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Problem Set 5

This fifth problem set explores the regular languages, their properties, and their limits.  This will 
be your first foray into computability theory, and I hope you find it fun and exciting!

Start this problem set early.  It contains six problems (plus one survey question and one extra-
credit  question),  several of which require a fair  amount of thought.   I  would suggest reading 
through this problem set at least once as soon as you get it to get a sense of what it covers.

As much as you possibly can, please try to work on this problem set individually.  That said, if 
you do work with others, please be sure to cite who you are working with and on what problems. 
For more details, see the section on the honor code in the course information handout.

In any question that asks for a proof, you  must provide a rigorous mathematical proof.  You 
cannot draw a picture or argue by intuition.  You should, at the very least, state what type of proof 
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what 
it is that you are trying to show.  If we specify that a proof must be done a certain way, you must 
use that particular proof technique; otherwise you may prove the result however you wish.

If you are asked to prove something by induction, you may use weak induction, strong induction, 
the well-ordering principle, or structural induction.  In any case, you should state your base case 
before  you prove it,  and  should  state  what  the  inductive  hypothesis  is  before  you prove the 
inductive step.

As always, please feel free to drop by office hours or send us emails if you have any questions.  
We'd be happy to help out.

This problem set has 125 possible points.  It is weighted at 7% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so do be aware that the difficulty of the 
problems does increase over the course of this problem set.

Good luck, and have fun!

Due Friday, May 11h at 2:15 PM



Problem One: Constructing DFAs (24 Points)

For  each  of  the  following  languages  over  the  indicated  alphabets,  construct  a  DFA that  accepts 
precisely those strings that are in the indicated language.  Your DFA does not have to have the fewest 
number of states possible.  Unless otherwise noted, you should specify your DFA as either a state-
transition diagram (the graphical representation we've seen in class) or as a table.

We have an online tool you can use to design, test, and submit the DFAs in this problem.  This is a 
prototype that we think will make it easier to work through these problems.  If you would like to use it, 
visit  https://www.stanford.edu/~rwong2/cgi-bin/nfa/nfa.php.   There  are  tutorials  available  on  the 
website with information about how to use the development environment.  If you submit through this 
system, please make a note of it in your problem set submission so that we know to look online for 
your answers.

i. For the alphabet Σ = {0, 1, 2}, construct a DFA for the language L = { w | w contains exactly 
two 2s. }

ii. For the alphabet  Σ = {0, 1}, construct a DFA for the language L = { w | w contains the same 
number of instances of the substring 01 and the substring 10 }

iii. For the alphabet  Σ = {a, b, c, …, z}, construct a DFA for the language L = { w | w contains 
the word “cocoa” as a substring }.  Remember that as a shorthand, you can specify multiple 
letters in a transition by using set operations on Σ (for example,  Σ – {a, b}) *

iv. Suppose that you are taking a walk with your dog along a straight-line path.  Your dog is on a 
leash that has length two, meaning that the distance between you and your dog can be at most 
two units.  You and your dog start at the same position.  Consider the alphabet Σ = {Y, D}.  A 
string in Σ* can be thought of as a series of events in which either you or your dog moves 
forward one unit.  For example, the string “YYDD” means that you take two steps forward, then 
your dog takes two steps forward.  Let L = { w | w describes a series of steps that ensures that 
you and your dog are never more than two units apart }.  Construct a DFA for this language.

Problem Two: Constructing NFAs (24 Points)

For  each  of  the  following  languages  over  the  indicated  alphabets,  construct  an  NFA that  accepts 
precisely those strings that are in the indicated language.  Unless otherwise noted, you should specify 
your NFA as either a state-transition diagram (the graphical representation we've seen in class) or as a 
table.  Your NFA may use ε-transitions if you wish.  As in Problem One, you can design, test, and 
submit your automata through our online system if you wish.

i. For the alphabet Σ = {0,  1,  2}, construct an NFA for the language { w |  w ends in  0,  11, or 
222. }

ii. For the alphabet Σ = {a, b, c, d, e}, construct an NFA for the language { w | the last character 
of w appears nowhere else in the string, and |w| ≥ 1 }

iii. For the alphabet Σ = {0, 1}, construct an NFA for the language { w |  w contains two 1's with 
exactly five characters in-between them. }  For example,  1000001 is in the language, as is 
00100110100 and 011111010000, but 11111 is not, nor are 11101 or 000101.

* DFAs are the basis of a fast algorithm called the Knuth-Morris-Pratt algorithm for finding whether a string contains a 
given substring.  The algorithm works by automatically constructing an automaton like the one you'll be building in this 
problem, then running the automaton on the string to be searched.

https://www.stanford.edu/~rwong2/cgi-bin/nfa/nfa.php


Problem Three: Finding Flaws in Regular Expressions (16 Points)

Below are a list of alphabets and languages over those alphabets.  Each language is accompanied by a 
regular expression that claims to match that language, but which does not correctly do so (either it  
matches a string it should reject, or it rejects a string it should accept).  In each case, give an example of 
a string that is either incorrectly accepted or incorrectly rejected by the regular expression, then write a 
regular expression that does correctly match the given language.

i. Σ = {0, 1}, and L = { w | w consists of all 0s or all 1s }.  The regular expression is (0|1)*.

ii. Σ = {0,  1}, and  L = {  w |  w contains an even number of  0s. }  The regular expression is 
(1*01*0)*

iii. Σ = {0, 1}, and L = { w |  w does not contain 01 as a substring. }  The regular expression is 
(0|1|00|10|11)*

Problem Four: The Complexity of Exponentiation (16 Points)

How hard is it to check if a number is a perfect power of two?

A number is a power of two if it can be written as 2n for some natural number n.  Consider the language 
POWER2 = { 12n

| n  ∈ ℕ } over the simple alphabet Σ = { 1 }.  That is, POWER2 contains all strings 
whose lengths are a power of two.  For example, the smallest strings in POWER2 are 1, 11, 1111, and 
11111111.

Prove that POWER2 is not regular.  (Hint: You may want to use the fact that n < 2n for all n  ∈ℕ)

Problem Five: The Complexity of String Searching (20 Points)

How hard is it to search a string for a substring?

A common task in computer programming is to search a string to see if some other string appears as a 
substring.   This  task  arises  in  computational  biology  (searching  an  organism's  genome  for  some 
particular DNA sequence), information storage (finding all copies of some phrase in the full text of a 
book), and in spam filtering (searching for some key words in an email).

More formally, we can define the substring search problem as follows.  The string search problem is 
given a string to search for (called the pattern) and a string in which the search should be conducted 
(called the  text), to determine whether the pattern appears in the text.  To encode this as a language 
problem, let Σ = {0,  1,  ?}.  We can then encode instances of the string search problem as the string 
pattern?text.  For example:

“Does 0110 appear in 1110110 ?” would be encoded as 0110?1110110

“Does 11 appear in 0001 ?” would be encoded as 11?0001

“Does ε appear in 1100 ?” would be encoded as ?1100

Let the language SEARCH = { p?t | p, t  {∈ 0, 1}* and p is a substring of t }.  Prove that SEARCH is 
not regular, which means that no DFA, NFA, or regular expression is powerful enough to describe 
SEARCH.



Problem Six: The Complexity of Addition (20 Points)

As we saw in lecture, if L1 and L2 are regular, then L1, L1  ∪ L2, L1 ∩ L2, L1L2, L1*, L1
R, and h*(L1) are 

also regular languages.  These properties are sometimes called closure properties.  In lecture, you saw 
how to use the pumping lemma to prove that a particular language is not regular.  However, many 
languages  can be shown to be nonregular without using the pumping lemma by using the closure 
properties of regular languages.  In this problem, you'll explore how to do this.

Homomorphisms might have seemed like little more than a curiosity in lecture, but they are invaluable 
tools in computability theory for showing that certain languages are or are not regular.  Recall that if 
L  Σ⊆ 1* is a regular language and h* : Σ1* → Σ2* is a homomorphism, then h*(L) is a regular language 
as well.  By the contrapositive, this means that if h*(L) is not a regular language, then L is not a regular 
language either.   In  other  words,  we can prove that  a  language  L is  not  regular  by finding some 
homomorphism h* such that h*(L) is not regular.

In Friday's lecture, we saw that for the alphabet Σ = {0, 1, ?}, the language

EQUAL = { x?x | x  {∈ 0, 1}* }

is not regular.  This language corresponds to instances of the problem “are these two strings of 0s and 
1s equal to one another?”  Using the pumping lemma, it can also be shown that if we let Σ = {0, ?}, 
then the language

SAME = { 0n?0n | n  ∈  ℕ } 

is also not regular (you don't need to prove this, but you may find it to be good practice).  Here, the 
language SAME corresponds to solving the problem “given two strings of 0s separated by a ?, does the 
string on the left-hand side contain the same number of 0s as the string on the right-hand side?”

In the remainder of this problem, you will see how to use homomorphisms and the fact that SAME is 
not regular to prove that another language is not regular either.  The question we will address is

How hard is it to add two numbers?

Suppose that we want to check whether x + y = z, where x, y, and z are all natural numbers.  If we want 
to phrase this as a problem as a question of strings and languages, we will need to find some way to 
standardize our notation.  In this problem, we will be using the  unary number system, a number 
system in which the number n is represented by writing out n 1's.  For example, the number 5 would be 
written as  11111, the number 7 as  1111111, and the number 12 as  111111111111.  Given the 
alphabet Σ = {1, +, =}, we can consider strings encoding x + y = z by writing out x, y, and z in unary. 
For example:

4 + 3 = 7 would be encoded as 111+1111=1111111

7 + 1 = 8 would be encoded as 1111111+1=11111111

0 + 1 = 1 would be encoded as +1=1

Consider the language ADD = {1m+1n=1m+n | m, n ∈ ℕ }.  That is, ADD consists of strings encoding 
two unary numbers and their sum.  We will see how to prove that ADD is not regular.  Consider the 
function h : {1, +, =} → {0, ?}* defined as

• h(1) = 0

• h(+) = ε

• h(=) = ?



Now, let h* : {1, +, =}* → {0, ?}* be the homomorphism derived from h.  For example:

h*(11+11=1111)  = 0000?0000

h*(1+=1)  = 0?0

h*(111+11=11111) = 00000?00000

h*(1+111=1111)  = 0000?0000

Notice that applying  h* to strings in  ADD seems to produce strings in  SAME.  In fact, we might 
wonder whether h*(ADD) = SAME.  That is, does this homomorphism transform the set of strings in 
ADD into the set of strings in SAME?

i. Prove that  h*(ADD)  ⊆ SAME.  (Hint: If  x  ∈ h*(ADD), then  x =  h*(w) for some  w  ∈ ADD. 
What do you know about strings in ADD?) 

ii. Prove that SAME  ⊆ h*(ADD).  (Hint: Show that for any x  SAME, there is some w  ADD∈ ∈  
such that h*(w) = x)  

iii. Based on your answers to (i) and (ii), prove that ADD is not a regular language.  Do not use the 
pumping lemma.

iv. Although it is true that if  L is regular, then  h*(L) is regular for any homomorphism  h*, the 
inverse of this statement is not true.  That is, if L is not regular, it is still possible for h*(L) to be 
regular.  Give an example of a nonregular language L and homomorphism h* such that h*(L) is 
regular.

But wait a minute!  Didn't we prove in lecture that addition is indeed a regular language?  We did  
indeed build a DFA in lecture that could verify addition was done correctly, but in doing so we chose an 
unusual representation for our strings.  Specifically, we build an alphabet out of columns of integers, 
then encoded the addition as binary addition.  As you've just shown, though, if we were to change our 
encoding scheme and instead do unary addition, then the new language would not be regular.

This highlights a key different  between  problems and  languages.   When encoding a  problem as a 
language, it is often the case that the difficulty of solving that problem hinges on how it is represented. 
Only  languages can  be  regular  or  nonregular.   We will  return  to  this  topic  later  when we cover 
complexity theory.

Problem Seven: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're 
doing.  For a free five points, please answer the following questions.  We'll give you full credit no 
matter what you write (as long as you write something!), but we'd appreciate it if you're honest about 
how we're doing.

i. How hard did you find this problem set?  How long did it take you to finish? 

ii. Does that seem unreasonably difficult or time-consuming for a five-unit class? 

iii. Did you attend Monday's midterm review session?  If so, did you find it useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you think 
we're doing well?



Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest way 
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout 
hangout in the Gates building.  If you haven't been there before, it's right inside the entrance 
labeled “Stanford Engineering Venture Fund Laboratories.”   There will  be a  clearly-labeled 
filing cabinet where you can submit your solutions.

3. Send  an  email  with  an  electronic  copy  of  your  answers  to  the  submission  mailing  list
(cs103-spr1112-submissions@lists.stanford.edu)  with  the  string  “[PS5]”  somewhere  in  the 
subject line.

If you are an SCPD student, we would strongly prefer that you submit solutions via email.  Please 
contact us if this will be a problem.

Extra Credit Problem: The Pumping Lemma Revisited (5 Points)

In lecture, we sketched a proof of the pumping lemma by using the fact that every regular language is 
accepted by a DFA.  By looking at the structure of a DFA, we could conclude that the pumping lemma 
must hold.  Write an alternative proof of the pumping lemma that is based on the regular expression 
representation of a regular language.  Do not reference DFAs or NFAs in your proof.

mailto:cs103-spr1112-submissions@lists.stanford.edu

