Order Relations and
 Functions

Problem Session Tonight

$$
\begin{gathered}
\text { 7:00PM - 7:50PM } \\
380-380 \mathrm{X}
\end{gathered}
$$

Optional, but highly recommended!

Recap from Last Time

Relations

- A binary relation is a property that describes whether two objects are related in some way.
- Examples:
- Less-than: $x<y$
- Divisibility: x divides y evenly
- Friendship: x is a friend of y
- Tastiness: x is tastier than y
- Given binary relation R, we write $a R b$ iff a is related to b by relation R.

Order Relations

" x is larger than y "

" x is tastier than y "

" x is faster than y "

" x is a subset of y "

" x divides y "

" x is a part of y "

Informally

An order relation is a relation that ranks elements against one another.

Do not use this definition in proofs: It's just an intuition:

Properties of Order Relations

$$
x \leq y
$$

Properties of Order Relations

$$
x \leq y
$$

$1 \leq 5$ and $5 \leq 8$

Properties of Order Relations

$$
x \leq y
$$

$1 \leq 5$ and $5 \leq 8$
$1 \leq 8$

Properties of Order Relations

$$
x \leq y
$$

$42 \leq 99$ and $99 \leq 137$

Properties of Order Relations

$$
x \leq y
$$

$42 \leq 99$ and $99 \leq 137$

$$
42 \leq 137
$$

Properties of Order Relations

$$
\begin{gathered}
x \leq y \\
x \leq y \quad \text { and } \quad y \leq z
\end{gathered}
$$

Properties of Order Relations

$$
\begin{array}{cc}
& x \leq y \\
x \leq y & \text { and } \quad y \leq z \\
x \leq z
\end{array}
$$

Properties of Order Relations

$$
\begin{gathered}
x \leq y \\
x \leq y \quad \text { and } \quad y \leq z \\
x \leq z \\
\text { Transitivity }
\end{gathered}
$$

Properties of Order Relations

$$
x \leq y
$$

Properties of Order Relations

$$
\begin{aligned}
& x \leq y \\
& 1 \leq 1
\end{aligned}
$$

Properties of Order Relations

$$
x \leq y
$$

$42 \leq 42$

Properties of Order Relations

$$
x \leq y
$$

$$
137 \leq 137
$$

Properties of Order Relations

$$
x \leq y
$$

$$
x \leq x
$$

Properties of Order Relations

$$
x \leq y
$$

$$
x \leq x
$$

Reflexivity

Properties of Order Relations

$$
x \leq y
$$

Properties of Order Relations

$$
x \leq y
$$

$19 \leq 21$

Properties of Order Relations

$$
x \leq y
$$

$$
\begin{gathered}
19 \leq 21 \\
21 \leq 19 ?
\end{gathered}
$$

Properties of Order Relations

$$
x \leq y
$$

$$
\begin{gathered}
19 \leq 21 \\
21 \leq 19 ?
\end{gathered}
$$

Properties of Order Relations

$$
x \leq y
$$

$$
42 \leq 137
$$

Properties of Order Relations

$$
x \leq y
$$

$$
\begin{gathered}
42 \leq 137 \\
137 \leq 42 ?
\end{gathered}
$$

Properties of Order Relations

$$
x \leq y
$$

$$
\begin{gathered}
42 \leq 137 \\
137 \leq 42 ?
\end{gathered}
$$

Properties of Order Relations

$$
x \leq y
$$

$$
137 \leq 137
$$

Properties of Order Relations

$$
\begin{gathered}
x \leq y \\
137 \leq 137 \\
137 \leq 137 ?
\end{gathered}
$$

Properties of Order Relations

$$
x \leq y
$$

$$
\begin{aligned}
& 137 \leq 137 \\
& 137 \leq 137
\end{aligned}
$$

Antisymmetry

A binary relation R over a set A is called antisymmetric iff

For any $x \in A$ and $y \in A$, If $x R y$ and $y \neq x$, then $y \notin x$.

Equivalently:
For any $x \in A$ and $y \in A$, if $x R y$ and $y R x$, then $x=y$.

An Intuition for Antisymmetry

For any $x \in A$ and $y \in A$, If $x R y$ and $y \neq x$, then $y \not R x$.

Partial Orders

- A binary relation R is a partial order over a set A iff it is
- reflexive,
- antisymmetric, and
- transitive.
- A pair (A, R), where R is a partial order over A, is called a partially ordered set or poset.

Partial Orders

- A binary relation R is a partial order over a set A iff it is
- reflexive,
- antisymmetric, and Why "partial"?
- transitive.
- A pair (A, R), where R is a partial order over A, is called a partially ordered set or poset.

2012 Summer Olympics

Gold	Silver	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

Inspired by http://tartarus.org/simon/2008-olympics-hasse/ Data from http://www.london2012.com/medals/medal-count/

2012 Summer Olympics

Gold	Silver	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

Inspired by http://tartarus.org/simon/2008-olympics-hasse/ Data from http://www.london2012.com/medals/medal-count/

Define the relationship $\left(\right.$ gold $_{0}$, total $\left._{\mathbf{0}}\right) R\left(\right.$ gold $_{1}$, total $\left._{1}\right)$
to be true when
$\operatorname{gold}_{\mathbf{0}} \leq \operatorname{gold}_{\mathbf{1}}$ and total $_{\mathbf{0}} \leq$ total $_{\mathbf{1}}$

46	104

$38 \quad 88$

1144

$38 \quad 88$

1144

$11 \quad 44$

$11 \quad 44$

Partial and Total Orders

- A binary relation R over a set A is called total iff for any $x \in A$ and $y \in A$, that $x R y$ or $y R x$.
- It's possible for both to be true.
- A binary relation R over a set A is called a total order iff it is a partial order and it is total.
- Examples:
- Integers ordered by \leq.
- Strings ordered alphabetically.

Hasse Diagrams

- A Hasse diagram is a graphical representation of a partial order.
- No self-loops: by reflexivity, we can always add them back in.
- Higher elements are bigger than lower elements: by antisymmetry, the edges can only go in one direction.
- No redundant edges: by transitivity, we can infer the missing edges.

Hasse Artichokes

Hasse Artichokes

Summary of Order Relations

- A partial order is a relation that is reflexive, antisymmetric, and transitive.
- A Hasse diagram is a drawing of a partial order that has no self-loops, arrowheads, or redundant edges.
- A total order is a partial order in which any pair of elements are comparable.

For More on the Olympics:

http://www.nytimes.com/interactive/2012/08/07/sports/olympics/the-best-and-worst-countries-in-the-medal-count.html

Functions

A function is a means of associating each object in one set with an object in some other set.

- Black and White

Terminology

- A function f is a mapping such that every value in A is associated with a unique value in B.
- For every $a \in A$, there exists some $b \in B$ with $f(a)=b$.
- If $f(a)=b_{0}$ and $f(a)=b_{1}$, then $b_{0}=b_{1}$.
- If f is a function from A to B, we sometimes say that f is a mapping from A to B.
- We call A the domain of f.
- We call B the codomain of f.
- We'll discuss "range" in a few minutes.
- We denote that f is a function from A to B by writing

$$
f: A \rightarrow B
$$

Is This a Function from A to B ?

Is This a Function from A to B ?

Is This a Function from A to B ?

Is This a Function from A to B ?

California

New York

Delaware

Washington DC

- Sacramento
- Albany

Each object in the domain has to be associated with exactly one object in the codomain!

Is This a Function from A to B ?

- Wish

It's fine that nothing is associated with Friend; functions do not need to use the entire codomain.

- Tenderheart

Friend

Defining Functions

- Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.
- Examples:
- $f(n)=n+1$, where $f: \mathbb{Z} \rightarrow \mathbb{Z}$
- $f(x)=\sin x$, where $f: \mathbb{R} \rightarrow \mathbb{R}$
- $f(x)=\lceil x\rceil$, where $f: \mathbb{R} \rightarrow \mathbb{Z}$
- When defining a function it is always a good idea to verify that
- The function is uniquely defined for all elements in the domain, and
- The function's output is always in the codomain.

Defining Functions

When defining a function it is always a good idea to verify that

The function is uniquely defined for all elements in the domain, and
The function's output is always in the codomain.

Defining Functions

- Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.
- Examples:
- $f(n)=n+1$, where $f: \mathbb{Z} \rightarrow \mathbb{Z}$
- $f(x)=\sin x$, where $f: \mathbb{R} \rightarrow \mathbb{R}$
- $f(x)=\lceil x\rceil$, where $f: \mathbb{R} \rightarrow \mathbb{Z}$
- When defining a function it is always a good idea to verify that
- The function is uniquely defined for all elements in the domain, and
- The function's output is always in the codomain.

Piecewise Functions

- Functions may be specified piecewise, with different rules applying to different elements.
- Example:

$$
f(n)=\left\{\begin{array}{cc}
-n / 2 & \text { if nis even } \\
(n+1) / 2 & \text { otherwise }
\end{array}\right.
$$

- When defining a function piecewise, it's up to you to confirm that it defines a legal function!
$\stackrel{+}{+}$
0^{7}
2
ち
H
Ψ

\section*{| Y |
| :--- |
| + |
 0

2
2
 ћ
 भ्ठ
 Ψ}

Mercury Venus Earth Mars Jupiter Saturn Uranus
 Neptune
 Pluto

Mercury
 Venus
 Earth
 Mars
 Jupiter
 Saturn
 Uranus
 Neptune
 Pluto

Mercury
 Venus
 Earth
 Mars
 Jupiter
 Saturn
 Uranus
 Neptune

Injective Functions

- A function $f: A \rightarrow B$ is called injective (or one-to-one) if each element of the codomain has at most one element of the domain associated with it.
- A function with this property is called an injection.
- Formally:

$$
\text { If } f\left(x_{0}\right)=f\left(x_{1}\right) \text {, then } x_{0}=x_{1}
$$

- An intuition: injective functions label the objects from A using names from B.

Front Door

Balcony
Window

Bedroom Window

Surjective Functions

- A function $f: A \rightarrow B$ is called surjective (or onto) if each element of the codomain has at least one element of the domain associated with it.
- A function with this property is called a surjection.
- Formally:

> For any $b \in B$, there exists at least one $a \in A$ such that $f(a)=b$.

- An intuition: surjective functions cover every element of B with at least one element of A.

Injections and Surjections

- An injective function associates at most one element of the domain with each element of the codomain.
- A surjective function associates at least one element of the domain with each element of the codomain.
- What about functions that associate exactly one element of the domain with each element of the codomain?

Bijections

- A function that associates each element of the codomain with a unique element of the domain is called bijective.
- Such a function is a bijection.
- Formally, a bijection is a function that is both injective and surjective.
- A bijection is a one-to-one correspondence between two sets.

Compositions

www.microsoft.com
wWW.microsoft.com
www.apple.com

Function Composition

- Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
- The composition of \boldsymbol{f} and \boldsymbol{g} (denoted $\boldsymbol{g} \circ \boldsymbol{f}$) is the function $g \circ f: A \rightarrow C$ defined as

$$
(g \circ f)(x)=g(f(x))
$$

- Note that f is applied first, but f is on the right side!
- Function composition is associative:

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

Function Composition

- Suppose $f: A \rightarrow A$ and $g: A \rightarrow A$.
- Then both $g \circ f$ and $f \circ g$ are defined.
- Does $g \circ f=f \circ g$?
- In general, no:
- Let $f(x)=2 x$
- Let $g(x)=x+1$
- $(g \circ f)(x)=g(f(x))=g(2 x)=2 x+1$
- $(f \circ g)(x)=f(g(x))=f(x+1)=2 x+2$

Cardinality Revisited

Cardinality

- Recall (from lecture one!) that the cardinality of a set is the number of elements it contains.
- Denoted |S|.
- For finite sets, cardinalities are natural numbers:
- |\{1,2,3\}| = 3
- |\{100, 200, 300\}| = 3
- For infinite sets, we introduce infinite cardinals to denote the size of sets:
- $|\mathbb{N}|=\kappa_{0}$

Comparing Cardinalities

- The relationships between set cardinalities are defined in terms of functions between those sets.
- $|S|=|T|$ is defined using bijections.
$|S|=|T|$ iff there is a bijection $f: S \rightarrow T$

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.
$h \circ g$

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{o}\right)=f\left(r_{1}\right)$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$. Therefore, f is injective.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$. Therefore, f is injective.
To see that f is surjective, consider any $t \in T$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$. Therefore, f is injective.
To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that $f(r)=t$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$. Therefore, f is injective.
To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that $f(r)=t$. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that $h(s)=t$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$. Therefore, f is injective.
To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that $f(r)=t$. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that $h(s)=t$. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that $g(r)=s$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$. Therefore, f is injective.
To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that $f(r)=t$. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that $h(s)=t$. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that $g(r)=s$. Thus $f(r)=(h \circ g)(r)=h(g(r))=h(s)=t$ as required, so f is surjective.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$. Therefore, f is injective.
To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that $f(r)=t$. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that $h(s)=t$. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that $g(r)=s$. Thus $f(r)=(h \circ g)(r)=h(g(r))=h(s)=t$ as required, so f is surjective.
Since f is injective and surjective, it is bijective.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$. Therefore, f is injective.
To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that $f(r)=t$. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that $h(s)=t$. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that $g(r)=s$. Thus $f(r)=(h \circ g)(r)=h(g(r))=h(s)=t$ as required, so f is surjective.
Since f is injective and surjective, it is bijective. Thus there is a bijection from R to T, so $|R|=|T|$.

Theorem: If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$.
Proof: We will exhibit a bijection $f: R \rightarrow T$. Since $|R|=|S|$, there is a bijection $g: R \rightarrow S$. Since $|S|=|T|$, there is a bijection $h: S \rightarrow T$.

Let $f=h \circ g$; this means that $f: R \rightarrow T$. We prove that f is a bijection by showing that it is injective and surjective.
To see that f is injective, suppose that $f\left(r_{0}\right)=f\left(r_{1}\right)$. We will show that $r_{0}=r_{1}$. Since $f\left(r_{0}\right)=f\left(r_{1}\right)$, we know $(h \circ g)\left(r_{0}\right)=(h \circ g)\left(r_{1}\right)$. By definition of composition, we have $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$. Since h is a bijection, h is injective. Thus since $h\left(g\left(r_{0}\right)\right)=h\left(g\left(r_{1}\right)\right)$, we have that $g\left(r_{0}\right)=g\left(r_{1}\right)$. Since g is a bijection, g is injective, so because $g\left(r_{0}\right)=g\left(r_{1}\right)$ we have that $r_{0}=r_{1}$. Therefore, f is injective.
To see that f is surjective, consider any $t \in T$. We will show that there is some $r \in R$ such that $f(r)=t$. Since h is a bijection from S to T, h is surjective, so there is some $s \in S$ such that $h(s)=t$. Since g is a bijection from R to S, g is surjective, so there is some $r \in R$ such that $g(r)=s$. Thus $f(r)=(h \circ g)(r)=h(g(r))=h(s)=t$ as required, so f is surjective.
Since f is injective and surjective, it is bijective. Thus there is a bijection from R to T, so $|R|=|T|$. \square

Properties of Cardinality

- Equality of cardinality is an equivalence relation. For any sets R, S, and T :
- $|S|=|S|$. (reflexivity)
- If $|S|=|T|$, then $|T|=|S|$. (symmetry)
- If $|R|=|S|$ and $|S|=|T|$, then $|R|=|T|$. (transitivity)

Comparing Cardinalities

- We define $|S| \leq|T|$ as follows:
$|S| \leq|T|$ iff there is an injection $f: S \rightarrow T$

Comparing Cardinalities

- We define $|S| \leq|T|$ as follows:
$|S| \leq|T|$ iff there is an injection $f: S \rightarrow T$

Comparing Cardinalities

- We define $|S| \leq|T|$ as follows:
$|S| \leq|T|$ iff there is an injection $f: S \rightarrow T$

Comparing Cardinalities

- We define $|S| \leq|T|$ as follows:
$|S| \leq|T|$ iff there is an injection $f: S \rightarrow T$

Comparing Cardinalities

- We define $|S| \leq|T|$ as follows:
$|S| \leq|T|$ iff there is an injection $\boldsymbol{f}: S \rightarrow \boldsymbol{T}$
- The \leq relation over set cardinalities is a total order. For any sets R, S, and T :
- $|S| \leq|S|$. (reflexivity)
- If $|R| \leq|S|$ and $|S| \leq|T|$, then $|R| \leq|T|$. (transitivity)
- If $|S| \leq|T|$ and $|T| \leq|S|$, then $|S|=|T|$. (antisymmetry)
- Either $|S| \leq|T|$ or $|T| \leq|S|$. (totality)
- These last two proofs are extremely hard.
- The antisymmetry result is the Cantor-Bernstein-Schroeder Theorem; a fascinating read, but beyond the scope of this course.
- Totality requires the axiom of choice. Take Math 161 for more details.

