Reductions
Part Two
Mapping Reducibility

- A **mapping reduction** from A to B is a function f such that
 - f is computable, and
 - For any w, $w \in A$ iff $f(w) \in B$.
- If there is a mapping reduction from A to B, we say that A is **mapping reducible** to B.
- Notation: $A \leq_M B$ iff A is mapping reducible to B.
Why Mapping Reducibility Matters

If this one is “easy” (R or RE)…

$A \leq_M B$

... then this one is “easy” (R or RE) too.
Why Mapping Reducibility Matters

If this one is "hard" (not R or not RE)...

\[A \leq_M B \]

... then this one is "hard" (not R or not RE) too.
Sketch of the Proof

\[H = \text{“On input } w: \]
\[\text{Compute } f(w). \]
\[\text{Run } M \text{ on } f(w). \]
\[\text{If } M \text{ accepts } f(w), \text{ accept } w. \]
\[\text{If } M \text{ rejects } f(w), \text{ reject } w. \]

\[H \text{ accepts } w \iff M \text{ accepts } f(w) \iff f(w) \in B \iff w \in A. \]
An Elaborate Reduction

• Consider the language

\[DECIDER = \{ \langle M \rangle \mid M \text{ is a decider} \} \]

• How would we prove that \(DECIDER \) is, itself, undecidable?
We will prove that $\textsc{Decider}$ is undecidable by reducing \textsc{Halt} to $\textsc{Decider}$.

Want to find a function f such that

$$\langle M, w \rangle \in \textsc{Halt} \iff f(\langle M, w \rangle) \in \textsc{Decider}.$$

Assuming that $f(\langle M, w \rangle) = \langle M' \rangle$ for some TM M', we have that

$$\langle M, w \rangle \in \textsc{Halt} \iff \langle M' \rangle \in \textsc{Decider}.$$

M halts on w iff M' is a decider.

M halts on w iff M' halts on all inputs.
The Reduction

- Find a TM M' such that M' halts on all inputs iff M halts on w.
- Key idea: Build M' such that running M' on any input runs M on w.
- Here is one choice of M':

 $M' = \text{"On input } x:\n \text{ Ignore } x.\n \text{ Run } M \text{ on } w.\n \text{ If } M \text{ halts on } w, \text{ accept. }$\n
- Notice that M' “amplifies” what M does on w:

 - If M halts on w, M' halts on every input.
 - If M loops on w, M' loops on every input.
The Parameterization Theorem

Theorem: Let M be a TM of the form

\[M = \text{“On input } \langle x_1, x_2, \ldots, x_n \rangle:\]

Do something with x_1, x_2, \ldots, x_n’

and any value p for parameter x_1, then a TM can construct the following TM M':

\[M' = \text{“On input } \langle x_2, \ldots, x_n \rangle:\]

Do something with p, x_2, \ldots, x_n"
Justifying M'

- Consider this machine X:

 \[
 X = \text{“On input } \langle N, z, x \rangle:\n \]

 Ignore x.

 Run N on z.

 If N halts on z, accept.”

- Applying the parameterization theorem twice with the values M and w produces the machine

 \[
 X = \text{“On input } x:\n \]

 Ignore x.

 Run M on w.

 If M halts on w, accept.”
DECIDER is Undecidable

Decider for DECIDER
DECIDER is Undecidable

\[(M, w)\]
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

(Ignored)

(x)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Simulate M on w

(Ignored)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Simulate M on w

(Ignored)

Machine M'
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

$M' = \text{"On input } x: \text{ Ignore } x. \text{ Run } M \text{ on } w. \text{ If } M \text{ accepts } w, \text{ accept. If } M \text{ rejects } w, \text{ reject."}$
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Simulate M on w

(Ignored)

Machine M'

x
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

What does M' do if M halts on w?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

What does M' do if M halts on w?

M' always halts
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

What does M' do if M loops on w?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

What does M' do if M loops on w?

M' never halts
DECIDER is Undecidable

⟨M, w⟩ → Construct M' from ⟨M, w⟩
 | Decider for DECIDER
 +------------------+
 | |
 +------------------+

⟨M, w⟩ → Simulate M on w
 | (Ignored)
 +------------------+
 | |
 +------------------+

x → Machine M'
 | (Ignored)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M', w \rangle$

Decider for DECIDER

Simulate M on w

$Ignored$

x

$Ignored$

Machine M'
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Simulate M on w

$Ignored$

Machine H

Machine M'

Decider for DECIDER
DECIDER is Undecidable

Construct M' from ⟨M, w⟩

Decider for DECIDER

 ⟨M', w⟩

What does H do if M halts on w?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

$\langle M' \rangle$

(Always Halts)

What does H do if M halts on w?

Machine H

Simulate M on w

(Ignored)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$

Decider for DECIDER

What does H do if M halts on w?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$

Decider for DECIDER

Machine H

Simulate M on w

(Ignored)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Machine H

Simulate M on w

(ignored)

What does H do if M loops on w?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$ (Never Halts)

Decider for DECIDER

What does H do if M loops on w?
DECIDER is Undecidable

Machine H

Construct \(M' \) from \(\langle M, w \rangle \)

\(\langle M' \rangle \) (Never Halts)

Decider for DECIDER

What does \(H \) do if \(M \) loops on \(w \)?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Simulate M on w

(Ignored)
DECIDER is Undecidable

\(\langle M, w \rangle \)

Machine H

Simulate M on w

(Ignored)

Machine M'

x
DECIDER is Undecidable

What does H do if M halts on w?
DECIDER is Undecidable

Machine H

$\langle M, w \rangle$

Simulate M on w

$Ignored$

What does H do if M halts on w?
DECIDER is Undecidable

\[\langle M, w \rangle \rightarrow \text{Simulate } M \text{ on } w \rightarrow \text{(Ignored)} \]

Machine H

\[x \rightarrow \text{Simulate } M \text{ on } w \rightarrow \text{Machine } M' \]

(Ignored)
DECIDER is Undecidable

What does H do if M loops on w?
DECIDER is Undecidable

\[\langle M, w \rangle \]

What does H do if M loops on w?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Machine H

Simulate M on w

x

(Ignored)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$

Decider for DECIDER

This is a decider for HALT!
Theorem: $\text{HALT} \leq_{M} \text{DECIDER}$.
Theorem: $HALT \leq^m DECIDER$.

Proof: We exhibit a mapping reduction from $HALT$ to $DECIDER$.

For any TM/string pair $⟨M, w⟩$, let $f(⟨M, w⟩) = ⟨M'⟩$, where $⟨M'⟩$ is defined in terms of M and w as follows:

$M' = \text{"On input } x:\text{ Ignore } x.\text{ Run } M\text{ on } w.\text{ If } M\text{ halts on } w,\text{ accept."} \!

By the parameterization theorem, f is a computable function.

We further claim that $⟨M, w⟩ ∈ HALT$ iff $f(⟨M, w⟩) ∈ DECIDER$.

To see this, note that $f(⟨M, w⟩) = ⟨M'⟩ ∈ DECIDER$ iff M' halts on all inputs. We claim that M' halts on all inputs iff M halts on w.

To see this, note that when M' is run on any input, it halts iff M halts on w. Thus if M halts on w, then M' halts on all inputs, and if M loops on w, M' loops on all inputs. Finally, note that M halts on w iff $⟨M, w⟩ ∈ HALT$. Thus $⟨M, w⟩ ∈ HALT$ iff $f(⟨M, w⟩) ∈ DECIDER$. Therefore, f is a mapping reduction from $HALT$ to $DECIDER$, so $HALT \leq^m DECIDER$. ■
Theorem: \(\text{HALT} \leq^M \text{DECIDER} \).

Proof: We exhibit a mapping reduction from \(\text{HALT} \) to \(\text{DECIDER} \). For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(\langle M' \rangle \) is defined in terms of \(M \) and \(w \) as follows:
Theorem: \(\text{HALT} \leq_{M} \text{DECIDER} \).

Proof: We exhibit a mapping reduction from \(\text{HALT} \) to \(\text{DECIDER} \).

For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(\langle M' \rangle \) is defined in terms of \(M \) and \(w \) as follows:

\[
M' = \text{"On input } x:\n\text{Ignore } x.
\text{Run } M \text{ on } w.
\text{If } M \text{ halts on } w, \text{ accept."}
\]
Theorem: \(\text{HALT} \leq^M \text{DECIDER} \).

Proof: We exhibit a mapping reduction from \(\text{HALT} \) to \(\text{DECIDER} \). For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(\langle M' \rangle \) is defined in terms of \(M \) and \(w \) as follows:

\[
M' = \text{"On input } x: \\
\quad \text{Ignore } x. \\
\quad \text{Run } M \text{ on } w. \\
\quad \text{If } M \text{ halts on } w, \text{ accept."
}
\]

By the parameterization theorem, \(f \) is a computable function.
Theorem: $\text{HALT} \leq_{M} \text{DECIDER}$.

Proof: We exhibit a mapping reduction from HALT to DECIDER. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where $\langle M' \rangle$ is defined in terms of M and w as follows:

$$M' = \text{"On input } x:\text{ Ignore } x.\text{ Run } M \text{ on } w.\text{ If } M \text{ halts on } w, \text{ accept."}$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$.
Theorem: $\text{HALT} \leq^m \text{DECIDER}$.

Proof: We exhibit a mapping reduction from HALT to DECIDER. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where $\langle M' \rangle$ is defined in terms of M and w as follows:

$$M' = \text{"On input } x:\n$$

$$\text{Ignore } x.\n$$

$$\text{Run } M \text{ on } w.\n$$

$$\text{If } M \text{ halts on } w, \text{ accept."}$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in \text{DECIDER}$ iff M' halts on all inputs.
Theorem: \(\text{HALT} \leq_M \text{DECIDER} \).

Proof: We exhibit a mapping reduction from \(\text{HALT} \) to \(\text{DECIDER} \).

For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(\langle M' \rangle \) is defined in terms of \(M \) and \(w \) as follows:

\[
M' = \text{"On input } x:\n\text{Ignore } x.\\n\text{Run } M \text{ on } w.\\n\text{If } M \text{ halts on } w, \text{ accept."}
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M, w \rangle \in \text{HALT} \) iff \(f(\langle M, w \rangle) \in \text{DECIDER} \).

To see this, note that \(f(\langle M, w \rangle) = \langle M' \rangle \in \text{DECIDER} \) iff \(M' \) halts on all inputs. We claim that \(M' \) halts on all inputs iff \(M \) halts on \(w \).
Theorem: \(\text{HALT} \leq^M \text{DECIDER} \).

Proof: We exhibit a mapping reduction from \(\text{HALT} \) to \(\text{DECIDER} \).

For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(\langle M' \rangle \) is defined in terms of \(M \) and \(w \) as follows:

\[
M' = \text{"On input } x:\n\quad \text{Ignore } x. \\
\quad \text{Run } M \text{ on } w. \\
\quad \text{If } M \text{ halts on } w, \text{ accept."}
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M, w \rangle \in \text{HALT} \) iff \(f(\langle M, w \rangle) \in \text{DECIDER} \).

To see this, note that \(f(\langle M, w \rangle) = \langle M' \rangle \in \text{DECIDER} \) iff \(M' \) halts on all inputs. We claim that \(M' \) halts on all inputs iff \(M \) halts on \(w \).

To see this, note that when \(M' \) is run on any input, it halts iff \(M \) halts on \(w \).
Theorem: HALT \leq^M DECIDER.

Proof: We exhibit a mapping reduction from HALT to DECIDER. For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(\langle M' \rangle \) is defined in terms of \(M \) and \(w \) as follows:

\[
M' = "On input x:
 Ignore x.
 Run M on w.
 If M halts on w, accept."
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M, w \rangle \in HALT \) iff \(f(\langle M, w \rangle) \in DECIDER \). To see this, note that \(f(\langle M, w \rangle) = \langle M' \rangle \in DECIDER \) iff \(M' \) halts on all inputs. We claim that \(M' \) halts on all inputs iff \(M \) halts on \(w \). To see this, note that when \(M' \) is run on any input, it halts iff \(M \) halts on \(w \). Thus if \(M \) halts on \(w \), then \(M' \) halts on all inputs, and if \(M \) loops on \(w \), \(M' \) loops on all inputs.
Theorem: \(\text{HALT} \leq_M \text{DECIDER} \).

Proof: We exhibit a mapping reduction from \text{HALT} to \text{DECIDER}.
For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(\langle M' \rangle \) is defined in terms of \(M \) and \(w \) as follows:

\[
M' = \text{"On input x:}
\]
\[
\text{Ignore x.}
\]
\[
\text{Run } M \text{ on } w.
\]
\[
\text{If } M \text{ halts on } w, \text{ accept."
}\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M, w \rangle \in \text{HALT} \) iff \(f(\langle M, w \rangle) \in \text{DECIDER} \).
To see this, note that \(f(\langle M, w \rangle) = \langle M' \rangle \in \text{DECIDER} \) iff \(M' \) halts on all inputs. We claim that \(M' \) halts on all inputs iff \(M \) halts on \(w \).
To see this, note that when \(M' \) is run on any input, it halts iff \(M \) halts on \(w \). Thus if \(M \) halts on \(w \), then \(M' \) halts on all inputs, and if \(M \) loops on \(w \), \(M' \) loops on all inputs. Finally, note that \(M \) halts on \(w \) iff \(\langle M, w \rangle \in \text{HALT} \).
Theorem: $\text{HALT} \leq^M \text{DECIDER}$.

Proof: We exhibit a mapping reduction from HALT to DECIDER. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where $\langle M' \rangle$ is defined in terms of M and w as follows:

$$M' = "\text{On input } x:"
\quad \text{Ignore } x.
\quad \text{Run } M \text{ on } w.
\quad \text{If } M \text{ halts on } w, \text{ accept.}"

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in \text{DECIDER}$ iff M' halts on all inputs. We claim that M' halts on all inputs iff M halts on w. To see this, note that when M' is run on any input, it halts iff M halts on w. Thus if M halts on w, then M' halts on all inputs, and if M loops on w, M' loops on all inputs. Finally, note that M halts on w iff $\langle M, w \rangle \in \text{HALT}$. Thus $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$. ■
Theorem: $\text{HALT} \leq^M \text{DECIDER}$.

Proof: We exhibit a mapping reduction from HALT to DECIDER. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where $\langle M' \rangle$ is defined in terms of M and w as follows:

$$M' = \text{"On input x:}\qquad$$
$$\text{Ignore x.}\qquad$$
$$\text{Run } M \text{ on } w.\qquad$$
$$\text{If } M \text{ halts on } w, \text{ accept.}$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in \text{DECIDER}$ iff M' halts on all inputs. We claim that M' halts on all inputs iff M halts on w. To see this, note that when M' is run on any input, it halts iff M halts on w. Thus if M halts on w, then M' halts on all inputs, and if M loops on w, M' loops on all inputs. Finally, note that M halts on w iff $\langle M, w \rangle \in \text{HALT}$. Thus $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$. Therefore, f is a mapping reduction from HALT to DECIDER, so $\text{HALT} \leq^M \text{DECIDER}$.\[\blacksquare\]
Theorem: $\text{HALT} \leq_{m} \text{DECIDER}$.

Proof: We exhibit a mapping reduction from HALT to DECIDER. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where $\langle M' \rangle$ is defined in terms of M and w as follows:

$$M' = \text{"On input } x:\
 \begin{align*}
 \text{Ignore } x. \\
 \text{Run } M \text{ on } w. \\
 \text{If } M \text{ halts on } w, \text{ accept."
 }
 \end{align*}$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in \text{DECIDER}$ iff M' halts on all inputs. We claim that M' halts on all inputs iff M halts on w. To see this, note that when M' is run on any input, it halts iff M halts on w. Thus if M halts on w, then M' halts on all inputs, and if M loops on w, M' loops on all inputs. Finally, note that M halts on w iff $\langle M, w \rangle \in \text{HALT}$. Thus $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$. Therefore, f is a mapping reduction from HALT to DECIDER, so $\text{HALT} \leq_{m} \text{DECIDER}$. ■
Other Hard Languages

- We can't tell if a TM accepts a specific string.
- Could we determine whether or not a TM accepts one of many different strings with specific properties?
- For example, could we build a TM that determines whether some other TM accepts a string of all 1s?

Let ONES_{TM} be the following language:

$$\text{ONES}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ accepts a string of the form } 1^n \}$$

- Is $\text{ONES}_{\text{TM}} \in \mathbb{R}$? Is it RE?
• Unfortunately, ONES_{TM} is undecidable.

• However, ONES_{TM} is recognizable.
 • Intuition: Nondeterministically guess the string of the form 1^n that M will accept, then check that M accepts it.

• We'll show that ONES_{TM} is undecidable by showing that $A_{\text{TM}} \leq^M \text{ONES}$.
\[A_{TM} \leq_M ONES_{TM} \]

- As before, let's try to find a function \(f \) such that
 \[\langle M, w \rangle \in A_{TM} \iff f(\langle M, w \rangle) \in ONES_{TM}. \]
- Let's let \(f(\langle M, w \rangle) = \langle M' \rangle \) for some TM \(M' \). Then we want to pick \(M' \) such that
 \[\langle M, w \rangle \in A_{TM} \iff f(\langle M, w \rangle) \in ONES_{TM} \]
 \[\langle M, w \rangle \in A_{TM} \iff \langle M' \rangle \in ONES_{TM} \]
 \[M \text{ accepts } w \iff M' \text{ accepts } 1^n \text{ for some } n \]
The Reduction

- Goal: construct M' so M' accepts 1^n for some n iff M accepts w.
- Here is one possible option:
 \[
 M' = \text{"On input } x:\]
 Ignore x.
 Run M on w.
 If M accepts w, accept x.
 If M rejects w, reject x.

- As with before, we can justify the construction of M' using the parameterization theorem.
- If M accepts w, then M' accepts all strings, including 1^n for some n.
- If M does not accept w, then M' does not accept any strings, so it certainly does not accept any strings of the form 1^n.
Theorem: $A_{TM} \leq_M ONES_{TM}$.

Proof: We exhibit a mapping reduction from A_{TM} to $ONES_{TM}$. For any TM/strand pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is defined in terms of M and w as follows:

On input x:
Ignore x.
Run M on w.
If M accepts w, accept x.
If M rejects w, reject x.

By the parameterization theorem, f is a computable function.

We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in ONES_{TM}$ iff M' accepts at least one string of the form 1^n. We claim that M' accepts at least one string of the form 1^n iff M accepts w. To see this, note that if M accepts w, then M' accepts 1^n, and if M does not accept w, then M' rejects all strings, including all strings of the form 1^n. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. Consequently, f is a mapping reduction from A_{TM} to $ONES_{TM}$, so $A_{TM} \leq_M ONES_{TM}$ as required. ■
Theorem: $A_{TM} \leq_M ONES_{TM}$.

Proof: We exhibit a mapping reduction from A_{TM} to $ONES_{TM}$.

For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is defined in terms of M and w as follows:

- If M accepts w, accept x.
- If M rejects w, reject x.

By the parameterization theorem, f is a computable function.

We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in ONES_{TM}$ iff M' accepts at least one string of the form 1^n. We claim that M' accepts at least one string of the form 1^n iff M accepts w. To see this, note that if M accepts w, then M' accepts 1, and if M does not accept w, then M' rejects all strings, including all strings of the form 1^n. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. Consequently, f is a mapping reduction from A_{TM} to $ONES_{TM}$, so $A_{TM} \leq_M ONES_{TM}$ as required. ■
Theorem: $A_{TM} \leq^m_{M} ONES_{TM}$.

Proof: We exhibit a mapping reduction from A_{TM} to $ONES_{TM}$. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is defined in terms of M and w as follows:

$M' = \text{On input } x:
\begin{align*}
&\text{Ignore } x. \\
&\text{Run } M \text{ on } w. \\
&\text{If } M \text{ accepts } w, \text{ accept } x. \\
&\text{If } M \text{ rejects } w, \text{ reject } x.
\end{align*}$

By the parameterization theorem, f is a computable function.

We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in ONES_{TM}$ iff M' accepts at least one string of the form 1^n. We claim that M' accepts at least one string of the form 1^n iff M accepts w. To see this, note that if M accepts w, then M' accepts 1, and if M does not accept w, then M' rejects all strings, including all strings of the form 1^n. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. Consequently, f is a mapping reduction from A_{TM} to $ONES_{TM}$, so $A_{TM} \leq^m_{M} ONES_{TM}$ as required. ■
Theorem: $A_{TM} \leq^m ONES_{TM}$.

Proof: We exhibit a mapping reduction from A_{TM} to $ONES_{TM}$. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is defined in terms of M and w as follows:

$$M' = \text{"On input } x:\text{ Ignore } x.\text{ Run } M \text{ on } w.\text{ If } M \text{ accepts } w, \text{ accept } x.\text{ If } M \text{ rejects } w, \text{ reject } x."$$
Theorem: $A_{\text{TM}} \leq_M \text{ONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from A_{TM} to ONES_{TM}. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is defined in terms of M and w as follows:

$$M' = \text{“On input } x:\n\text{Ignore } x.\n\text{Run } M \text{ on } w.\n\text{If } M \text{ accepts } w, \text{ accept } x.\n\text{If } M \text{ rejects } w, \text{ reject } x.”$$

By the parameterization theorem, f is a computable function.
Theorem: $A_{TM} \leq_M ONES_{TM}$.

Proof: We exhibit a mapping reduction from A_{TM} to $ONES_{TM}$. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is defined in terms of M and w as follows:

$$M' = \text{"On input } x:\]
\text{Ignore } x.
\text{Run } M \text{ on } w.
\text{If } M \text{ accepts } w, \text{ accept } x.
\text{If } M \text{ rejects } w, \text{ reject } x."

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$.

Theorem: $A_{\text{TM}} \leq_{M} \text{ONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from A_{TM} to ONES_{TM}. For any TM/string pair (M, w), let $f((M, w)) = (M')$, where M' is defined in terms of M and w as follows:

$$M' = \text{"On input } x: \text{ Ignore } x. \text{ Run } M \text{ on } w. \text{ If } M \text{ accepts } w, \text{ accept } x. \text{ If } M \text{ rejects } w, \text{ reject } x."$$

By the parameterization theorem, f is a computable function. We further claim that $(M, w) \in A_{\text{TM}}$ iff $f((M, w)) \in \text{ONES}_{\text{TM}}$. To see this, note that $f((M, w)) = (M') \in \text{ONES}_{\text{TM}}$ iff M' accepts at least one string of the form 1^n.

Theorem: \(A_{\text{TM}} \leq_m \text{ONES}_{\text{TM}} \).

Proof: We exhibit a mapping reduction from \(A_{\text{TM}} \) to \(\text{ONES}_{\text{TM}} \). For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) and \(w \) as follows:

\[M' = \text{"On input } x:\]
\[\text{Ignore } x. \]
\[\text{Run } M \text{ on } w. \]
\[\text{If } M \text{ accepts } w, \text{ accept } x. \]
\[\text{If } M \text{ rejects } w, \text{ reject } x.\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M, w \rangle \in A_{\text{TM}} \) iff \(f(\langle M, w \rangle) \in \text{ONES}_{\text{TM}} \). To see this, note that \(f(\langle M, w \rangle) = \langle M' \rangle \in \text{ONES}_{\text{TM}} \) iff \(M' \) accepts at least one string of the form \(1^n \). We claim that \(M' \) accepts at least one string of the form \(1^n \) iff \(M \) accepts \(w \).
Theorem: \(A_{TM} \leq_M ONES_{TM} \).

Proof: We exhibit a mapping reduction from \(A_{TM} \) to \(ONES_{TM} \). For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) and \(w \) as follows:

\[
M' = \text{"On input } x:\]
\[
\quad \text{Ignore } x.
\]
\[
\quad \text{Run } M \text{ on } w.
\]
\[
\quad \text{If } M \text{ accepts } w, \text{ accept } x.
\]
\[
\quad \text{If } M \text{ rejects } w, \text{ reject } x."
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M, w \rangle \in A_{TM} \) iff \(f(\langle M, w \rangle) \in ONES_{TM} \). To see this, note that \(f(\langle M, w \rangle) = \langle M' \rangle \in ONES_{TM} \) iff \(M' \) accepts at least one string of the form \(1^n \). We claim that \(M' \) accepts at least one string of the form \(1^n \) iff \(M \) accepts \(w \). To see this, note that if \(M \) accepts \(w \), then \(M' \) accepts \(1 \), and if \(M \) does not accept \(w \), then \(M' \) rejects all strings, including all strings of the form \(1^n \).
Theorem: $A_{\text{TM}} \leq_M \text{ONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from A_{TM} to ONES_{TM}. For any TM/string pair (M, w), let $f((M, w)) = (M')$, where M' is defined in terms of M and w as follows:

$$M' = \text{"On input } x:\n \text{Ignore } x.\n \text{Run } M \text{ on } w.\n \text{If } M \text{ accepts } w, \text{ accept } x.\n \text{If } M \text{ rejects } w, \text{ reject } x."$$

By the parameterization theorem, f is a computable function. We further claim that $(M, w) \in A_{\text{TM}}$ iff $f((M, w)) \in \text{ONES}_{\text{TM}}$. To see this, note that $f((M, w)) = (M') \in \text{ONES}_{\text{TM}}$ iff M' accepts at least one string of the form 1^n. We claim that M' accepts at least one string of the form 1^n iff M accepts w. To see this, note that if M accepts w, then M' accepts 1, and if M does not accept w, then M' rejects all strings, including all strings of the form 1^n. Finally, M accepts w iff $(M, w) \in A_{\text{TM}}$.
Theorem: $A_{TM} \leq_M ONES_{TM}$.

Proof: We exhibit a mapping reduction from A_{TM} to $ONES_{TM}$. For any TM/string pair $⟨M, w⟩$, let $f(⟨M, w⟩) = ⟨M'⟩$, where M' is defined in terms of M and w as follows:

$$M' = "On input x:
 Ignore x.
 Run M on w.
 If M accepts w, accept x.
 If M rejects w, reject x."$$

By the parameterization theorem, f is a computable function. We further claim that $⟨M, w⟩ \in A_{TM}$ iff $f(⟨M, w⟩) \in ONES_{TM}$. To see this, note that $f(⟨M, w⟩) = ⟨M'⟩ \in ONES_{TM}$ iff M' accepts at least one string of the form 1^n. We claim that M' accepts at least one string of the form 1^n iff M accepts w. To see this, note that if M accepts w, then M' accepts 1, and if M does not accept w, then M' rejects all strings, including all strings of the form 1^n. Finally, M accepts w iff $⟨M, w⟩ \in A_{TM}$. Thus $⟨M, w⟩ \in A_{TM}$ iff $f(⟨M, w⟩) \in ONES_{TM}$.
Theorem: \(A_{\text{TM}} \leq M \text{ONES}_{\text{TM}} \).

Proof: We exhibit a mapping reduction from \(A_{\text{TM}} \) to \(\text{ONES}_{\text{TM}} \). For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) and \(w \) as follows:

\[
M' = \text{"On input } x:\]
\[
\text{Ignore } x. \\
\text{Run } M \text{ on } w. \\
\text{If } M \text{ accepts } w, \text{ accept } x. \\
\text{If } M \text{ rejects } w, \text{ reject } x."
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M, w \rangle \in A_{\text{TM}} \) iff \(f(\langle M, w \rangle) \in \text{ONES}_{\text{TM}} \). To see this, note that \(f(\langle M, w \rangle) = \langle M' \rangle \in \text{ONES}_{\text{TM}} \) iff \(M' \) accepts at least one string of the form \(1^n \). We claim that \(M' \) accepts at least one string of the form \(1^n \) iff \(M \) accepts \(w \). To see this, note that if \(M \) accepts \(w \), then \(M' \) accepts \(1 \), and if \(M \) does not accept \(w \), then \(M' \) rejects all strings, including all strings of the form \(1^n \). Finally, \(M \) accepts \(w \) iff \(\langle M, w \rangle \in A_{\text{TM}} \). Thus \(\langle M, w \rangle \in A_{\text{TM}} \) iff \(f(\langle M, w \rangle) \in \text{ONES}_{\text{TM}} \). Consequently, \(f \) is a mapping reduction from \(A_{\text{TM}} \) to \(\text{ONES}_{\text{TM}} \), so \(A_{\text{TM}} \leq M \text{ONES}_{\text{TM}} \) as required.
Theorem: $A_{\text{TM}} \leq_M \text{ONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from A_{TM} to ONES_{TM}. For any TM/string pair (M, w), let $f((M, w)) = (M')$, where M' is defined in terms of M and w as follows:

$$M' = \text{“On input } x:\n$$

Ignore x.

Run M on w.

If M accepts w, accept x.

If M rejects w, reject x.”

By the parameterization theorem, f is a computable function. We further claim that $(M, w) \in A_{\text{TM}}$ iff $f((M, w)) \in \text{ONES}_{\text{TM}}$. To see this, note that $f((M, w)) = (M') \in \text{ONES}_{\text{TM}}$ iff M' accepts at least one string of the form 1^n. We claim that M' accepts at least one string of the form 1^n iff M accepts w. To see this, note that if M accepts w, then M' accepts 1, and if M does not accept w, then M' rejects all strings, including all strings of the form 1^n. Finally, M accepts w iff $(M, w) \in A_{\text{TM}}$. Thus $(M, w) \in A_{\text{TM}}$ iff $f((M, w)) \in \text{ONES}_{\text{TM}}$. Consequently, f is a mapping reduction from A_{TM} to ONES_{TM}, so $A_{\text{TM}} \leq_M \text{ONES}_{\text{TM}}$ as required. ■
A Slightly Modified Question

• We cannot determine whether or not a TM will accept at least one string of all 1s.

• Can we determine whether a TM only accepts strings of all 1s?

• In other words, for a TM M, is $\mathcal{L}(M) \subseteq 1^*$?

• Let ONLYONES_{TM} be the language

\[
\text{ONLYONES}_{TM} = \{ \langle M \rangle \mid \mathcal{L}(M) \subseteq 1^* \}
\]

• Is $\text{ONLYONES}_{TM} \in \text{R}$? How about RE?
ONLYONES$_{\text{TM}} \not\in \text{RE}$

- It turns out that the language ONLYONES$_{\text{TM}}$ is unrecognizable.
- We can prove this by reducing L_D to ONLYONES$_{\text{TM}}$.
- If $L_D \leq_M$ ONLYONES$_{\text{TM}}$, then ONLYONES$_{\text{TM}} \not\in \text{RE}$.
\[\mathcal{L}_D \leq_\mathcal{M} \text{ONLYONES}_{\mathcal{TM}} \]

- We want to find a computable function \(f \) such that
 \[\langle M \rangle \in \mathcal{L}_D \iff f(\langle M \rangle) \in \text{ONLYONES}_{\mathcal{TM}}. \]

- We want to set \(f(\langle M \rangle) = \langle M' \rangle \) for some suitable choice of \(M' \). This means
 \[\langle M \rangle \in \mathcal{L}_D \iff \langle M' \rangle \in \text{ONLYONES}_{\mathcal{TM}} \]
 \[\langle M \rangle \notin \mathcal{L}(M) \iff \mathcal{L}(M') \subseteq 1^* \]

- How would we pick our machine \(M' \)?
One Possible Reduction

- We want to build M' from M such that $\langle M \rangle \notin \mathcal{L}(M)$ iff $\mathcal{L}(M') \subseteq 1^*$.

- In other words, we construct M' such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M')$ is not a subset of 1^*.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M')$ is a subset of 1^*.

- One option: Come up with some languages with these properties, then construct our machine M' such that its language changes based on whether $\langle M \rangle \in \mathcal{L}(M)$.
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \Sigma^*$, which is not a subset of 1^*.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$, which is a subset of 1^*.
One Possible Reduction

- We want
 - If \(\langle M \rangle \in \mathcal{L}(M) \), then \(\mathcal{L}(M') = \Sigma^* \)
 - If \(\langle M \rangle \notin \mathcal{L}(M) \), then \(\mathcal{L}(M') = \emptyset \)
- Here is one possible \(M' \) that does this:

 \[M' = \text{“On input } x:\text{ Ignore } x. \text{ Run } M \text{ on } \langle M \rangle. \text{ If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \text{ If } M \text{ rejects } \langle M \rangle, \text{ reject } x.” \]
Theorem: $L_D \leq_M {\text{ONLYONES}}_{TM}$.

Proof: We exhibit a mapping reduction from L_D to ONLYONES_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

- On input x: Ignore x. Run M on $\langle M \rangle$. If M accepts $\langle M \rangle$, accept x. If M rejects $\langle M \rangle$, reject x.

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{TM}$ iff $(\mathcal{L}_{M'}) \subseteq 1^*$. We claim that $(\mathcal{L}_{M'}) \subseteq 1^*$ iff M does not accept $\langle M \rangle$. To see this, note that if M does not accept $\langle M \rangle$, then M' never accepts any strings, so $(\mathcal{L}_{M'}) = \emptyset \subseteq 1^*$. Otherwise, if M accepts $\langle M \rangle$, then M' accepts all strings, so $(\mathcal{L}_{M'}) = \Sigma^*$, which is not a subset of 1^*. Finally, M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Thus $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{TM}$. Consequently, f is a mapping reduction from L_D to ONLYONES_{TM}, so $L_D \leq_M \text{ONLYONES}_{TM}$ as required. ■
Theorem: $L_D \leq^M \text{ONLYONES}_{\text{TM}}$.
Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$.
Theorem: $L_D \leq_M \text{ONLYONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:
Theorem: $L_D \leq_M \text{ONLYONES}_\text{TM}$.

Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_\text{TM}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\text{ Ignore } x.\text{ Run } M \text{ on } \langle M \rangle.\text{ If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\text{ If } M \text{ rejects } \langle M \rangle, \text{ reject } x."$$
Theorem: \(L_D \leq_M \text{ONLYONES}_{TM} \).

Proof: We exhibit a mapping reduction from \(L_D \) to \(\text{ONLYONES}_{TM} \).

For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = "\text{On input } x:
\quad \text{Ignore } x.
\quad \text{Run } M \text{ on } \langle M \rangle.
\quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.
\quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\]

By the parameterization theorem, \(f \) is a computable function.
Theorem: $L_D \leq_M \text{ONLYONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\text{ Ignore } x. \text{ Run } M \text{ on } \langle M \rangle. \text{ If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \text{ If } M \text{ rejects } \langle M \rangle, \text{ reject } x."$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}}$.
Theorem: \(L_D \leq_M \text{ONLYONES}_{\text{TM}} \).

Proof: We exhibit a mapping reduction from \(L_D \) to \(\text{ONLYONES}_{\text{TM}} \).

For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = \text{"On input } x:\n\text{Ignore } x.\n\text{Run } M \text{ on } \langle M \rangle.\n\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."\n\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M \rangle \in L_D \) iff \(f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}} \). To see this, note that \(f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{\text{TM}} \) iff \(\mathcal{A}(M') \subseteq 1^* \).
Theorem: $L_D \leq_M \text{ONLYONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{“On input } x:\text{ Ignore } x.\text{ Run } M \text{ on } \langle M \rangle.\text{ If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\text{ If } M \text{ rejects } \langle M \rangle, \text{ reject } x.”$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{\text{TM}}$ iff $\mathcal{L}(M') \subseteq 1^*$. We claim that $\mathcal{L}(M') \subseteq 1^*$ iff M does not accept $\langle M \rangle$.
Theorem: $L_D \leq_M \text{ONLYONES}_{TM}$.

Proof: We exhibit a mapping reduction from L_D to ONLYONES_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\ $$

- Ignore x.
- Run M on $\langle M \rangle$.
- If M accepts $\langle M \rangle$, accept x.
- If M rejects $\langle M \rangle$, reject x.

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{TM}$ iff $\mathcal{L}(M') \subseteq 1^*$. We claim that $\mathcal{L}(M') \subseteq 1^*$ iff M does not accept $\langle M \rangle$. To see this, note that if M does not accept $\langle M \rangle$, then M' never accepts any strings, so $\mathcal{L}(M') = \emptyset \subseteq 1^*$.
Theorem: $L_D \leq_M \text{ONLYONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$M' = \text{"On input } x:\$

- Ignore x.
- Run M on $\langle M \rangle$.
- If M accepts $\langle M \rangle$, accept x.
- If M rejects $\langle M \rangle$, reject x.

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{\text{TM}}$ iff $\mathcal{L}(M') \subseteq \Sigma^*$. We claim that $\mathcal{L}(M') \subseteq \Sigma^*$ iff M does not accept $\langle M \rangle$. To see this, note that if M does not accept $\langle M \rangle$, then M' never accepts any strings, so $\mathcal{L}(M') = \emptyset \subseteq \Sigma^*$. Otherwise, if M accepts $\langle M \rangle$, then M' accepts all strings, so $\mathcal{L}(M) = \Sigma^*$, which is not a subset of Σ^*.
Theorem: $L_D \leq_M \text{ONLYONES}_{TM}$.

Proof: We exhibit a mapping reduction from L_D to ONLYONES_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\text{ Ignore } x. \text{ Run } M \text{ on } \langle M \rangle. \text{ If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \text{ If } M \text{ rejects } \langle M \rangle, \text{ reject } x."$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{TM}$ iff $\mathcal{L}(M') \subseteq 1^*$. We claim that $\mathcal{L}(M') \subseteq 1^*$ iff M does not accept $\langle M \rangle$. To see this, note that if M does not accept $\langle M \rangle$, then M' never accepts any strings, so $\mathcal{L}(M') = \emptyset \subseteq 1^*$. Otherwise, if M accepts $\langle M \rangle$, then M' accepts all strings, so $\mathcal{L}(M) = \Sigma^*$, which is not a subset of 1^*. Finally, M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. ■
Theorem: $L_D \leq_M \text{ONLYONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\"$$

Ignore x.
Run M on $\langle M \rangle$.
If M accepts $\langle M \rangle$, accept x.
If M rejects $\langle M \rangle$, reject x.”

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{\text{TM}}$ iff $\mathcal{A}(M') \subseteq 1^*$. We claim that $\mathcal{A}(M') \subseteq 1^*$ iff M does not accept $\langle M \rangle$. To see this, note that if M does not accept $\langle M \rangle$, then M' never accepts any strings, so $\mathcal{A}(M') = \emptyset \subseteq 1^*$. Otherwise, if M accepts $\langle M \rangle$, then M' accepts all strings, so $\mathcal{A}(M) = \Sigma^*$, which is not a subset of 1^*. Finally, M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Thus $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}}$.

Theorem: $L_D \leq_M \text{ONLYONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = "\text{On input } x:\n\begin{align*}
\text{Ignore } x. \\
\text{Run } M \text{ on } \langle M \rangle. \\
\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \\
\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\end{align*}$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{\text{TM}}$ iff $\mathcal{A}(M') \subseteq 1^*$. We claim that $\mathcal{A}(M') \subseteq 1^*$ iff M does not accept $\langle M \rangle$. To see this, note that if M does not accept $\langle M \rangle$, then M' never accepts any strings, so $\mathcal{A}(M') = \emptyset \subseteq 1^*$. Otherwise, if M accepts $\langle M \rangle$, then M' accepts all strings, so $\mathcal{A}(M) = \Sigma^*$, which is not a subset of 1^*. Finally, M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Thus $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}}$. Consequently, f is a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$, so $L_D \leq_M \text{ONLYONES}_{\text{TM}}$ as required.
Theorem: $L_D \leq_M \text{ONLYONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$.

For any TM M, let $f(⟨M⟩) = ⟨M'⟩$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x: \text{
 Ignore } x.
 \text{ Run } M \text{ on } ⟨M⟩.
 \text{ If } M \text{ accepts } ⟨M⟩, \text{ accept } x.
 \text{ If } M \text{ rejects } ⟨M⟩, \text{ reject } x."$$

By the parameterization theorem, f is a computable function.

We further claim that $⟨M⟩ \in L_D$ iff $f(⟨M⟩) \in \text{ONLYONES}_{\text{TM}}$. To see this, note that $f(⟨M⟩) = ⟨M'⟩ \in \text{ONLYONES}_{\text{TM}}$ iff $ℒ(M') \subseteq 1^*$. We claim that $ℒ(M') \subseteq 1^*$ iff M does not accept $⟨M⟩$. To see this, note that if M does not accept $⟨M⟩$, then M' never accepts any strings, so $ℒ(M') = ∅ \subseteq 1^*$. Otherwise, if M accepts $⟨M⟩$, then M' accepts all strings, so $ℒ(M) = Σ^*$, which is not a subset of 1^*. Finally, M does not accept $⟨M⟩$ iff $⟨M⟩ \in L_D$. Thus $⟨M⟩ \in L_D$ iff $f(⟨M⟩) \in \text{ONLYONES}_{\text{TM}}$. Consequently, f is a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$, so $L_D \leq_M \text{ONLYONES}_{\text{TM}}$ as required. ■
ONLYONES™

• Although ONLYONES™ is not RE, its complement (ONLYONES™) is RE:

 \{ \langle M \rangle \mid \mathcal{L}(M) \text{ is not a subset of } 1^* \}

• Intuition: Can nondeterministically guess a string in \(\mathcal{L}(M) \) that is not of the form \(1^n \), then check that \(M \) accepts it.
RE and co-RE

- The class **RE** is the set of languages that are recognized by a TM.
 - Intuitively, problems where a TM can check that an answer is correct.
- The class **co-RE** is the set of languages whose *complements* are recognized by a TM.
 - Intuitively, problems where a TM can check that an answer is *incorrect*.
- A language in co-RE is called **co-recognizable**. A language not in co-RE is called **co-unrecognizable**.
Why **RE** and co-**RE** Matter

- **RE** and co-**RE** are, in a sense, the weakest conditions necessary for a problem to even be attempted by a computer:
 - If a problem is in **RE**, there is a mechanical procedure for verifying correct answers to that problem.
 - If a problem is in co-**RE**, there is a mechanical procedure for refuting incorrect answers to that problem.
- Understanding what problems are in **RE** and co-**RE** will help give a better understanding of what problems can and cannot be solved.
Properties of co-RE

• Recall:
 If $L \in \text{RE}$ and $\overline{L} \in \text{RE}$, then $L \in \mathcal{R}$.

• Rewritten in terms of co-RE:
 If $L \in \text{RE}$ and $L \in \text{co-RE}$, then $L \in \mathcal{R}$.

• Contrapositive:
 If $L \not\in \mathcal{R}$, then $L \not\in \text{RE}$ or $L \not\in \text{co-RE}$ (or both)

• Important results:
 If $L \not\in \mathcal{R}$ and $L \in \text{RE}$, then $L \not\in \text{co-RE}$.
 If $L \not\in \mathcal{R}$ and $L \in \text{co-RE}$, then $L \not\in \text{RE}$.
The Limits of Computability

- A TM
- DOGWALK
- ADD
- ONLYONES TM
- ONES TM
- HALT
- 0*1*
- R
- RE
- co-RE

All Languages
The Diagonalization Language Revisited

- The diagonalization language L_D is the language
 \[L_D = \{ \langle M \rangle \mid M \notin \mathcal{L}(M) \} \]

- As we saw before, $L_D \notin \text{RE}$.

- So where is L_D? Is it in $L_D \in \text{co-RE}$? Or is it someplace else?
All Turing machines, listed in some order.
All descriptions of TMs, listed in the same order.
<table>
<thead>
<tr>
<th>$\langle M_0 \rangle$</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle M_5 \rangle$</th>
<th>...</th>
</tr>
</thead>
</table>
| M_0 | Acc | No | No | Acc | Acc | No | ...
<p>| M_1 | | | | | | |
| M_2 | | | | | | |
| M_3 | | | | | | |
| M_4 | | | | | | |
| M_5 | | | | | | |
| ... | | | | | | |</p>
<table>
<thead>
<tr>
<th>(\langle M_0 \rangle)</th>
<th>(\langle M_1 \rangle)</th>
<th>(\langle M_2 \rangle)</th>
<th>(\langle M_3 \rangle)</th>
<th>(\langle M_4 \rangle)</th>
<th>(\langle M_5 \rangle)</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_0)</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>(M_1)</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>(M_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\langle M_0 \rangle)</td>
<td>(\langle M_1 \rangle)</td>
<td>(\langle M_2 \rangle)</td>
<td>(\langle M_3 \rangle)</td>
<td>(\langle M_4 \rangle)</td>
<td>(\langle M_5 \rangle)</td>
<td>...</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M_0</td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_4</td>
<td>M_5</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_5</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(M_0)</td>
<td>(M_1)</td>
<td>(M_2)</td>
<td>(M_3)</td>
<td>(M_4)</td>
<td>(M_5)</td>
<td>...</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(\langle M_0 \rangle)</td>
<td>(\langle M_1 \rangle)</td>
<td>(\langle M_2 \rangle)</td>
<td>(\langle M_3 \rangle)</td>
<td>(\langle M_4 \rangle)</td>
<td>(\langle M_5 \rangle)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(M_0)</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>(M_1)</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>(M_2)</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>(M_3)</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>(M_4)</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>(M_5)</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>\langle M_0 \rangle</td>
<td>\langle M_1 \rangle</td>
<td>\langle M_2 \rangle</td>
<td>\langle M_3 \rangle</td>
<td>\langle M_4 \rangle</td>
<td>\langle M_5 \rangle</td>
<td>...</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_5</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
<td>…</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>M<sub>0</sub></td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M<sub>1</sub></td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M<sub>2</sub></td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M<sub>3</sub></td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M<sub>4</sub></td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M<sub>5</sub></td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
</tbody>
</table>
This language is \(L_D \).

<table>
<thead>
<tr>
<th>(M_0)</th>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(M_3)</th>
<th>(M_4)</th>
<th>(M_5)</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

\[\langle M_0 \rangle \langle M_1 \rangle \langle M_2 \rangle \langle M_3 \rangle \langle M_4 \rangle \langle M_5 \rangle \ldots \]

Acc Acc Acc No Acc No …
The Language \overline{L}_D

- The language \overline{L}_D is the language
 \[\overline{L}_D = \{ \langle M \rangle | \langle M \rangle \in \mathcal{L}(M) \} \]
- That is, the set of TMs that accept their own description.
- $L_d \in \text{co-RE}$ iff $\overline{L}_D \in \text{RE}$.
- So is $\overline{L}_D \in \text{RE}$?
\(L_D \in \text{co-RE} \)

- Here's an TM for \(\overline{L}_D \):

 \[R = \text{"On input } \langle M \rangle \text{:
 Run } M \text{ on } \langle M \rangle.
 \text{If } M \text{ accepts } \langle M \rangle, \text{ accept.}
 \text{If } M \text{ rejects } \langle M \rangle, \text{ reject."
 } \]

- Then \(R \) accepts \(\langle M \rangle \) iff \(\langle M \rangle \in \mathcal{L}(M) \) iff \(\langle M \rangle \in \overline{L}_D \), so \(\mathcal{L}(R) = \overline{L}_D \).
The Limits of Computability

- \(A_{TM} \)
- \(L_D \)
- \(\overline{HALT} \)
- \(\overline{ONES}_{TM} \)
- \(\overline{ONLYONES}_{TM} \)
- \(\text{DOGWALK} \)
- \(\text{ADD} \)
- \(0^*1^* \)

The diagram shows the relationships between different languages and their complements in the context of computability theory. The areas represent RE (Recursively Enumerable), co-RE (co-Recursively Enumerable), and the intersection represents the RE languages. The specific languages and their properties are highlighted within the diagram.
Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.
Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$.
Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \not\in A$ and $f(w) \in B$ iff $f(w) \not\in B$. Consequently, we have that $w \not\in A$ iff $f(w) \not\in B$. Thus $w \in A$ iff $f(w) \in B$. Since f is computable, $A \leq_M B$. ■
Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$.
Theorem: If $A \leq M B$, then $\overline{A} \leq M \overline{B}$.

Proof: Suppose that $A \leq M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$.

Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. ■
Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. Since f is computable, $\overline{A} \leq_M \overline{B}$. ■
Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. Since f is computable, $\overline{A} \leq_M \overline{B}$. ■
co-RE Reductions

- **Corollary**: If $A \leq^M B$ and $B \in \text{co-RE}$, then $A \in \text{co-RE}$.

 Proof: Since $A \leq^M B$, $\overline{A} \leq^M \overline{B}$. Since $B \in \text{co-RE}$, $\overline{B} \in \text{RE}$. Thus $\overline{A} \in \text{RE}$, so $A \in \text{co-RE}$. ■

- **Corollary**: If $A \leq^M B$ and $A \not\in \text{co-RE}$, then $B \not\in \text{co-RE}$.

 Proof: Take the contrapositive of the above. ■
Why Mapping Reducibility Matters

\[A \leq M_{\text{M}} B \]

If this one is "easy" (R or RE or co-RE)...

... then this one is "easy" (R or RE or co-RE) too.
Why Mapping Reducibility Matters

If this one is "hard" (not R or not RE or not $co-RE$)...

\[A \leq_{M} B \]

... then this one is "hard" (not R or not RE or not $co-RE$) too.
Is there anything out here?
RE \cup \text{co-RE} \text{ is Not Everything}

- Using the same reasoning as the first day of lecture, we can show that there must be problems that are neither RE nor co-RE.
- There are more sets of strings than TMs.
- There are more sets of strings than twice the number of TMs.
- What do these languages look like?
An Extremely Hard Problem

• Recall: All regular languages are also RE.
• This means that some TMs accept regular languages and some TMs do not.
• Let REGULAR_{TM} be the language of all TM descriptions that accept regular languages:
 $\text{REGULAR}_{TM} = \{ \langle M \rangle \mid \mathcal{L}(M) \text{ is regular.} \}$
• Is $\text{REGULAR}_{TM} \in \mathbb{R}$? How about RE?
REGULAR_{\text{TM}} \notin \text{RE}

- It turns out that REGULAR_{\text{TM}} is unrecognizable, meaning that there is no computer program that can even verify that another TM's language is regular!
- To do this, we'll do another reduction from L_D and prove that $L_D \leq_M \text{REGULAR}_{\text{TM}}$.
\[L_D \leq_M \text{REGULAR}_{\text{TM}} \]

- We want to find a computable function \(f \) such that
 \[\langle M \rangle \in \mathcal{L}_D \iff f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}. \]
- We need to choose \(M' \) such that \(f(\langle M \rangle) = \langle M' \rangle \) for some TM \(M' \). Then
 \[\langle M \rangle \in \mathcal{L}_D \iff f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}} \]
 \[\langle M \rangle \in \mathcal{L}_D \iff \langle M' \rangle \in \text{REGULAR}_{\text{TM}} \]
 \[\langle M \rangle \not\in \mathcal{L}(M) \iff \mathcal{L}(M') \text{ is regular.} \]
\[L_D \leq_M \text{REGULAR}_{\text{TM}} \]

- We want to construct some \(M' \) out of \(M \) such that
 - If \(\langle M \rangle \in \mathcal{L}(M) \), then \(\mathcal{L}(M') \) is not regular.
 - If \(\langle M \rangle \not\in \mathcal{L}(M) \), then \(\mathcal{L}(M') \) is regular.

- One option: choose two languages, one regular and one nonregular, then construct \(M' \) so its language switches from regular to nonregular based on whether \(\langle M \rangle \not\in \mathcal{L}(M) \).
 - If \(\langle M \rangle \in \mathcal{L}(M) \), then \(\mathcal{L}(M') = \{ 0^n1^n \mid n \in \mathbb{N} \} \)
 - If \(\langle M \rangle \not\in \mathcal{L}(M) \), then \(\mathcal{L}(M') = \emptyset \)
The Reduction

- We want to build M' from M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \{ 0^n1^n | n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$

- Here is one way to do this:

 $M' = "$On input x:
 - If x does not have the form 0^n1^n, reject.
 - Run M on $\langle M \rangle$.
 - If M accepts, accept x.
 - If M rejects, reject x."

Theorem: $L_D \leq_M \text{REGULAR}_{TM}$.

Proof:
We exhibit a mapping reduction from L_D to REGULAR_{TM}.
For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

- $M' = "\text{On input } x:\n \text{If } x \text{ does not have the form } 0^n1^n, \text{ reject } x.\n \text{Run } M \text{ on } \langle M \rangle.\n \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."."

By the parameterization theorem, f is a computable function.
We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{TM}$ iff $(\ell M')$ is regular. We claim that $(\ell M')$ is regular iff $\langle M \rangle \not\in (\ell M)$. To see this, note that if $\langle M \rangle \not\in (\ell M)$, then M' never accepts any strings. Thus $(\ell M') = \emptyset$, which is regular. Otherwise, if $\langle M \rangle \in (\ell M)$, then M' accepts all strings of the form 0^n1^n, so we have that $(\ell M') = \{0^n1^n | n \in \mathbb{N}\}$, which is not regular. Finally, $\langle M \rangle \not\in (\ell M')$ iff $\langle M \rangle \in L_D$. Thus $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{TM}$, so f is a mapping reduction from L_D to REGULAR_{TM}. Therefore, $L_D \leq_M \text{REGULAR}_{TM}$. ■
Theorem: $L_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{REGULAR}_{\text{TM}}$.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

M' = "On input x:
1. If x does not have the form 0^n1^n, reject x.
2. Run M on $\langle M \rangle$.
3. If M accepts $\langle M \rangle$, accept x.
4. If M rejects $\langle M \rangle$, reject $x".

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ if and only if $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ if and only if $(\mathcal{L}_{M'})$ is regular. We claim that $(\mathcal{L}_{M'})$ is regular if and only if $\langle M \rangle \not\in (\mathcal{L}_{M})$. To see this, note that if $\langle M \rangle \not\in (\mathcal{L}_{M})$, then M' never accepts any strings. Thus $(\mathcal{L}_{M'}) = \emptyset$, which is regular. Otherwise, if $\langle M \rangle \in (\mathcal{L}_{M})$, then M' accepts all strings of the form 0^n1^n, so we have that $(\mathcal{L}_{M}) = \{0^n1^n | n \in \mathbb{N}\}$, which is not regular. Finally, $\langle M \rangle \not\in (\mathcal{L}_{M'})$ if and only if $\langle M \rangle \in L_D$. Thus $\langle M \rangle \in L_D$ if and only if $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$, so f is a mapping reduction from L_D to $\text{REGULAR}_{\text{TM}}$. Therefore, $L_D \leq_M \text{REGULAR}_{\text{TM}}$. ■
Theorem: $L_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{REGULAR}_{\text{TM}}$.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:
Theorem: $L_D \leq^m \text{REGULAR}_\text{TM}$.

Proof: We exhibit a mapping reduction from L_D to REGULAR_TM.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = "\text{On input } x:\"
\text{If } x \text{ does not have the form } 0^n1^n, \text{ reject } x.
\text{Run } M \text{ on } \langle M \rangle.
\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.
\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
$$
Theorem: $L_D \leq_M \text{REGULAR}_{TM}$.

Proof: We exhibit a mapping reduction from L_D to REGULAR_{TM}.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input x:}$$

- If x does not have the form 0^n1^n, reject x.
- Run M on $\langle M \rangle$.
- If M accepts $\langle M \rangle$, accept x.
- If M rejects $\langle M \rangle$, reject x.

By the parameterization theorem, f is a computable function.
Theorem: $L_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{REGULAR}_{\text{TM}}$.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

\[
M' = "\text{On input } x:\n\quad \text{If } x \text{ does not have the form } 0^n1^n, \text{ reject } x.\n\quad \text{Run } M \text{ on } \langle M \rangle.\n\quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n\quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\]

By the parameterization theorem, f is a computable function.
We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$.

Theorem: $L_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{REGULAR}_{\text{TM}}$.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$M' = "\text{On input } x: $
- If x does not have the form 0^n1^n, reject x.
- Run M on $\langle M \rangle$.
- If M accepts $\langle M \rangle$, accept x.
- If M rejects $\langle M \rangle$, reject $x."$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $A(M')$ is regular.
Theorem: \(L_D \leq_M \text{REGULAR}_{\text{TM}} \).

Proof: We exhibit a mapping reduction from \(L_D \) to \(\text{REGULAR}_{\text{TM}} \).

For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = \text{"On input } x:\ \\
\text{If } x \text{ does not have the form } 0^n1^n, \text{ reject } x. \\
\text{Run } M \text{ on } \langle M \rangle. \\
\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \\
\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M \rangle \in L_D \) iff \(f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}} \). To see this, note that \(f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}} \) iff \(\mathcal{A}(M') \) is regular. We claim that \(\mathcal{A}(M') \) is regular iff \(\langle M \rangle \notin \mathcal{A}(M) \).
Theorem: $L_D \leq_M \text{REGULAR}_{TM}$.

Proof: We exhibit a mapping reduction from L_D to REGULAR_{TM}.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = "\text{On input } x:\n\quad \text{If } x \text{ does not have the form } 0^n1^n, \text{ reject } x.\n\quad \text{Run } M \text{ on } \langle M \rangle.\n\quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n\quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{TM}$ iff $\mathcal{A}(M')$ is regular. We claim that $\mathcal{A}(M')$ is regular iff $\langle M \rangle \notin \mathcal{A}(M)$. To see this, note that if $\langle M \rangle \notin \mathcal{A}(M)$, then M' never accepts any strings.
Theorem: $L_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{REGULAR}_{\text{TM}}$.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\n$$
If x does not have the form 0^n1^n, reject x.
Run M on $\langle M \rangle$.
If M accepts $\langle M \rangle$, accept x.
If M rejects $\langle M \rangle$, reject $x.$"

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $\mathcal{A}(M')$ is regular. We claim that $\mathcal{A}(M')$ is regular iff $\langle M \rangle \notin \mathcal{A}(M)$. To see this, note that if $\langle M \rangle \notin \mathcal{A}(M)$, then M' never accepts any strings. Thus $\mathcal{A}(M') = \emptyset$, which is regular.
Theorem: \(L_D \leq_M \text{REGULAR}_{\text{TM}} \).

Proof: We exhibit a mapping reduction from \(L_D \) to \(\text{REGULAR}_{\text{TM}} \).

For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = "\text{On input } x:\n\quad \text{If } x \text{ does not have the form } 0^n1^n, \text{ reject } x.\n\quad \text{Run } M \text{ on } \langle M \rangle.\n\quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n\quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M \rangle \in L_D \) iff \(f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}} \). To see this, note that \(f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}} \) iff \(\mathcal{A}(M') \) is regular. We claim that \(\mathcal{A}(M') \) is regular iff \(\langle M \rangle \notin \mathcal{A}(M) \). To see this, note that if \(\langle M \rangle \notin \mathcal{A}(M) \), then \(M' \) never accepts any strings. Thus \(\mathcal{A}(M') = \emptyset \), which is regular. Otherwise, if \(\langle M \rangle \in \mathcal{A}(M) \), then \(M' \) accepts all strings of the form \(0^n1^n \), so we have that \(\mathcal{A}(M) = \{ 0^n1^n \mid n \in \mathbb{N} \} \), which is not regular.
Theorem: \(L_D \leq_M \text{REGULAR}_{TM} \).

Proof: We exhibit a mapping reduction from \(L_D \) to \(\text{REGULAR}_{TM} \).

For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = "On input x:
 If x does not have the form 0^n1^n, reject x.
 Run M on \langle M \rangle.
 If M accepts \langle M \rangle, accept x.
 If M rejects \langle M \rangle, reject x."
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M \rangle \in L_D \) iff \(f(\langle M \rangle) \in \text{REGULAR}_{TM} \). To see this, note that \(f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{TM} \) iff \(\mathcal{A}(M') \) is regular. We claim that \(\mathcal{A}(M') \) is regular iff \(\langle M \rangle \notin \mathcal{A}(M) \). To see this, note that if \(\langle M \rangle \notin \mathcal{A}(M) \), then \(M' \) never accepts any strings. Thus \(\mathcal{A}(M') = \emptyset \), which is regular. Otherwise, if \(\langle M \rangle \in \mathcal{A}(M) \), then \(M' \) accepts all strings of the form \(0^n1^n \), so we have that \(\mathcal{A}(M) = \{ 0^n1^n \mid n \in \mathbb{N} \} \), which is not regular. Finally, \(\langle M \rangle \notin \mathcal{A}(M') \) iff \(\langle M \rangle \in L_D \).
Theorem: \(L_D \leq_M \text{REGULAR}_{TM} \).

Proof: We exhibit a mapping reduction from \(L_D \) to \(\text{REGULAR}_{TM} \).

For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = "\text{On input } x:\n\begin{align*}
\text{If } x \text{ does not have the form } 0^n1^n, \text{ reject } x. \\
\text{Run } M \text{ on } \langle M \rangle. \\
\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \\
\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M \rangle \in L_D \) iff \(f(\langle M \rangle) \in \text{REGULAR}_{TM} \). To see this, note that \(f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{TM} \) iff \(\mathcal{L}(M') \) is regular. We claim that \(\mathcal{L}(M') \) is regular iff \(\langle M \rangle \notin \mathcal{L}(M) \). To see this, note that if \(\langle M \rangle \notin \mathcal{L}(M) \), then \(M' \) never accepts any strings. Thus \(\mathcal{L}(M') = \emptyset \), which is regular. Otherwise, if \(\langle M \rangle \in \mathcal{L}(M) \), then \(M' \) accepts all strings of the form \(0^n1^n \), so we have that \(\mathcal{L}(M) = \{ 0^n1^n \mid n \in \mathbb{N} \} \), which is not regular. Finally, \(\langle M \rangle \notin \mathcal{L}(M) \) iff \(\langle M \rangle \in L_D \). Thus \(\langle M \rangle \in L_D \) iff \(f(\langle M \rangle) \in \text{REGULAR}_{TM} \), so \(f \) is a mapping reduction from \(L_D \) to \(\text{REGULAR}_{TM} \).
Theorem: \(L_D \leq_M \text{REGULAR}_{\text{TM}} \).

Proof: We exhibit a mapping reduction from \(L_D \) to \(\text{REGULAR}_{\text{TM}} \).

For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = \"On input \(x \):
\begin{align*}
&\text{If } x \text{ does not have the form } 0^n1^n, \text{ reject } x. \\
&\text{Run } M \text{ on } \langle M \rangle. \\
&\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \\
&\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x.\end{align*}
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M \rangle \in L_D \) iff \(f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}} \). To see this, note that \(f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}} \) iff \(\mathcal{A}(M') \) is regular. We claim that \(\mathcal{A}(M') \) is regular iff \(\langle M \rangle \notin \mathcal{A}(M) \). To see this, note that if \(\langle M \rangle \notin \mathcal{A}(M) \), then \(M' \) never accepts any strings. Thus \(\mathcal{A}(M') = \emptyset \), which is regular. Otherwise, if \(\langle M \rangle \in \mathcal{A}(M) \), then \(M' \) accepts all strings of the form \(0^n1^n \), so we have that \(\mathcal{A}(M) = \{ 0^n1^n \mid n \in \mathbb{N} \} \), which is not regular. Finally, \(\langle M \rangle \notin \mathcal{A}(\langle M \rangle) \) iff \(\langle M \rangle \in L_D \). Thus \(\langle M \rangle \in L_D \) iff \(f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}} \), so \(f \) is a mapping reduction from \(L_D \) to \(\text{REGULAR}_{\text{TM}} \). Therefore, \(L_D \leq_M \text{REGULAR}_{\text{TM}} \).
Theorem: $L_D \leq_M \text{REGULAR}_{\text{Tm}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{REGULAR}_{\text{Tm}}$.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{“On input } x:\text{ if } x \text{ does not have the form } 0^n1^n, \text{ reject } x.\text{ Run } M \text{ on } \langle M \rangle.\text{ If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\text{ If } M \text{ rejects } \langle M \rangle, \text{ reject } x.”$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{Tm}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{Tm}}$ iff $\mathcal{L}(M')$ is regular. We claim that $\mathcal{L}(M')$ is regular iff $\langle M \rangle \notin \mathcal{L}(M)$. To see this, note that if $\langle M \rangle \notin \mathcal{L}(M)$, then M' never accepts any strings. Thus $\mathcal{L}(M') = \emptyset$, which is regular. Otherwise, if $\langle M \rangle \in \mathcal{L}(M)$, then M' accepts all strings of the form 0^n1^n, so we have that $\mathcal{L}(M) = \{ 0^n1^n | n \in \mathbb{N} \}$, which is not regular. Finally, $\langle M \rangle \notin \mathcal{L}(\langle M \rangle)$ iff $\langle M \rangle \in L_D$. Thus $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{Tm}}$, so f is a mapping reduction from L_D to $\text{REGULAR}_{\text{Tm}}$. Therefore, $L_D \leq_M \text{REGULAR}_{\text{Tm}}$. ■
Not only is $\text{REGULAR}_{\text{TM}} \not\in \text{RE}$, but $\text{REGULAR}_{\text{TM}} \not\in \text{co-RE}$.

Before proving this, take a minute to think about just how ridiculously hard this problem is.

- No computer can confirm that an arbitrary TM has a regular language.
- No computer can confirm that an arbitrary TM has a nonregular language.
- This is vastly beyond the limits of what computers could ever hope to solve.
\[\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}} \]

- To prove that \(\text{REGULAR}_{\text{TM}} \) is not co-\text{RE}, we will prove that \(\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}} \).

- Since \(\overline{L}_D \) is not co-\text{RE}, this proves that \(\text{REGULAR}_{\text{TM}} \) is not co-\text{RE} either.

- Goal: Find a function \(f \) such that

\[
\langle M \rangle \in L_D \quad \text{iff} \quad f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}
\]

- Let \(f(\langle M \rangle) = \langle M' \rangle \) for some TM \(M' \). Then we want

\[
\langle M \rangle \in L_D \quad \text{iff} \quad \langle M' \rangle \in \text{REGULAR}_{\text{TM}}
\]

\[
\langle M \rangle \in \mathcal{L}(M) \quad \text{iff} \quad \mathcal{L}(M') \text{ is regular}
\]
\(\bar{L}_D \leq_M \text{REGULAR}_{TM} \)

- We want to construct some \(M' \) out of \(M \) such that
 - If \(\langle M \rangle \in \mathcal{L}(M) \), then \(\mathcal{L}(M') \) is regular.
 - If \(\langle M \rangle \notin \mathcal{L}(M) \), then \(\mathcal{L}(M') \) is not regular.
- One option: choose two languages, one regular and one nonregular, then construct \(M' \) so its language switches from regular to nonregular based on whether \(\langle M \rangle \in \mathcal{L}(M) \).
\[\overline{L_D} \leq_m \text{REGULAR}_{TM} \]

- We want to build \(M' \) from \(M \) such that
 - If \(\langle M \rangle \in \mathcal{L}(M) \), then \(\mathcal{L}(M') = \Sigma^* \)
 - If \(\langle M \rangle \notin \mathcal{L}(M) \), then \(\mathcal{L}(M') = \{ \ 0^n1^n \mid n \in \mathbb{N} \ \} \)
- Here is one way to do this:

\[M' = \text{"On input } x:\]
\[\quad \text{If } x \text{ has the form } 0^n1^n, \text{ accept.} \]
\[\quad \text{Run } M \text{ on } \langle M \rangle. \]
\[\quad \text{If } M \text{ accepts, accept } x. \]
\[\quad \text{If } M \text{ rejects, reject } x. \]
Theorem: $\overline{L}_D \leq_{M} \text{REGULAR}_{TM}$.
Theorem: $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$.

For any $\text{TM} M$, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

- **On input x:**
 - If x has the form 0^n1^n, accept x.
 - Run M on $\langle M \rangle$.
 - If M accepts $\langle M \rangle$, accept x.
 - If M rejects $\langle M \rangle$, reject x.

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $(\mathcal{L}_{M'})$ is regular. We claim that $\mathcal{L}(M')$ is regular iff $\langle M \rangle \in (\mathcal{L}_M)$. To see this, note that if $\langle M \rangle \in (\mathcal{L}_M)$, then M' accepts all strings, either because that string is of the form 0^n1^n or because M eventually accepts $\langle M \rangle$. Thus $(\mathcal{L}_{M'}) = \Sigma^*$, which is regular. Otherwise, if $\langle M \rangle \notin (\mathcal{L}_M)$, then M' only accepts strings of the form 0^n1^n, so $(\mathcal{L}_{M'}) = \{0^n1^n | n \in \mathbb{N}\}$, which is not regular. Finally, $\langle M \rangle \in (\mathcal{L}_M)$ iff $\langle M \rangle \in L_D$. Thus $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$, so f is a mapping reduction from L_D to $\text{REGULAR}_{\text{TM}}$. Therefore, $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$. ■
Theorem: \(\bar{L}_D \leq_M \text{REGULAR} \)\(_{\text{TM}}\).

Proof: We exhibit a mapping reduction from \(\bar{L}_D \) to \(\text{REGULAR} \)\(_{\text{TM}}\). For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:
Theorem: \(\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}} \).

Proof: We exhibit a mapping reduction from \(\overline{L}_D \) to \(\text{REGULAR}_{\text{TM}} \). For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = \text{"On input } x: \\
\quad \text{If } x \text{ has the form } 0^n1^n, \text{ accept } x. \\
\quad \text{Run } M \text{ on } \langle M \rangle. \\
\quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \\
\quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\]
Theorem: $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\n\quad \text{If } x \text{ has the form } 0^n1^n, \text{ accept } x.\n\quad \text{Run } M \text{ on } \langle M \rangle.\n\quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n\quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x.\n$$

By the parameterization theorem, f is a computable function.
Theorem: \(\overline{L_D} \leq_M \text{REGULAR}_{TM} \).

Proof: We exhibit a mapping reduction from \(\overline{L_D} \) to \(\text{REGULAR}_{TM} \). For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = \text{"On input } x: \\
\text{If } x \text{ has the form } 0^n1^n, \text{ accept } x. \\
\text{Run } M \text{ on } \langle M \rangle. \\
\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \\
\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M \rangle \in \overline{L_D} \) iff \(f(\langle M \rangle) \in \text{REGULAR}_{TM} \).
Theorem: $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

\[
M' = \text{"On input } x:\n\]
\[
\text{If } x \text{ has the form } 0^n1^n, \text{ accept } x.
\]
\[
\text{Run } M \text{ on } \langle M \rangle.
\]
\[
\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.
\]
\[
\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x.
\]

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $A(M')$ is regular.
Theorem: $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{On input } x:\n\quad \text{If } x \text{ has the form } 0^n1^n, \text{ accept } x.\n\quad \text{Run } M \text{ on } \langle M \rangle.\n\quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n\quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x.$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $A(M')$ is regular. We claim that $A(M')$ is regular iff $\langle M \rangle \in A(M)$.

Theorem: $\overline{L}_D \leq_M \text{REGULAR}_{TM}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to REGULAR_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$M' = "$On input x:
 If x has the form 0^n1^n, accept x.
 Run M on $\langle M \rangle$.
 If M accepts $\langle M \rangle$, accept x.
 If M rejects $\langle M \rangle$, reject x."

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{TM}$ iff $\mathcal{A}(M')$ is regular. We claim that $\mathcal{A}(M')$ is regular iff $\langle M \rangle \in \mathcal{A}(M)$. To see this, note that if $\langle M \rangle \in \mathcal{A}(M)$, then M' accepts all strings, either because that string is of the form 0^n1^n or because M eventually accepts $\langle M \rangle$.

Theorem: $\overline{L_D} \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from $\overline{L_D}$ to $\text{REGULAR}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x: \quad \text{If } x \text{ has the form } 0^n1^n, \text{ accept } x. \quad \text{Run } M \text{ on } \langle M \rangle. \quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L_D}$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $\mathcal{A}(M')$ is regular. We claim that $\mathcal{A}(M')$ is regular iff $\langle M \rangle \in \mathcal{A}(M)$. To see this, note that if $\langle M \rangle \in \mathcal{A}(M)$, then M' accepts all strings, either because that string is of the form 0^n1^n or because M eventually accepts $\langle M \rangle$. Thus $\mathcal{A}(M') = \Sigma^*$, which is regular.
Theorem: $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\"$$

- If x has the form 0^n1^n, accept x.
- Run M on $\langle M \rangle$.
- If M accepts $\langle M \rangle$, accept x.
- If M rejects $\langle M \rangle$, reject x.”

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $\mathcal{A}(M')$ is regular. We claim that $\mathcal{A}(M')$ is regular iff $\langle M \rangle \in \mathcal{A}(M)$. To see this, note that if $\langle M \rangle \in \mathcal{A}(M)$, then M' accepts all strings, either because that string is of the form 0^n1^n or because M eventually accepts $\langle M \rangle$. Thus $\mathcal{A}(M') = \Sigma^*$, which is regular. Otherwise, if $\langle M \rangle \notin \mathcal{A}(M)$, then M' only accepts strings of the form 0^n1^n, so $\mathcal{A}(M) = \{ 0^n1^n \mid n \in \mathbb{N} \}$, which is not regular.
Theorem: $\overline{L_D} \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from $\overline{L_D}$ to $\text{REGULAR}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\ \begin{align*}
\text{If } x \text{ has the form } 0^n1^n, \text{ accept } x. \\
\text{Run } M \text{ on } \langle M \rangle. \\
\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \\
\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x.
\end{align*}$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L_D}$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $\mathcal{A}(M')$ is regular. We claim that $\mathcal{A}(M')$ is regular iff $\langle M \rangle \in \mathcal{A}(M)$. To see this, note that if $\langle M \rangle \in \mathcal{A}(M)$, then M' accepts all strings, either because that string is of the form 0^n1^n or because M eventually accepts $\langle M \rangle$. Thus $\mathcal{A}(M') = \Sigma^*$, which is regular. Otherwise, if $\langle M \rangle \notin \mathcal{A}(M)$, then M' only accepts strings of the form 0^n1^n, so $\mathcal{A}(M) = \{ 0^n1^n | n \in \mathbb{N} \}$, which is not regular. Finally, $\langle M \rangle \in \mathcal{A}(\langle M \rangle)$ iff $\langle M \rangle \in \overline{L_D}$.
Theorem: $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

\[
M' = "\text{On input } x:\n\text{If } x \text{ has the form } 0^n1^n, \text{ accept } x.\\\text{Run } M \text{ on } \langle M \rangle.\\\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\\\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\]

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $\mathcal{A}(M')$ is regular. We claim that $\mathcal{A}(M')$ is regular iff $\langle M \rangle \in \mathcal{A}(M)$. To see this, note that if $\langle M \rangle \in \mathcal{A}(M)$, then M' accepts all strings, either because that string is of the form 0^n1^n or because M eventually accepts $\langle M \rangle$. Thus $\mathcal{A}(M') = \Sigma^*$, which is regular. Otherwise, if $\langle M \rangle \notin \mathcal{A}(M)$, then M' only accepts strings of the form 0^n1^n, so $\mathcal{A}(M) = \{0^n1^n \mid n \in \mathbb{N}\}$, which is not regular. Finally, $\langle M \rangle \in \mathcal{A}(\langle M \rangle)$ iff $\langle M \rangle \in \overline{L}_D$. Thus $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$, so f is a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. ■
Theorem: \(\overline{L_D} \leq_M \text{REGULAR}_{\text{TM}}. \)

Proof: We exhibit a mapping reduction from \(\overline{L_D} \) to \(\text{REGULAR}_{\text{TM}}. \) For any TM \(M \), let \(f(\langle M \rangle) = \langle M' \rangle \), where \(M' \) is defined in terms of \(M \) as follows:

\[
M' = "\text{On input } x:\n\text{If } x \text{ has the form } 0^n1^n, \text{ accept } x.\n\text{Run } M \text{ on } \langle M \rangle.\n\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."
\]

By the parameterization theorem, \(f \) is a computable function. We further claim that \(\langle M \rangle \in \overline{L_D} \iff f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}. \) To see this, note that \(f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}} \iff \mathcal{A}(M') \) is regular. We claim that \(\mathcal{A}(M') \) is regular iff \(\langle M \rangle \in \mathcal{A}(M). \) To see this, note that if \(\langle M \rangle \in \mathcal{A}(M), \) then \(M' \) accepts all strings, either because that string is of the form \(0^n1^n \) or because \(M \) eventually accepts \(\langle M \rangle. \) Thus \(\mathcal{A}(M') = \Sigma^* \), which is regular. Otherwise, if \(\langle M \rangle \notin \mathcal{A}(M), \) then \(M' \) only accepts strings of the form \(0^n1^n, \) so \(\mathcal{A}(M) = \{ 0^n1^n \mid n \in \mathbb{N} \} \), which is not regular. Finally, \(\langle M \rangle \in \mathcal{A}(\langle M \rangle) \iff \langle M \rangle \in \overline{L_D}. \) Thus \(\langle M \rangle \in \overline{L_D} \iff f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}, \) so \(f \) is a mapping reduction from \(\overline{L_D} \) to \(\text{REGULAR}_{\text{TM}}. \) Therefore, \(\overline{L_D} \leq_M \text{REGULAR}_{\text{TM}}. \)
Theorem: $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\n\quad \text{If } x \text{ has the form } 0^n1^n, \text{ accept } x. \n\quad \text{Run } M \text{ on } \langle M \rangle. \n\quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x. \n\quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $A(M')$ is regular. We claim that $A(M')$ is regular iff $\langle M \rangle \in A(M)$. To see this, note that if $\langle M \rangle \in A(M)$, then M' accepts all strings, either because that string is of the form 0^n1^n or because M eventually accepts $\langle M \rangle$. Thus $A(M') = \Sigma^*$, which is regular. Otherwise, if $\langle M \rangle \notin A(M)$, then M' only accepts strings of the form 0^n1^n, so $A(M) = \{ 0^n1^n | n \in \mathbb{N} \}$, which is not regular. Finally, $\langle M \rangle \in A(\langle M \rangle)$ iff $\langle M \rangle \in \overline{L}_D$. Thus $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$, so f is a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. Therefore, $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$. ■
The Limits of Computability

\[
\begin{align*}
\text{REGULAR}_{\text{TM}} & \quad \text{REGULAR}_{\text{TM}} \\
\text{HALT} & \quad \text{HALT} \\
L_D & \quad L_D \\
A_{\text{TM}} & \quad A_{\text{TM}} \\
\text{ONES}_{\text{TM}} & \quad \text{ONES}_{\text{TM}} \\
\text{ONLYONES}_{\text{TM}} & \quad \text{ONLYONES}_{\text{TM}} \\
0^*1^* & \quad 0^*1^* \\
\text{DOGWALK} & \quad \text{DOGWALK} \\
\text{ADD} & \quad \text{ADD} \\
\text{co-RE} & \quad \text{RE} \\
\text{RE} & \quad \text{RE} \\
\text{All Languages} & \quad \text{All Languages}
\end{align*}
\]
Beyond RE and co-RE

• The most famous problem that is neither RE nor co-RE is the TM equality problem:

$$\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid \mathcal{L}(M_1) = \mathcal{L}(M_2) \}$$

• This is why we have to write testing code; there's no way to have a computer prove or disprove that two programs always have the same output.

• See Sipser for a proof of this fact.
Why All This Matters
The Limits of Computability

- RE
- co-RE
 - REGULAR_{TM}
 - HALT_{TM}
 - ONES_{TM}
 - ONLYONES_{TM}
- RE
 - REGULAR_{TM}
 - HALT_{TM}
 - ONES_{TM}
 - ONLYONES_{TM}
- co-RE
 - REGULAR_{TM}
 - HALT_{TM}
 - ONES_{TM}
 - ONLYONES_{TM}

Languages:
- 0^*1^*
- DOGWALK
- ADD

All Languages
What problems can be solved a computer?
What problems can be solved **efficiently** a computer?
Where We've Been

- The class \(R \) represents problems that can be solved by a computer.
- The class \(\text{RE} \) represents problems where answers can be verified by a computer.
- The class \(\text{co-RE} \) represents problems where answers can be refuted by a computer.
- The mapping reduction can be used to find connections between problems.
Where We're Going

- The class \(\mathbf{P} \) represents problems that can be solved \textit{efficiently} by a computer.
- The class \(\mathbf{NP} \) represents problems where answers can be verified \textit{efficiently} by a computer.
- The class co-\(\mathbf{NP} \) represents problems where answers can be \textit{efficiently} refuted by a computer.
- The \textit{polynomial-time} mapping reduction can be used to find connections between problems.
Next Time

- **Introduction to Complexity Theory**
 - What problems can be solved *efficiently*?
 - How do you define efficiency?
 - How do you measure it?
 - What tools will we need?