Mathematical Logic Part One

Announcements

- Problem Session tonight from 7:00 7:50 in 380-380X.
 - Optional, but highly recommended!
- Problem Set 3 Checkpoint due right now.
- 2× Handouts
 - Problem Set 3 Checkpoint Solutions
 - Diagonalization
- Problem Set 2 Solutions distributed at end of class.

Office Hours

- We finally have stable office hours locations!
- Website will be updated soon with details.

An Important Question

How do we formalize the logic we've been using in our proofs?

Where We're Going

- **Propositional Logic** (Today)
 - Basic logical connectives.
 - Truth tables.
 - Logical equivalences.
- First-Order Logic (Today / Wednesday)
 - Reasoning about properties of multiple objects.

Propositional Logic

A **proposition** is a statement that is, by itself, either true or false.

Some Sample Propositions

- Puppies are cuter than kittens.
- Kittens are cuter than puppies.
- Usain Bolt can outrun everyone in this room.
- CS103 is useful for cocktail parties.
- This is the last entry on this list.

More Propositions

- I'm a single lady.
- This place about to blow.
- Party rock is in the house tonight.
- We can dance if we want to.
- We can leave your friends behind.

Things That Aren't Propositions

Things That Aren't Propositions

Things That Aren't Propositions

Propositional Logic

- **Propositional logic** is a mathematical system for reasoning about propositions and how they relate to one another.
- Propositional logic enables us to
 - Formally encode how the truth of various propositions influences the truth of other propositions.
 - Determine if certain combinations of propositions are always, sometimes, or never true.
 - Determine whether certain combinations of propositions logically entail other combinations.

Variables and Connectives

- Propositional logic is a formal mathematical system whose syntax is rigidly specified.
- Every statement in propositional logic consists of propositional variables combined via logical connectives.
 - Each variable represents some proposition, such as "You wanted it" or "You should have put a ring on it."
 - Connectives encode how propositions are related, such as "If you wanted it, you should have put a ring on it."

Propositional Variables

- Each proposition will be represented by a propositional variable.
- Propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.
 - If we need more, we can use subscripts: p_1 , p_2 , etc.
- Each variable can take one one of two values: true or false.

Logical Connectives

• Logical NOT: ¬*p*

- Read "not p"
- $\neg p$ is true if and only if p is false.
- Also called **logical negation**.
- Logical AND: p ^ q
 - Read "p and q."
 - $p \land q$ is true if both p and q are true.
 - Also called **logical conjunction**.

• Logical OR: p v q

- Read "*p* **or** *q*."
- $p \lor q$ is true if at least one of p or q are true (inclusive OR)
- Also called **logical disjunction**.

Truth Tables

Truth Tables

Truth Tables

Implication

- An important connective is logical implication: $p \rightarrow q$.
- Recall: $p \rightarrow q$ means "if p is true, q is true as well."
- Recall: $p \rightarrow q$ says **nothing** about what happens if p is false.
- Recall: $p \rightarrow q$ says **nothing** about causality; it just says that if p is true, q will be true as well.

When *p* Does Not Imply *q*

- $p \rightarrow q$ means "if p is true, q is true as well."
- Recall: The **only way** for $p \rightarrow q$ to be false is if we know that p is true but q is false.
- Rationale:
 - If p is false, $p \rightarrow q$ doesn't guarantee anything. It's true, but it's not **meaningful**.
 - If *p* is true and *q* is true, then the statement "if *p* is true, then *q* is also true" is itself true.
 - If *p* is true and *q* is false, then the statement "if *p* is true, *q* is also true" is false.

Truth Table for Implication

The Biconditional

- The **biconditional** connective $p \leftrightarrow q$ is read "p if and only if q."
- Intuitively, either both *p* and *q* are true, or neither of them are.

 $p \leftrightarrow q$

Т

F

F

D

H.

 $\mathbf{F} \mid \mathbf{F}$

 \boldsymbol{Q}

F

One interpretation of ↔ is to think of it as equality: the two propositions must have equal truth values.

True and False

- There are two more "connectives" to speak of: true and false.
- The symbol \top is a value that is always true.
- The symbol ⊥ is value that is always false.
- These are often called connectives, though they don't connect anything.
 - (Or rather, they connect zero things.)

Operator Precedence

• How do we parse this statement?

$$(\neg \mathbf{x}) \rightarrow ((\mathbf{y} \ \mathbf{v} \ \mathbf{z}) \rightarrow (\mathbf{x} \ \mathbf{v} \ (\mathbf{y} \ \mathbf{\Lambda} \ \mathbf{z})))$$

• Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Recap So Far

- A **propositional variable** is a variable that is either true or false.
- The logical connectives are
 - Negation: $\neg p$
 - Conjunction: $p \land q$
 - Disjunction: *p* v *q*
 - Implication: $p \rightarrow q$
 - Biconditional: $p \leftrightarrow q$
 - True: \top
 - False: \bot

Translating into Propositional Logic

Some Sample Propositions

a: There is a velociraptor outside my apartment.

- *b*: Velociraptors can open windows.
- c: I am in my apartment right now.
- *d*: My apartment has windows.
- e: I am going to be eaten by a velociraptor

I won't be eaten by a velociraptor if there isn't a velociraptor outside my apartment.

$$\neg a \rightarrow \neg e$$

"*p* if *q*"

translates to

$q \rightarrow p$

It does **not** translate to

 $p \rightarrow q$

Some Sample Propositions

a: There is a velociraptor outside my apartment.

- *b*: Velociraptors can open windows.
- c: I am in my apartment right now.
- *d*: My apartment has windows.
- e: I am going to be eaten by a velociraptor

If there is a velociraptor outside my apartment, but it can't open windows, I am not going to be eaten by a velociraptor.

 $a \wedge \neg b \rightarrow \neg e$

"*p*, but *q*"

translates to

 $p \land q$

Some Sample Propositions

a: There is a velociraptor outside my apartment.

- *b*: Velociraptors can open windows.
- *c*: I am in my apartment right now.
- *d*: My apartment has windows.
- e: I am going to be eaten by a velociraptor

I am only in my apartment when there are no velociraptors outside.

$$c \rightarrow \neg a$$

"p only when q"

translates to

 $p \rightarrow q$

The Takeaway Point

- When translating into or out of propositional logic, be very careful not to get tripped up by nuances of the English language.
 - In fact, this is one of the reasons we have a symbolic notation in the first place!
- Many prepositions lead to counterintuitive translations; make sure to double-check yourself!

Logical Equivalence

More Elaborate Truth Tables This gives the final truth value for the expression. $p \land (p \rightarrow q)$ p Q F F F F F Т Т F F F Т Т

Negations

- $p \land q$ is false if and only if $\neg(p \land q)$ is true.
- Intuitively, this is only possible if either *p* is false or *q* is false (or both!)
- In propositional logic, we can write this as $\neg p \lor \neg q$.
- How would we prove that $\neg(p \land q)$ and $\neg p \lor \neg q$ are equivalent?
- **Idea**: Build truth tables for both expressions and confirm that they always agree.

Negating AND

Logical Equivalence

- If two propositional logic statements ϕ and ψ always have the same truth values as one another, they are called **logically equivalent**.
- We denote this by $\boldsymbol{\phi} \equiv \boldsymbol{\psi}$.
- is not a connective. Connectives are a part of logic statements; ≡ is something used to describe logic statements.
 - It is part of the **metalanguage** rather than the **language**.
- If $\phi \equiv \psi$, we can modify any propositional logic formula containing ϕ by replacing it with ψ .
 - This is not true when we talk about first-order logic; we'll see why later.

De Morgan's Laws

• Using truth tables, we concluded that

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

• We can also use truth tables to show that -(n + a) = -n + -a

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

 These two equivalences are called De Morgan's Laws.

More Negations

- When is $p \rightarrow q$ false?
- **Answer**: *p* must be true and *q* must be false.
- In propositional logic:

p ∧ ¬*q*

• Is the following true?

 $\neg(p \rightarrow q) \equiv p \land \neg q$

Negating Implications

р	Q	$\neg(p \rightarrow q)$		p	\boldsymbol{Q}	$p \land \neg q$		$\neg q$
F	F	F	Т	F	F	F	F	Т
F	Т	F	Т	F	Т	F	\mathbf{F}	F
Т	F	Т	F	Т	F	Т	Т	Т
Т	Т	F	Т	Т	Т	Т	F	F
	1			ľ				

 $\neg(p \rightarrow q) \equiv p \land \neg q$

An Important Observation

• We have just proven that

 $\neg(p \rightarrow q) \equiv p \land \neg q$

• If we negate both sides, we get that

 $p \rightarrow q \equiv \neg (p \land \neg q)$

• By De Morgan's laws:

$$p \to q \equiv \neg (p \land \neg q)$$

$$p \to q \equiv \neg p \lor \neg \neg q$$

 $p \to q \equiv \neg p \lor q$

• Thus $p \rightarrow q \equiv \neg p \lor q$

Another Idea

- We've just shown that $\neg(p \rightarrow q) \equiv p \land \neg q$.
- Is it also true that $\neg(p \rightarrow q) \equiv p \rightarrow \neg q$?
- Let's go check!

$\neg(p \rightarrow q) \text{ and } p \rightarrow \neg q$

To prove that $p \rightarrow q$ is false, do **not** prove $p \rightarrow \neg q$.

Instead, prove that $p \land \neg q$ is true.

Analyzing Proof Techniques

Proof by Contrapositive

- Recall that to prove that $p \rightarrow q$, we can also show that $\neg q \rightarrow \neg p$.
- Let's verify that $p \rightarrow q \equiv \neg q \rightarrow \neg p$.

The Contrapositive

 $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Why All This Matters

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

"If x < 8 and y < 8, then $x + y \neq 16$ "

Theorem: If x + y = 16, then either $x \ge 8$ or $y \ge 8$.

Proof: By contrapositive. We prove that if x < 8 and y < 8, then $x + y \neq 16$. To see this, note that

$$x + y < 8 + y
 < 8 + 8
 = 16$$

Why This Matters

- Propositional logic is a tool for reasoning about how various statements affect one another.
- To better understand how to prove a result, it often helps to translate what you're trying to prove into propositional logic first.
- Note: To truly reason about proofs, we need the more expressive power of first-order logic, which we'll talk about next time.

Proof by Contradiction

- The general structure of a proof by contradiction is
 - To show *p*, assume *p* is false.
 - Show that *p* being false implies something that cannot be true.
 - Conclude, therefore, that p is true.
- What does this look like in propositional logic?

$$(\neg p \rightarrow \bot) \rightarrow p$$

Proof by Contradiction

$$\begin{array}{c|c} p & (\neg p \rightarrow \bot) \rightarrow p \\ \hline F & T & F & F & T & F \\ T & F & T & F & T & T \\ \hline T & F & T & F & T & T \\ \hline This statement \\ is always true: \end{array}$$

Tautologies

- A **tautology** is a statement that is always true.
- Examples:

 - $p \vee \neg p$ (the Law of the Excluded Middle)
 - $\bot \rightarrow p$ (vacuous truth)
- Once a tautology has been proven, we can use that tautology anywhere.

Next Time

- First-Order Logic
 - How do we reason about multiple objects and their properties?