DFAs, Informally

- A DFA is defined relative to some alphabet Σ.
- For each state in the DFA, there must be exactly one transition defined for each symbol in the alphabet.
 - This is the “deterministic” part of DFA.
- There is a unique start state.
- There may be multiple accepting states.
Recognizing Languages with DFAs

$$L = \{ \text{w} \mid \text{w contains 00 as a substring} \}$$
Recognizing Languages with DFAs

$L = \{ w \mid \text{every even character of } w \text{ is a } 0 \}$
Tabular DFAs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₃</td>
<td>q₂</td>
</tr>
<tr>
<td>q₂</td>
<td>q₃</td>
<td>q₀</td>
</tr>
<tr>
<td>q₃</td>
<td>q₃</td>
<td>q₃</td>
</tr>
</tbody>
</table>
A Formal Definition of DFAs

- Formally, a DFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function.
 - \(q_0 \in Q\) is the start state.
 - \(F \subseteq Q\) is a set of accepting states.
A Formal Definition of DFAs

- Formally, a DFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where
 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function.
 - \(q_0 \in Q\) is the start state.
 - \(F \subseteq Q\) is a set of accepting states.
A Formal Definition of DFAs

- Formally, a DFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where
 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta\) is the transition function.
 - \(q_0\) is the start state.
 - \(F\) is a set of accepting states.
A Formal Definition of DFAs

- Formally, a DFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where
 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function.
 - \(q_0 \in Q\) is the start state.
 - \(F \subseteq Q\) is a set of accepting states.

\(\delta : Q \times \Sigma \rightarrow Q\) is the transition function.
A Formal Definition of DFAs

- Formally, a DFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where
 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function.
 - \(q_0 \in Q\) is the start state.
 - \(F \subseteq Q\) is a set of accepting states.
 - \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function.
A Formal Definition of DFAs

- Formally, a DFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where
 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times \Sigma \rightarrow Q\) is the \textit{transition function}.
 - \(q_0\) is the start state.
 - \(F\) is a set of accepting states.

\(\delta\) is a function, so there must be exactly one transition defined for each state/symbol pair.
A Formal Definition of DFAs

- Formally, a DFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where
 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function.
 - \(q_0 \in Q\) is the start state.
 - \(F \subseteq Q\) is a set of accepting states.
A Formal Definition of DFAs

- Formally, a DFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where
 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function.
 - \(q_0 \in Q\) is the start state.
 - \(F \subseteq Q\) is a set of accepting states.
A Formal Definition of Acceptance

- Given a DFA \((Q, \Sigma, \delta, q_0, F)\), we want to find some way to formally define what it means for the DFA to accept a string \(w \in \Sigma^*\).

- **Idea:** Define a function \(\delta^* : \Sigma^* \rightarrow Q\) that says what state we end up in if we run the DFA on a given string.

- This function represents the effect of running the computer on a given input.
A Formal Definition of Acceptance

- **Notation**: If w is a string and a is a character, then wa is the string formed by appending a to w.
- Given a DFA $(Q, \Sigma, \delta, q_0, F)$, δ^* is defined recursively.
 - $\delta^*(\varepsilon) = q_0$
 - Running the automaton on ε ends in the start state.
 - $\delta^*(wa) = \delta(\delta^*(w), a)$
 - Running on wa is equal to running the automaton on w, then following the transition for a.
A Formal Definition of Acceptance

- Using our δ^* function, we can formally define the language of a DFA.
- Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- Define $\mathcal{L}(D) = \{ w \mid \delta^*(w) \in F \}$
 - The set of strings w that cause the DFA to end up in an accepting state.
So What?

- We now have a mathematically rigorous way of defining whether a DFA accepts a string.
- We can try making changes to DFAs and can formally prove how those changes transform the language of the DFA.
A language L is called a **regular language** iff there exists a DFA D such that $\mathcal{L}(D) = L$.
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings not in L.

• Formally:

$$\overline{L} = \{ w \mid w \in \Sigma^* \land w \notin L \}$$
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings not in L.
- Formally:
 \[
 \overline{L} = \{ w \mid w \in \Sigma^* \land w \notin L \}
 \]
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings not in L.

- Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the **complement** of that language (denoted \overline{L}) is the language of all strings not in L.

- Formally:

$$\overline{L} = \Sigma^* - L$$
Complementing Regular Languages

- Recall: A **regular language** is a language accepted by some DFA.

- **Question**: If L is a regular language, is \overline{L} a regular language?

- If the answer is “yes,” then there must be some way to construct a DFA for \overline{L}.

- If the answer is “no,” then some language L can be accepted by a DFA, but \overline{L} cannot be accepted by any DFA.
Complementing Regular Languages

$L = \{ w \mid w \text{ contains } 00 \text{ as a substring} \}$
Complementing Regular Languages

\[L = \{ \text{w | w contains 00 as a substring} \} \]

\[\overline{L} = \{ \text{w | w does not contain 00 as a substring} \} \]
Complementing Regular Languages

$L = \{ \text{ w } \mid \text{ w contains 00 as a substring } \}$

$L = \{ \text{ w } \mid \text{ w does not contain 00 as a substring } \}$
Complementing Regular Languages

\[L = \{ w \mid w \text{ is a legal email address} \} \]
Complementing Regular Languages

\[\overline{L} = \{ w \mid w \text{ is not a legal email address} \} \]
Complementing Regular Languages

\[L = \{ w \mid w \text{ is not a legal email address} \} \]
Constructions on Automata

- Much of our discussion of automata will consider constructions that transform one automaton into another.
- Exchanging accepting and rejecting states is a simple construction sometimes called the complement construction.
- Does this construction always work?
- How would we prove it?
Theorem: If $D = (Q, \Sigma, \delta, q_0, F)$ is a DFA with language $L(D)$, then the DFA $D' = (Q, \Sigma, \delta, q_0, Q - F)$ has language $L(D')$.

Proof: By definition, $L(D') = \{ w | \delta^*(w) \notin Q - F \}$.

So $\in \subseteq L(D') \iff \delta^*(w) \in Q \land \delta^*(w) \notin F$.

$\in L(D') = \{ w | \delta^*(w) \in Q \} - \{ w | \delta^*(w) \in F \}$.

Since $\delta^*(w) : \Sigma^* \to Q$, any string w satisfies $\delta^*(w) \in Q$.

Thus $\delta^*(w) \in Q$ means that $w \in \Sigma^*$.

So $L(D') = \{ w | w \in \Sigma^* \} - \{ w | \delta^*(w) \in F \}$.

$L(D') = \Sigma^* - L(D)$. ■
Theorem: If D = (Q, Σ, δ, q₀, F) is a DFA with language L(D), then the DFA D' = (Q, Σ, δ, q₀, Q – F) has language L(D).

Proof: By definition, L(D') = \{ w | δ*(w) ∈ Q – F \}.

Since δ*(w) : Σ* → Q, any string w satisfies δ*(w) ∈ Q. Thus δ*(w) ∈ Q means that w ∈ Σ*. So L(D') = Σ* – L(D).
Theorem: If \(D = (Q, \Sigma, \delta, q_0, F) \) is a DFA with language \(L(D) \), then the DFA \(D' = (Q, \Sigma, \delta, q_0, Q - F) \) has language \(L(D) \).

Proof: By definition, \(L(D') = \{ w \mid \delta^*(w) \in Q - F \} \). So

\[
L(D') = \{ w \mid \delta^*(w) \in Q \land \delta^*(w) \notin F \}
\]
Theorem: If \(D = (Q, \Sigma, \delta, q_0, F) \) is a DFA with language \(L(D) \), then the DFA \(D' = (Q, \Sigma, \delta, q_0, Q - F) \) has language \(L(D) \).

Proof: By definition, \(L(D') = \{ w \mid \delta^*(w) \in Q - F \} \). So

\[
L(D') = \{ w \mid \delta^*(w) \in Q \land \delta^*(w) \notin F \}
\]

\[
L(D') = \{ w \mid \delta^*(w) \in Q \} - \{ w \mid \delta^*(w) \in F \}
\]
Theorem: If $D = (Q, \Sigma, \delta, q_0, F)$ is a DFA with language $L(D)$, then the DFA $D' = (Q, \Sigma, \delta, q_0, Q - F)$ has language $L(D)$.

Proof: By definition, $L(D') = \{ w \mid \delta^*(w) \in Q - F \}$. So

$$L(D') = \{ w \mid \delta^*(w) \in Q \land \delta^*(w) \notin F \}$$

$$L(D') = \{ w \mid \delta^*(w) \in Q \} - \{ w \mid \delta^*(w) \in F \}$$

Since $\delta^* : \Sigma^* \rightarrow Q$, any string w satisfies $\delta^*(w) \in Q$.

Theorem: If \(D = (Q, \Sigma, \delta, q_0, F) \) is a DFA with language \(L(D) \), then the DFA \(D' = (Q, \Sigma, \delta, q_0, Q - F) \) has language \(L(D) \).

Proof: By definition, \(L(D') = \{ w \mid \delta^*(w) \in Q - F \} \). So

\[
L(D') = \{ w \mid \delta^*(w) \in Q \land \delta^*(w) \notin F \}
\]

Thus \(\delta^*(w) \in Q \) means that \(w \in \Sigma^* \).
Theorem: If \(D = (Q, \Sigma, \delta, q_0, F) \) is a DFA with language \(L(D) \), then the DFA \(D' = (Q, \Sigma, \delta, q_0, Q - F) \) has language \(L(D) \).

Proof: By definition, \(L(D') = \{ w \mid \delta^*(w) \in Q - F \} \). So

\[
L(D') = \{ w \mid \delta^*(w) \in Q \land \delta^*(w) \notin F \} = \{ w \mid \delta^*(w) \in Q \} - \{ w \mid \delta^*(w) \in F \}
\]

Since \(\delta^* : \Sigma^* \rightarrow Q \), any string \(w \) satisfies \(\delta^*(w) \in Q \). Thus \(\delta^*(w) \in Q \) means that \(w \in \Sigma^* \). So

\[
L(D') = \{ w \mid w \in \Sigma^* \} - \{ w \mid \delta^*(w) \in F \}
\]
Theorem: If $D = (Q, \Sigma, \delta, q_0, F)$ is a DFA with language $L(D)$, then the DFA $D' = (Q, \Sigma, \delta, q_0, Q - F)$ has language $\overline{L(D)}$.

Proof: By definition, $L(D') = \{ w \mid \delta^*(w) \in Q - F \}$. So

\[
L(D') = \{ w \mid \delta^*(w) \in Q \land \delta^*(w) \notin F \} \\
L(D') = \{ w \mid \delta^*(w) \in Q \} - \{ w \mid \delta^*(w) \in F \}
\]

Since $\delta^* : \Sigma^* \to Q$, any string w satisfies $\delta^*(w) \in Q$. Thus $\delta^*(w) \in Q$ means that $w \in \Sigma^*$. So

\[
L(D') = \{ w \mid w \in \Sigma^* \} - \{ w \mid \delta^*(w) \in F \} \\
L(D') = \Sigma^* - \{ w \mid \delta^*(w) \in F \}
\]
Theorem: If $D = (Q, \Sigma, \delta, q_0, F)$ is a DFA with language $L(D)$, then the DFA $D' = (Q, \Sigma, \delta, q_0, Q - F)$ has language $L(D)$.

Proof: By definition, $L(D') = \{ w \mid \delta^*(w) \in Q - F \}$. So

$L(D') = \{ w \mid \delta^*(w) \in Q \land \delta^*(w) \notin F \}$
$L(D') = \{ w \mid \delta^*(w) \in Q \} - \{ w \mid \delta^*(w) \in F \}$

Since $\delta^* : \Sigma^* \to Q$, any string w satisfies $\delta^*(w) \in Q$. Thus $\delta^*(w) \in Q$ means that $w \in \Sigma^*$. So

$L(D') = \{ w \mid w \in \Sigma^* \} - \{ w \mid \delta^*(w) \in F \}$
$L(D') = \Sigma^* - \{ w \mid \delta^*(w) \in F \}$
$L(D') = \Sigma^* - L(D)$
Theorem: If $D = (Q, \Sigma, \delta, q_0, F)$ is a DFA with language $L(D)$, then the DFA $D' = (Q, \Sigma, \delta, q_0, Q - F)$ has language $L(D)$.

Proof: By definition, $L(D') = \{ w \mid \delta^*(w) \in Q - F \}$. So

$$L(D') = \{ w \mid \delta^*(w) \in Q \land \delta^*(w) \not\in F \}$$

$$L(D') = \{ w \mid \delta^*(w) \in Q \} - \{ w \mid \delta^*(w) \in F \}$$

Since $\delta^*: \Sigma^* \rightarrow Q$, any string w satisfies $\delta^*(w) \in Q$. Thus $\delta^*(w) \in Q$ means that $w \in \Sigma^*$. So

$$L(D') = \{ w \mid w \in \Sigma^* \} - \{ w \mid \delta^*(w) \in F \}$$

$$L(D') = \Sigma^* - \{ w \mid \delta^*(w) \in F \}$$

$$L(D') = \Sigma^* - L(D)$$

$$L(D') = L(D).$$
Theorem: If $D = (Q, \Sigma, \delta, q_0, F)$ is a DFA with language $L(D)$, then the DFA $D' = (Q, \Sigma, \delta, q_0, Q - F)$ has language $\overline{L(D)}$.

Proof: By definition, $L(D') = \{ w \mid \delta^*(w) \in Q - F \}$. So

\[
L(D') = \{ w \mid \delta^*(w) \in Q \land \delta^*(w) \notin F \}
\]

Since $\delta^* : \Sigma^* \to Q$, any string w satisfies $\delta^*(w) \in Q$. Thus $\delta^*(w) \in Q$ means that $w \in \Sigma^*$. So

\[
L(D') = \{ w \mid w \in \Sigma^* \} - \{ w \mid \delta^*(w) \in F \}
\]

\[
L(D') = \Sigma^* - \{ w \mid \delta^*(w) \in F \}
\]

\[
L(D') = \Sigma^* - L(D)
\]

\[
L(D') = \overline{L(D)}. \quad \blacksquare
\]
Closure Properties

• If L is a regular language, \overline{L} is a regular language.

• If we begin with a regular language and complement it, we end up with a regular language.

• This is an example of a closure property of regular languages.
 • The regular languages are closed under complementation.
 • We'll see more such properties later on.
NFAs
NFAs

• An **NFA** is a
 • **Nondeterministic**
 • **Finite**
 • **Automaton**

• Conceptually similar to a DFA, but equipped with the vast power of **nondeterminism**.
(Non)determinism

- A model of computation is **deterministic** if at every point in the computation, there is exactly one choice that can make.
- The machine accepts if that series of choices leads to an accepting state.
- A model of computation is **nondeterministic** if the computing machine may have multiple decisions that it can make at one point.
- The machine accepts if **any** series of choices leads to an accepting state.
A Simple NFA

The diagram represents a non-deterministic finite automaton (NFA) with the following states:

- **Start state**: q_0
- **Final states**: q_2, q_3

Transitions:
- From q_0 to q_1: on input 1
- From q_1 to q_2: on input 1
- From q_0 to q_3: on input 0, 1
- From q_2 to q_0: on input 0, 1
- From q_3 to q_2: on input 0, 1
A Simple NFA

q_0 has two transitions defined on 1!
A Simple NFA
A Simple NFA

0 1 0 1 1
A Simple NFA

start

q_0 1 q_1

q_1 1 q_2

q_2

q_3

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0 1 0 1 1
A Simple NFA
A Simple NFA

start

q_0 → 1 → q_1 → 1 → q_2

q_0 (0, 1)

q_1 (0, 1)

q_2

q_3 (0, 1)

0 1 0 1 1
A Simple NFA

\[
\text{start} \quad q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2 \xrightarrow{0, 1} q_3 \xrightarrow{0, 1} q_2
\]

Input sequence: 0 1 0 1 1
A Simple NFA

start

q_0 1 q_1

0, 1

q_1 1 q_2

q_2

q_3

0, 1

0, 1

0, 1

0 1 0 1 1 1
A Simple NFA
A Simple NFA

0 1 0 1 1
A Simple NFA
A Simple NFA

start

q_0 1 1

q_1

q_2

q_3

$0, 1$

$0, 1$

$0, 1$

0

1

0

1

1

1

0 1 0 1 1
A Simple NFA

Start

q_0 -> 1 -> q_1 -> 1 -> q_2

q_3

Input: 010111
A Simple NFA

start

q_0 \[\xrightarrow{1} q_1\]

q_1 \[\xrightarrow{1} q_2\]

q_2 \[\xrightarrow{0} q_3\]

q_3 \[\xrightarrow{0} \text{accept}\]

Input: 0 1 0 1 1
A Simple NFA

\[q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2 \]

<table>
<thead>
<tr>
<th>State</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>0, 1</td>
</tr>
<tr>
<td>q_1</td>
<td>0, 1</td>
</tr>
<tr>
<td>q_2</td>
<td></td>
</tr>
<tr>
<td>q_3</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

Input string: 0 1 0 1 1 1
A Simple NFA

\[
\begin{array}{c}
\text{start} \\
q_0 \quad 1 \quad q_1 \\
\quad 0, 1 \quad q_3 \\
\quad 0 \\
q_2 \\
\quad 0, 1 \\
\end{array}
\]
A Simple NFA

start

\(q_0 \) 1 \(q_1 \) 1 \(q_2 \)

0, 1

0

0, 1

0, 1

0, 1

0 1 0 1 1
A Simple NFA

- Start state: q_0
- Transitions:
 - From q_0: 1 to q_1, 0, 1 to q_3
 - From q_1: 1 to q_2
 - From q_3: 0 to q_1, 0, 1 to q_2, 0, 1 to q_3

Input sequence: 0 1 0 1 1
A Simple NFA

\[q_0 \xrightarrow{0,1} q_1 \xrightarrow{1} q_2 \xrightarrow{0,1} q_3 \xrightarrow{0,1} q_2 \]

Input sequence: 0 1 0 1 1
A Simple NFA
A Simple NFA

- Start state: \(q_0 \)
- Transitions:
 - From \(q_0 \): 1 to \(q_1 \)
 - From \(q_1 \): 1 to \(q_2 \)
 - From \(q_2 \): 0, 1 to \(q_3 \)
 - From \(q_3 \): 0, 1 to \(q_3 \)

Input string: 0 1 0 1 1 1
A Simple NFA

0 1 0 1 1 1
A Simple NFA

[Diagram of a non-deterministic finite automaton (NFA) with states labeled q₀, q₁, q₂, q₃ and transitions labeled '0', '1', '0, 1']

Input sequence: 0 1 0 1 1 1
A Simple NFA

Transition Table:

<table>
<thead>
<tr>
<th>State</th>
<th>Input 0</th>
<th>Input 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>0, 1</td>
<td>1</td>
</tr>
<tr>
<td>q_1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>q_2</td>
<td>0, 1</td>
<td>0, 1</td>
</tr>
<tr>
<td>q_3</td>
<td>0, 1</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

Input String: 0 1 0 1 1 1
A Simple NFA

start

q_0 → 1 → q_1 → 1 → q_2

0, 1

q_0 → 0, 1

q_1 → 0

q_3 → 0, 1

q_2 → 0, 1

0 1 0 1 1 1
A Simple NFA

start → \(q_0 \) on 1 → \(q_1 \) on 1 → \(q_2 \)

\(q_0 \) on 0, 1

\(q_1 \) on 0

\(q_3 \) on 0, 1

\(q_2 \) on 0, 1

0 1 0 1 1
A Simple NFA

start

q_0 1 q_1

q_1 1 q_2

q_2

q_3 0, 1

q_3 0, 1

q_3 0, 1
A More Complex NFA
A More Complex NFA

These states don’t have transitions defined on all symbols!
A More Complex NFA

These states don’t have transitions defined on all symbols!

If a NFA needs to make a transition when no transition exists, the automaton dies and that particular path rejects.
A More Complex NFA
A More Complex NFA

\[q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2 \]

0 1 0 1 1
A More Complex NFA
A More Complex NFA

\[\begin{align*}
\text{start} & \quad \rightarrow \quad q_0 \quad \rightarrow \quad q_1 \quad \rightarrow \quad q_2 \\
0, 1 & \quad \rightarrow \quad 1 & \quad 1 \\
\end{align*} \]
A More Complex NFA

The diagram shows a non-deterministic finite automaton (NFA) with states q_0, q_1, and q_2. The transitions are:

- From q_0 on input 1 to q_1.
- From q_0 on input 0 or 1 to q_0.
- From q_1 on input 1 to q_2.
- From q_2 there is a loop back to q_2.

The input sequence 010111 is shown on the diagram, indicating how the NFA processes the input.
A More Complex NFA
A More Complex NFA

Oh no! There's no transition defined!
A More Complex NFA
A More Complex NFA

start → q_0 (0, 1) → q_1 (1) → q_2
A More Complex NFA

```
0 1 0 1 1
```
A More Complex NFA

```
0 1 0 1 1
```
A More Complex NFA

0 1 0 1 1
A More Complex NFA

0 1 0 1 1
A More Complex NFA

start

q_0 1 q_1

0, 1

1 q_2

0 1 0 1 1
A More Complex NFA

start

q_0 1 q_1 1 q_2

0, 1
A More Complex NFA

\[q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2 \]

0 1 1 0 1 1
A More Complex NFA

0 1 0 1 1
A More Complex NFA
Intuiting Nondeterminism

- Nondeterministic machines are a serious departure from physical computers.
- How can we build up an intuition for them?
- Three approaches:
 - Tree computation
 - Perfect guessing
 - Massive parallelism
Tree Computation
Tree Computation

0 1 0 1 0
Tree Computation

0 1 0 1 1 0
Tree Computation

[start] q_0 → 0 → q_1 → 1 → q_2

1 → q_3 → 0 → q_4 → 0 → q_5

$0, 1$ → q_2
Tree Computation

0 1 0 1 0 1 0
Tree Computation

0 1 0 1 0 1 0
Tree Computation

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_4 \rightarrow q_5 \]

0, 1

0, 1

0, 1
Tree Computation

0 1 0 1 0 1 0

start

q_0 → 0 → q_1 → 1 → q_2

q_0 → 1 → q_3

q_3 → 0 → q_4 → 0 → q_5

q_1 → 1 → q_4

q_4 → 0 → q_5

q_5

q_4

q_2
Tree Computation

0 1 0 1 1 0
Tree Computation

0 1 0 1 0 0
Tree Computation

start

q₀ → 0 → q₁ → 1 → q₂

1 → q₃ → 0 → q₄ → 0 → q₅

0, 1

0 1 0 1 0

q₀ → q₁

q₄ → q₅

q₄ → q₂

q₄

q₄
Tree Computation

0 1 0 1 1 0
Tree Computation

Start

$q_0 \rightarrow 0 \rightarrow q_1 \rightarrow 1 \rightarrow q_2$

$q_3 \rightarrow 1 \rightarrow q_4 \rightarrow 1 \rightarrow q_5$

$0, 1 \rightarrow q_4 \rightarrow 0, 1 \rightarrow q_5$

0 1 0 1 0 0

$q_0 \rightarrow q_1 \rightarrow q_4 \rightarrow q_5 \rightarrow q_4 \rightarrow q_5$

$q_2 \rightarrow q_4 \rightarrow q_5$
Tree Computation

\begin{itemize}
\item \textbf{start: } q_0
\item $q_0 \xrightarrow{0} q_1$
\item $q_1 \xrightarrow{1} q_2$
\item $q_2 \xrightarrow{1} q_3$
\item $q_3 \xrightarrow{0} q_4$
\item $q_4 \xrightarrow{0} q_5$
\item $q_5 \xrightarrow{0,1} q_4$
\item \textbf{Input: } 0 1 0 1 0 0
\end{itemize}
Tree Computation
Nondeterminism as a Tree

- At each decision point, the automaton clones itself for each possible decision.
- The series of choices forms a directed, rooted tree.
- At the end, if any active accepting states remain, we accept.
Perfect Guessing

\[q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \]
\[q_0 \xrightarrow{1} q_3 \]
\[q_3 \xrightarrow{0} q_4 \xrightarrow{0} q_5 \]
\[q_1 \xrightarrow{1} q_4 \]
\[q_2 \]

\[q_4 \xrightarrow{0, 1} q_5 \]
Perfect Guessing

- States: $q_0, q_1, q_2, q_3, q_4, q_5$
- Transitions:
 - q_0 to q_1: 0
 - q_0 to q_3: 1
 - q_1 to q_2: 1
 - q_1 to q_4: 1
 - q_3 to q_4: 0
 - q_4 to q_5: 0
 - q_5 (loop)
- Initial state: q_0
- Accept states: q_5

Input sequence: 010110
Perfect Guessing

```
0 1 0 1 1 0
```

\(q_0 \rightarrow q_1 \rightarrow q_2 \)

\(q_3 \rightarrow q_4 \rightarrow q_5 \)
Perfect Guessing

0 1 0 1 0 0 1 0
Perfect Guessing

start

q_0 0 q_1 1 q_2

1

q_3 0 q_4 0

1

q_4 0 q_5

0, 1

0 1 0 1 0
Perfect Guessing

0 1 0 1 0
Perfect Guessing

\[0, 1\]
Perfect Guessing

```
q_0  0 -> q_1  1 -> q_2
   1   1   
q_3  0 -> q_4  0 -> q_5
   1   0, 1

0 1 0 1 1 0
```
Perfect Guessing

1. q_0 -> q_1 on 0
2. q_0 -> q_3 on 1
3. q_1 -> q_4 on 1
4. q_4 -> q_5 on 0
5. q_3 -> q_4 on 0
6. q_4 -> q_5 on 0, 1
7. Start state: q_0
8. Final state: q_5
9. Input sequence: 0 1 0 1 0
Perfect Guessing

- Start state: q_0
- q_0 transitions to q_1 on input 0 and q_2 on input 1
- q_1 transitions to q_2 on input 1
- q_2 is an accept state
- q_3 transitions to q_4 on input 1
- q_3 transitions to q_3 on input 0 or 1
- q_4 transitions to q_5 on input 0
- q_5 is an accept state

Input sequence: 0 1 0 1 0 1 0
Perfect Guessing

0 1 0 1 0
Perfect Guessing

- We can view nondeterministic machines as having magic superpowers that enable them to guess the correct choice of moves to make.
- Idea: Machine can always guess the right choice if one exists.
- No physical analog for something of this sort.
 - (Those of you thinking quantum computing – nondeterminism is more powerful than quantum computation.)
Massive Parallelism

0 1 0 1 0 0
Massive Parallelism
Massive Parallelism

0 1 0 1 0 0
Massive Parallelism

Start

$q_0 \rightarrow 0 \rightarrow q_1 \rightarrow 1 \rightarrow q_2$

$q_3 \rightarrow 0 \rightarrow q_4 \rightarrow 0 \rightarrow q_5$

$q_1 \rightarrow 1 \rightarrow q_2$

$q_4 \rightarrow 0 \rightarrow q_5$

$q_0 \rightarrow 1 \rightarrow q_3$

$q_4 \rightarrow 0, 1 \rightarrow q_4$

Input: 0 1 0 1 1 0
Massive Parallelism

```
0 1 0 1 1 0
```

Diagram:

- Start at q_0
- Transition to q_1 on input 0
- Transition to q_2 on input 1
- q_2 loops back on 0,1
- Transition to q_3 on input 1
- Transition to q_4 on input 0
- Transition to q_5 on input 0
- q_5 loops back on 0,1
Massive Parallelism

start

q_0 → 0 → q_1
1 → q_3
0 → q_4
0 → q_5

q_1
1 → q_2

q_3

q_4

q_2

q_5
Massive Parallelism

0 1 0 1 0 1 0
Massive Parallelism

Start

q_0 → 0 → q_1 → 1 → q_2

q_3 → 1 → q_4 → 1 → q_5

q_4 also transitions to q_5 on inputs 0, 1.

Input sequence: 0 1 0 1 0 0
Massive Parallelism

- From start to q_0: 0
- From q_0 to q_1: 1
- From q_1 to q_2: 1
- From q_3 to q_4: 1
- From q_4 to q_5: 0
- The sequence of symbols: 0 1 0 1 0 0
Massive Parallelism

0 1 0 1 0 0

Diagram:

- Start state: q_0
- Transitions:
 - q_0 to q_1: 0
 - q_1 to q_2: 1
 - q_0 to q_3: 1
 - q_3 to q_4: 0
 - q_4 to q_5: 0
 - q_4 self-loop on 0, 1
 - q_2 self-loop

States:
- q_0
- q_1
- q_2
- q_3
- q_4
- q_5
Massive Parallelism

Diagram:

- Start at q_0
- q_0 to q_1: 0
- q_1 to q_2: 1
- q_2 is a loop.
- q_3 to q_4: 1
- q_4 to q_5: 0
- q_5 is a loop.

Input sequence: 0 1 0 1 0 1 0
Massive Parallelism
Massive Parallelism

• An NFA can be thought of as a DFA that can be in many states at once.
• Each symbol read causes a transition on every active state into each potential state that could be visited.
• Nondeterministic machines can be thought of as machines that can try any number of options in parallel.
 • No fixed limit on processors; makes multicore machines look downright wimpy!
So What?

- We will turn to these three intuitions for nondeterminism more later in the quarter.

- Nondeterministic machines may not be feasible, but they give a great basis for interesting questions:
 - Can any problem that can be solved by a nondeterministic machine be solved by a deterministic machine?
 - Can any problem that can be solved by a nondeterministic machine be solved efficiently by a deterministic machine?

- The answers vary from automaton to automaton.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

![Diagram of ε-transitions in an NFA](image_url)
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

![Diagram of NFAs with ε-transitions]

```plaintext
0 0 1 0 0
```
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

![Diagram of ε-transitions in an NFA]
ε-Transitions

- NFAs have a special type of transition called the \textit{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the \textit{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
\(\varepsilon\)-Transitions

- NFAs have a special type of transition called the \(\varepsilon\)-transition.
- An NFA may follow any number of \(\varepsilon\)-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

![Diagram of ε-Transitions](image)
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the \(\varepsilon \)-transition.
- An NFA may follow any number of \(\varepsilon \)-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the \textbf{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
A Formal Definition of NFAs

- Formally, an NFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where
 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q)\) is the transition function.
 - \(q_0 \in Q\) is the start state.
 - \(F \subseteq Q\) is a set of accepting states.
A Formal Definition of NFAs

- Formally, an NFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q)\) is the transition function.
 - \(q_0 \in Q\) is the start state.
 - \(F \subseteq Q\) is a set of accepting states.

Note the domain allows for \(\epsilon\)-moves
A Formal Definition of NFAs

- Formally, an NFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where
 - \(Q\) is a set of states.
 - \(\Sigma\) is an alphabet.
 - \(\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \wp(Q)\) is the transition function.
 - \(q_0 \in Q\) is the start state.
 - \(F \subseteq Q\) is a set of accepting states.

Note the domain allows for \(\epsilon\)-moves

Note that the codomain is sets of states to allow for multiple transitions.
Designing NFAs
Designing NFAs

• When designing NFAs, **embrace the nondeterminism**!

• Good model: **Guess-and-check**:
 • Have the machine *guess* what the right choice is.
 • Have the machine *check* that the choice was correct.
Guess-and-Check

$L = \{ w \mid w \in \{0, 1\}^* \text{ and } w \text{ ends in 010 or 101} \}$
Guess-and-Check

\[L = \{ w \mid w \in \{0, 1\}^* \text{ and } w \text{ ends in 010 or 101} \} \]
Guess-and-Check

$L = \{ w \mid w \in \{0, 1\}^* \text{ and } w \text{ ends in 010 or 101} \}$
Guess-and-Check

\[L = \{ w \mid w \in \{0, 1\}^* \text{ and } w \text{ ends in 010 or 101} \} \]
Guess-and-Check

\[L = \{ w \mid w \in \{0, 1\}^* \text{ and } w \text{ ends in 010 or 101 } \} \]
Guess-and-Check

$L = \{ w \mid w \in \{0, 1\}^* \text{ and } w \text{ ends in 010 or 101} \}$
Guess-and-Check

$L = \{ w \mid w \in \{0, 1\}^* \text{ and } w \text{ ends in } 010 \text{ or } 101 \}$
Guess-and-Check

\[L = \{ w \mid w \in \{a, b, c\}^* \text{ and one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \mid w \in \{a, b, c\}^* \text{ and one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \mid w \in \{a, b, c\}^* \text{ and one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

$L = \{ w \mid w \in \{a, b, c\}^* \text{ and one of } a, b, \text{ or } c \text{ is not in } w \} \setminus \{a, b\}$
Guess-and-Check

$L = \{ w \mid w \in \{a, b, c\}^* \text{ and one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

$L = \{ \ w \mid w \in \{a, b, c\}^* \text{ and one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

$L = \{ w \mid w \in \{a, b, c\}^* \text{ and one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

\[L = \{ w \mid w \in \{a, b, c\}^* \text{ and one of } a, b, \text{ or } c \text{ is not in } w \} \]
NFAs and DFAs

• Any language that can be accepted by a DFA can be accepted by an NFA.

• Why?
 • Just use the same set of transitions as before.

• **Question**: Can any language accepted by an NFA also be accepted by a DFA?

• Surprisingly, the answer is **yes**!
Simulation

- **Simulation** is a key technique in computability theory.

- If we can build an automaton A' whose behavior *simulates* that of another automaton A, then we can make a connection between A and A'.

- To show that any language accepted by an NFA can be accepted by a DFA, we will show how to make a DFA that *simulates* the execution of an NFA.
Simulating an NFA with a DFA

\[q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \]

\[q_3 \xrightarrow{\varepsilon} q_4 \xrightarrow{0} q_5 \]

\[q_{14} \xrightarrow{0} q_{03} \xrightarrow{1} q \]

\[q_2 \xrightarrow{1} q \]

\[q_1 \xrightarrow{0} q_5 \]
Simulating an NFA with a DFA

Start

q_0 0 q_1

ε

q_3 0 q_4 0 q_5

q_1 0 q_2

q_2 1 q_3

q_4 0 q_5

q_5

q_0 0 q_1

q_1 1 q_2

q_2 0 q_3

q_3 1 q_4

q_4 0 q_5

q_5 1 q_3
Simulating an NFA with a DFA

Start

q_0 0 q_1 1 q_2

q_3 0 q_4 0 q_5

q_1 1

q_2 1 0 0

q_0 0 1

q_{14} 0 q_{03}

q_{14} 1 0 0

q_{14} 1

q_{14} 1

q_{03} 1 0

q_{03} 1

q_3 1

q_3 1
Simulating an NFA with a DFA

Start state: q_0

- From q_0, on input 0, go to q_1.
- From q_0, on input 1, go to q_2.
- From q_0, on input ε, go to q_3.
- From q_1, on input 0, go to q_4.
- From q_1, on input 1, go to q_2.
- From q_1, on input 1, go to self-loop.
- From q_2, on input 0, go to q_3.
- From q_2, on input 1, go to q_5.
- From q_3, on input 0, go to q_4.
- From q_3, on input 1, go to q_5.
- From q_4, on input 0, go to q_5.
- From q_4, on input 1, go to q_3.
- From q_5, on input 0, go to q_3.
- From q_5, on input 1, go to q_3.

Start state: q_{14}

- From q_{14}, on input 0, go to q_{03}.
- From q_{14}, on input 1, go to q_{2}.
- From q_{03}, on input 0, go to q_{5}.
- From q_{03}, on input 1, go to q_{4}.
- From q_{2}, on input 0, go to q_{4}.
- From q_{2}, on input 1, go to q_{5}.
- From q_{4}, on input 0, go to q_{3}.
- From q_{4}, on input 1, go to q_{5}.
- From q_{3}, on input 0, go to q_{4}.
- From q_{3}, on input 1, go to q_{5}.

ε-transitions:
- From q_0, on input ε, go to q_3.
- From q_1, on input ε, go to q_2.
- From q_2, on input ε, go to q_2.
- From q_3, on input ε, go to q_4.
- From q_4, on input ε, go to q_5.
- From q_5, on input ε, go to q_3.
Simulating an NFA with a DFA

0 0 1 0 0 0

start

q₀
q₁
q₂
q₃
q₄
q₅

ε
0
1
1
0
1
0, 1
1
1
0
0
1
1
0
1

q₁₄
q₀₃
q₂
q₁
q₄
q₅

start
Simulating an NFA with a DFA
Simulating an NFA with a DFA

0 0 1 0 0
Simulating an NFA with a DFA
Simulating an NFA with a DFA
Simulating an NFA with a DFA

0 0 1 0 0 0
Simulating an NFA with a DFA
The Subset Construction

• This construction for transforming an NFA into a DFA is called the **subset construction** (or sometimes the **powerset construction**).

• Intuitively:
 • States of the new DFA correspond to **sets of states** of the NFA.
 • The initial state is the start state, plus all states reachable from the start state via ϵ-transitions.
 • Transition on state S on character a is found by following all possible transitions on a for each state in S, then taking the set of states reachable from there by ϵ-transitions.
 • Accepting states are any set of states where *some* state is an accepting state.

• **Read Sipser for a formal account.**
The Subset Construction

- In converting an NFA to a DFA, the DFA's set of states is equal to the power set of the NFA's states.
- Fact: $|\mathcal{P}(S)| = 2^{|S|}$ for any finite set S.
- In the worst-case, the construction can result in a DFA that is **exponentially larger** than the original NFA.
- Interesting challenge: Find a language for which this worst-case behavior occurs (there are infinitely many of them!)
An Important Result

Theorem: A language L is regular iff there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: If L is regular, there exists some DFA for it, which we can easily convert into an NFA. If L is accepted by some NFA, we can use the subset construction to convert it into a DFA that accepts the same language, so L is regular. ■
Why This Matters

- Constructions on DFAs allowed us to prove that regular languages are closed under complement, intersection, and difference.
- We can now also use constructions on NFAs to prove that regular languages are closed under other properties.
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the set of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the set of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the set of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the set of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the set of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language
 \[L_1 L_2 = \{ wx \mid w \in L_1 \land x \in L_2 \} \]
- The set of strings that can be split into two pieces: a string in L_1 and a string in L_2.
Concatenation Example

• Example: Let $\Sigma = \{ \text{a, b, \ldots, z, A, B, \ldots, Z} \}$
 • Noun = $\{ \text{Velociraptor, Rainbow, Whale, \ldots} \}$
 • Verb = $\{ \text{Eats, Juggles, Loves, \ldots} \}$
 • The = $\{ \text{The} \}$

• The language TheNounVerbTheNoun is
 • $\{ \text{TheVelociraptorEatsTheVelociraptor, TheWhaleLovesTheRainbow, TheRainbowJugglesTheVelociraptor, \ldots} \}$
If L_1 and L_2 are regular languages, is L_1L_2?

Intuition – can we split a string w into two strings xy such at $x \in L_1$ and $y \in L_2$?

Idea: Run the automaton for L_1 on w, and whenever L_1 reaches an accepting state hand the rest off w to L_2.

- If L_2 accepts the remainder, then L_1 accepted the first part and the string is in L_1L_2.
- If L_2 rejects the remainder, then the split was incorrect.
Concatenating Regular Languages
Concatenating Regular Languages
Concatenating Regular Languages
Concatenating Regular Languages
Concatenating Regular Languages