72-0.74)
0.68 (0.67-0.69)

Length of Stay at least 7 days AUROC (95% CI)

Deep learning 24 hours after admission

Full feature enhanced baseline at 24 hours after admission
Full feature simple baseline at 24 hours after admission
Baseline (mLiu?) at 24 hours after admission

0.86(0.86-0.87)
0.85 (0.84-0.85)
0.83(0.82-0.84)
0.76 (0.75-0.77)

0.85(0.85-0.86)
0.83(0.83-0.84)
0.81(0.80-0.82)
0.74(0.73-0.75)

1 Area under the receiver operator curve
2 Augmented early warning score

3 Modified HOSPITAL score

4 Modified Liu score

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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"
At 24 hours after admission,
n Admitted predicted risk of inpatient
to hospital mortality: 19.9%.
- . Patient dies 10 days later.
Encounters O (@) (o) ) ) 1
Labs & Flowsheets o ® OOQIE®Od0 @ 000 | 0 | aoc® g ‘ ) DD CEEC @O 00!
Orders 00 D | oC ¥ 2, t ! © - |
Procedures ‘ i
Diagnoses : | E
Notes _ ' 9 OQm | @ & |
Medication o9 i | 0708 i
| o400 08:00 | 12200/ ! 1600 20:00 '00:00 04:00 08:00 1200 ' 16:00
Day 1 ' Day 2 i
B T e I ———— G s
00 O;] hrs +24 C;G hrs
-11:42 hours
+3:33 hours
Pegfilgrastim 2:42 hours Physician Note | ' +7:38 hours +22:47 hours
Medication « BriH of inetaatatic Breast Radiology Report - CT CHEST ABDOMEN PELVIS Pulmonary Consult Note
Vancomycin, cancer, R lung malignant “... FINDINGS : CHEST LUNGS AND PLEURA: “.. has a complicated pleural
Metronidazole effusion, and R lung empyema Redemonstration of a moderate left pleural space that requires IR guidance.
who presents with increased effusion. interval removal of a right chest CT scan showing increased
drainage from tube within a loculated right pleural effusion loculted effusion on R compared
-3:23 hours R lung pleurx tract ... " which contains foci of air. [..]. IMPRESSION: 1. to date ..”
Nursing Flowsheet Interval progress"ion of disease in th¢‘a chest and
abdomen including increased mediastinal
NUR RS BRADEN lymphadenopathy, pleural/parenchymal
SCALE SCORE : 22 disease within the right lung, probable new
. . “ . ” . hepatic metastases and subcutaneous nodule
Also trained a model with “soft attention” on a simpler task o
(in-hospital mortality, subset of data variables) to obtain

interpretability
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Soft attention

- Weight input variables by an
“attention weights” vector p

- Learn to dynamically produce p
for any given input, by making it
a function of the input x and a
fully connected layer f, (with
learnable parameters A)

- By optimizing for prediction
performance, network will learn
to produce p that gives stronger
weights to the most informative
features in x!

Output y

f

Rest of the neural
network

Z

!

Soft attention
weighting

S
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Soft attention
Output y

- Weight input variables by an T

“attention weights” vector p Rest of th |
est of the neura

- Learn to dynamically produce p network
for any given input, by making it
a function of the input x and a Input X =[x;,X,, Xp]
fully connected layer f, (with £ Attention weiahts
learnable parameters A) T _ ghis p
By ootimisin £ ot Soft attention ~ ~[P1:P2 ol

- By optimizing for prediction :hiti _ _ _
performance, network will learn weighting Attention-weighted input
to produce p that gives stronger / \ z=[z242, 7
weights to the most informative X ™ f. = P |Learnable fully connected

in x!
features in x! layer f, with weights A
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Soft attention p = softmax(Ax)
Output y

- Weight input variables by an T

“attention weights” vector p Rest of th |
est of the neura

- Learn to dynamically produce p network
for any given input, by making it
a function of the input x and a Input X =[x;,X,, Xp]
fully connected layer f, (with £ Attention weights p
learnable parameters A) T _
By ootimisin £ ot Soft attention ~ ~[P1:P2 ol

- By optimizing for prediction iyt _ _ _
performance, network will learn weighting Attention-weighted input
to produce p that gives stronger / \ z=[z242, 7
weights to the most informative X ™ f. = P |Learnable fully connected

features in x! layer f, with weights A
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Soft attention in RNNs

Note that f, produces attention weights as a
function of both current input x as well as
previous hidden state h!

h0—>fW—>h1—>fW—>h2—>fW—>h3—>.-.—>hT
:I Z1 \\\ Z \\\ Z3
Sc;lft attention Soft atIention Soft aItention
weighting weighting weighting
/ \ / < \ / \‘\
X1->fA—>p X2->fA—>p X3->fA—>p
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Soft attentlon in RN NS Note that f, produces attention weights as a

function of both current input x as well as
previous hidden state h!

h0—>fW—>h1—>fW—>h2—>fW—>h3—>.-.—>hT
e B T B
' Z, Y Z, AN Z, Attention weights p. indicate
\ ' I \\\ I features that the model gives
| \ ) .
Soft attention Soft attention Soft attention g:/z:;%sr;glp;:gance o at
. . v . N .
\{lvelghtlng wglghtlng weighting
/ \ / \\ \ / ° \
\
v < 4
X1 e fA —> P x2 - fA —> P X3 - fA — P
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Soft attentlon in RN NS Note that f, produces attention weights as a

function of both current input x as well as
previous hidden state h!

h > — h, —> —> h. —> — h, — —> h
0 1:W 1 1:W 2 fW 3 == T
e B I
' Z ! z Nz Attention weights p. indicate
| 1 \ 2 A 3 i :
" Y I N I features that the model gives
! . . \ . the most importance to at
Soft gtteptlon Sda‘\t gt eptlon Sof:[:cl teptlon every time-step i
weighting wglghtlng weighting
! ' N Weight matrix A
v / \ \ DY shared across
A multiple
X, ™ f, — P X, ™ f, —1 P X, ™ f, 1 P timesteps in
computational
graph
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Active areas of research

- Improving prediction models for clinically meaningful tasks
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Active areas of research

- Improving prediction models for clinically meaningful tasks
- Another popular task: early warning for critical conditions such as
sepsis
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Active areas of research

- Improving prediction models for clinically meaningful tasks
- Another popular task: early warning for critical conditions such as
sepsis
- Multimodal modeling: more effective joint reasoning over different
modalities of data (e.g. text, lab results, images, etc.)
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Active areas of research

- Improving prediction models for clinically meaningful tasks
- Another popular task: early warning for critical conditions such as
sepsis
- Multimodal modeling: more effective joint reasoning over different
modalities of data (e.g. text, lab results, images, etc.)
- Model interpretability
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Active areas of research

- Improving prediction models for clinically meaningful tasks
- Another popular task: early warning for critical conditions such as
sepsis
- Multimodal modeling: more effective joint reasoning over different
modalities of data (e.g. text, lab results, images, etc.)
- Model interpretability
- Learning useful feature representations for downstream tasks
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Active areas of research

- Improving prediction models for clinically meaningful tasks
- Another popular task: early warning for critical conditions such as
sepsis
- Multimodal modeling: more effective joint reasoning over different
modalities of data (e.g. text, lab results, images, etc.)
- Model interpretability
- Learning useful feature representations for downstream tasks
- E.g., unsupervised word embedding methods from NLP for clinical
notes -> next lecture

-0.30 [+0.41 |-0.49 [+0.72 (+0.23 |. . . [-0.32 (+0.40 |. . . |. . . [. .. |...[-0.81 [+0.99 [+0.12|. . .| |. . .|. ..
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Active areas of research

- Improving prediction models for clinically meaningful tasks
- Another popular task: early warning for critical conditions such as
sepsis
- Multimodal modeling: more effective joint reasoning over different
modalities of data (e.g. text, lab results, images, etc.)
- Model interpretability
- Learning useful feature representations for downstream tasks
- E.g., unsupervised word embedding methods from NLP for clinical
notes -> next lecture
- Another task, beyond prediction: finding cohorts of similar patients
(“precision medicine”)
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Summary

Today’s topics

- More on EHR data
- More on feature representations
- Afirst look at model interpretability: soft attention

Next lecture

- More on text data and representations

Serena Yeung BIODS 220: Al in Healthcare Lecture 7 - 56



