
  

Pushdown Automata



  

Friday Four Square!
Today at 4:15PM, Outside Gates



  

Announcements

● Problem Set 5 due right now
● Or Monday at 2:15PM with a late day.

● Problem Set 6 out, due next Friday, 
November 9.
● Covers context-free languages, CFGs, and 

PDAs.

● Midterm and Problem Set 4 should be 
graded by Monday.



  

Generation vs. Recognition

● We saw two approaches to describe regular languages:

● Build automata that accept precisely the strings in the 
language.

● Design regular expressions that describe precisely the 
strings in the language.

● Regular expressions generate all of the strings in the 
language.

● Useful for listing off all strings in the language.

● Finite automata recognize all of the strings in the 
language.

● Useful for detecting whether a specific string is in the 
language.



  

Context-Free Languages

● Yesterday, we saw the context-free 
languages, which are those that can be 
generated by context-free grammars.

● Is there some way to build an automaton 
that can recognize the context-free 
languages?



  

The Problem

● Finite automata accept precisely the 
regular languages.

● We may need unbounded memory to 
recognize context-free languages.
● e.g. { 0n1n | n ∈ ℕ } requires unbounded 

counting.

● How do we build an automaton with 
finitely many states but unbounded 
memory?



  

A B C A ...

The finite-state 
control acts as a 
finite memory.

The finite-state 
control acts as a 
finite memory.

The input tape holds 
the input string.

The input tape holds 
the input string.

Memory Device
We can add an infinite 
memory device the 

finite-state control can 
use to store information.

We can add an infinite 
memory device the 

finite-state control can 
use to store information.



  

Adding Memory to Automata

● We can augment a finite automaton by 
adding in a memory device for the 
automaton to store extra information.

● The finite automaton now can base its 
transition on both the current symbol being 
read and values stored in memory.

● The finite automaton can issue commands 
to the memory device whenever it makes a 
transition.
● e.g. add new data, change existing data, etc.



  

Stack-Based Memory

● Only the top of the stack is visible at any 
point in time.

● New symbols may be pushed onto the 
stack, which cover up the old stack top.

● The top symbol of the stack may be 
popped, exposing the symbol below it.



  

Pushdown Automata

● A pushdown automaton (PDA) is a finite 
automaton equipped with a stack-based memory.

● Each transition
● is based on the current input symbol and the top of 

the stack,
● optionally pops the top of the stack, and
● optionally pushes new symbols onto the stack.

● Initially, the stack holds a special symbol Z
0
 that 

indicates the bottom of the stack.



  

Our First PDA

● Consider the language 

L = { w ∈ Σ* | w is a string of balanced 
digits }    

over Σ = { 0, 1 }

● We can exploit the stack to our advantage:

● Whenever we see a 0, push it onto the stack.

● Whenever we see a 1, pop the corresponding 0
from the stack (or fail if not matched)

● When input is consumed, if the stack is empty, accept.



  

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

To find an applicable 
transition, match the 

current input/stack pair.

To find an applicable 
transition, match the 

current input/stack pair.

A transition of the form

a, b → z

Means “If the current input 
symbol is a and the current 
stack symbol is b, then 

follow this transition, pop b, 
and push the string z.

A transition of the form

a, b → z

Means “If the current input 
symbol is a and the current 
stack symbol is b, then 

follow this transition, pop b, 
and push the string z.



  

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

If a transition reads the top 
symbol of the stack, it always 
pops that symbol (though it 

might replace it)

If a transition reads the top 
symbol of the stack, it always 
pops that symbol (though it 

might replace it)



  

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0
Each transition then pushes some 

(possibly empty) string back onto the 
stack.  Notice that the leftmost 
symbol is pushed onto the top.

Each transition then pushes some 
(possibly empty) string back onto the 

stack.  Notice that the leftmost 
symbol is pushed onto the top.



  

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00
We now push the string  onto ε

the stack, which adds no new 
characters.  This essentially 

means “pop the stack.”

We now push the string  onto ε

the stack, which adds no new 
characters.  This essentially 

means “pop the stack.”



  

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

This transition can be taken at any 
time Z

0
 is atop the stack, but we've 

nondeterministically guessed that this 
would be a good time to take it.

This transition can be taken at any 
time Z

0
 is atop the stack, but we've 

nondeterministically guessed that this 
would be a good time to take it.



  

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε



  

Pushdown Automata

● Formally, a pushdown automaton is a 
nondeterministic machine defined by the 7-tuple (Q, Σ, 
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on 

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function, 
where no tuple is mapped to an infinite set,

● q0 ∈ Q is the start state,

● Z0 ∈ Γ is the stack start symbol, and

● F ⊆ Q is the set of accepting states.
● The automaton accepts if it ends in an accepting state 

with no input remaining.



  

The Language of a PDA

● The language of a PDA is the set of 
strings that the PDA accepts:

ℒ(P) = { w ∈ Σ* | P accepts w }   
● If P is a PDA where (ℒ P) = L, we say that 

P recognizes L.



  

A Note on Terminology

● Finite automata are highly standardized.
● There are many equivalent but different 

definitions of PDAs.
● The one we will use is a slight variant on the one 

described in Sipser.
● Sipser does not have a start stack symbol.
● Sipser does not allow transitions to push multiple 

symbols onto the stack.

● Feel free to use either this version or Sipser's; 
the two are equivalent to one another.



  

A PDA for Palindromes

● A palindrome is a string that is the same forwards 
and backwards.

● Let Σ = {0, 1} and consider the language

PALINDROME = { w ∈ Σ* | w is a palindrome }.

● How would we build a PDA for PALINDROME?

● Idea: Push the first half of the symbols on to the stack, 
then verify that the second half of the symbols match.

● Nondeterministically guess when we've read half of 
the symbols.

● This handles even-length strings; we'll see a cute trick 
to handle odd-length strings in a minute.



  

A PDA for Palindromes

start

0, ε → 0
1, ε → 1

This transition indicates 
that the transition does 

not pop anything from the 
stack.  It just pushes on 
a new symbol instead.



  

A PDA for Palindromes

start

Σ, ε → Σ

The  here refers to the Σ

same symbol in both 
contexts.  It is a 

shorthand for “treat any 
symbol in  this way”Σ

The  here refers to the Σ

same symbol in both 
contexts.  It is a 

shorthand for “treat any 
symbol in  this way”Σ



  

A PDA for Palindromes

ε, ε → ε
start

Σ, ε → Σ

This transition means “don't consume any input, 
don't change the top of the stack, and don't 
add anything to a stack.  It's the equivalent of 

an -transition in an NFA.ε

This transition means “don't consume any input, 
don't change the top of the stack, and don't 
add anything to a stack.  It's the equivalent of 

an -transition in an NFA.ε



  

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

This transition lets us consume 
one character before we start 

matching what we just saw.  This 
lets us match odd-length 

palindromes

This transition lets us consume 
one character before we start 

matching what we just saw.  This 
lets us match odd-length 

palindromes



  

A Note on Nondeterminism

● In a PDA, if there are multiple 
nondeterministic choices, you cannot 
treat the machine as being in multiple 
states at once.
● Each state might have its own stack 

associated with it.

● Instead, there are multiple parallel 
copies of the machine running at once, 
each of which has its own stack.



  

A PDA for Arithmetic

● Let Σ = { int, +, *, (, ) } and consider 
the language

ARITH = { w ∈ Σ* | w is a legal                          
                           arithmetic expression }

● Examples:
● int + int * int
● ((int + int) * (int + int)) + (int)

● Can we build a PDA for ARITH?



  

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → ( ), ( → ε

start



  

Why PDAs Matter

● Recall: A language is context-free iff there is some CFG 
that generates it.

● Important, non-obvious theorem: A language is 
context-free iff there is some PDA that recognizes it.

● Need to prove two directions:
● If L is context-free, then there is a PDA for it.
● If there is a PDA for L, then L is context-free.

● Part (1) is absolutely beautiful and we'll see it in a 
second.

● Part (2) is brilliant, but a bit too involved for lecture 
(you should read this in Sipser).



  

From CFGs to PDAs

● Theorem: If G is a CFG for a language L, 
then there exists a PDA for L as well.

● Idea: Build a PDA that simulates 
expanding out the CFG from the start 
symbol to some particular string.

● Stack holds the part of the string we 
haven't matched yet.



  

From CFGs to PDAs

● Example: Let Σ = { 1, ≥ } and let
GE = { 1m≥1n | m, n ∈ ℕ ∧ m ≥ n }
● 111≥11 ∈ GE

● 11≥11 ∈ GE

● 1111≥11 ∈ GE

● ≥ ∈ GE

● One CFG for GE is the following:

S → 1S1 | 1S | ≥       

● How would we build a PDA for GE?



  

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

S → 1S1
S → 1S
S → ≥



  

From CFGs to PDAs

● Make three states: start, parsing, and accepting.

● There is a transition ε, ε → S from start to parsing.

● Corresponds to starting off with the start symbol S.

● There is a transition ε, A → ω from parsing to itself for 
each production A → ω.

● Corresponds to predicting which production to use.

● There is a transition Σ, Σ → ε from parsing to itself.

● Corresponds to matching a character of the input.

● There is a transition ε, Z0 → Z0 from parsing to 
accepting.

● Corresponds to completely matching the input.



  

From CFGs to PDAs

● The PDA constructed this way is called a 
predict/match parser.

● Each step either predicts which 
production to use or matches some 
symbol of the input.



  

From PDAs to CFGs

● The other direction of the proof (converting 
a PDA to a CFG) is much harder.

● Intuitively, create a CFG representing paths 
between states in the PDA.

● Lots of tricky details, but a marvelous proof.
● It's just too large to fit into the margins of this 

slide.

● Read Sipser for more details.



  

Regular and Context-Free Languages

Theorem: Any regular language is context-free.

Proof Sketch: Let L be any regular language and consider 
a DFA D for L.  Then we can convert D into a PDA for L by 
converting any transition on a symbol a into a transition 
a, ε → ε that ignores the stack.  This new PDA accepts L, 
so L is context-free. ■-ish



  

Refining the Context-Free Languages



  

NPDAs and DPDAs

● With finite automata, we considered both 
deterministic (DFAs) and 
nondeterministic (NFAs) automata.

● So far, we've only seen nondeterministic 
PDAs (or NPDAs).

● What about deterministic PDAs 
(DPDAs)?



  

DPDAs

● A deterministic pushdown automaton is a PDA with the 
extra property that

For each state in the PDA, and for any combination
of a current input symbol and a current stack symbol,

there is at most one transition defined.

● In other words, there is at most one legal sequence of 
transitions that can be followed for any input.

● This does not preclude ε-transitions, as long as there is never a 
conflict between following the ε-transition or some other 
transition.

● However, there can be at most one ε-transition that could be 
followed at any one time.

● This does not preclude the automaton “dying” from having no 
transitions defined; DPDAs can have undefined transitions.



  

Is this a DPDA?

ε, Z
0
 → ε

start

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε



  

This ε-transition is allowable 
because no other transitions in this 

state use the input symbol 0

This ε-transition is allowable 
because no other transitions in this 

state use the input symbol 0

Is this a DPDA?

0, ε → 0
 

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

This ε-transition is allowable 
because no other transitions in this 
state use the stack symbol Z0.

This ε-transition is allowable 
because no other transitions in this 
state use the stack symbol Z0.



  

Why DPDAs Matter

● Because DPDAs are deterministic, they can 
be simulated efficiently:
● Keep track of the top of the stack.
● Store an action/goto table that says what 

operations to perform on the stack and what 
state to enter on each input/stack pair.

● Loop over the input, processing input/stack pairs 
until the automaton rejects or ends in an 
accepting state with all input consumed.

● If we can find a DPDA for a CFL, then we can 
recognize strings in that language efficiently.



  

If we can find a DPDA for a CFL, then we 
can recognize strings in that language 

efficiently.

Can we guarantee that we can always find 
a DPDA for a CFL?



  

The Power of Nondeterminism

● When dealing with finite automata, there is no 
difference in the power of NFAs and DFAs.

● However, when dealing with PDAs, there are CFLs 
that can be recognized by NPDAs that cannot be 
recognized by DPDAs.

● Simple example: The language of palindromes.
● How do you know when you've read half the string?

● NPDAs are more powerful than DPDAs.



  

Deterministic CFLs

● A context-free language L is called a 
deterministic context-free language (DCFL) if 
there is some DPDA that recognizes L.

● Not all CFLs are DCFLs, though many important 
ones are.

● Balanced parentheses, most programming 
languages, etc.

Regular
Languages CFLs DCFLsWhy are all regular 

languages DCFLs?

Why are all regular 
languages DCFLs?



  

Summary

● Automata can be augmented with a memory 
storage to increase their power.

● PDAs are finite automata equipped with a 
stack.

● PDAs accept precisely the context-free 
languages:
● Any CFG can be converted to a PDA.
● Any PDA can be converted to a CFG.

● Deterministic PDAs are strictly weaker than 
nondeterministic PDAs.



  

Next Time

● The Limits of CFLs
● A New Pumping Lemma
● Non-Closure Properties of CFLs

● Turing Machines
● An extremely powerful computing device...
● ...that is almost impossible to program.
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