

Pushdown Automata

Friday Four Square!
Today at 4:15PM, Outside Gates

Announcements

● Problem Set 5 due right now
● Or Monday at 2:15PM with a late day.

● Problem Set 6 out, due next Friday,
November 9.
● Covers context-free languages, CFGs, and

PDAs.

● Midterm and Problem Set 4 should be
graded by Monday.

Generation vs. Recognition

● We saw two approaches to describe regular languages:

● Build automata that accept precisely the strings in the
language.

● Design regular expressions that describe precisely the
strings in the language.

● Regular expressions generate all of the strings in the
language.

● Useful for listing off all strings in the language.

● Finite automata recognize all of the strings in the
language.

● Useful for detecting whether a specific string is in the
language.

Context-Free Languages

● Yesterday, we saw the context-free
languages, which are those that can be
generated by context-free grammars.

● Is there some way to build an automaton
that can recognize the context-free
languages?

The Problem

● Finite automata accept precisely the
regular languages.

● We may need unbounded memory to
recognize context-free languages.
● e.g. { 0n1n | n ∈ ℕ } requires unbounded

counting.

● How do we build an automaton with
finitely many states but unbounded
memory?

A B C A ...

The finite-state
control acts as a
finite memory.

The finite-state
control acts as a
finite memory.

The input tape holds
the input string.

The input tape holds
the input string.

Memory Device
We can add an infinite
memory device the

finite-state control can
use to store information.

We can add an infinite
memory device the

finite-state control can
use to store information.

Adding Memory to Automata

● We can augment a finite automaton by
adding in a memory device for the
automaton to store extra information.

● The finite automaton now can base its
transition on both the current symbol being
read and values stored in memory.

● The finite automaton can issue commands
to the memory device whenever it makes a
transition.
● e.g. add new data, change existing data, etc.

Stack-Based Memory

● Only the top of the stack is visible at any
point in time.

● New symbols may be pushed onto the
stack, which cover up the old stack top.

● The top symbol of the stack may be
popped, exposing the symbol below it.

Pushdown Automata

● A pushdown automaton (PDA) is a finite
automaton equipped with a stack-based memory.

● Each transition
● is based on the current input symbol and the top of

the stack,
● optionally pops the top of the stack, and
● optionally pushes new symbols onto the stack.

● Initially, the stack holds a special symbol Z
0
 that

indicates the bottom of the stack.

Our First PDA

● Consider the language

L = { w ∈ Σ* | w is a string of balanced
digits }

over Σ = { 0, 1 }

● We can exploit the stack to our advantage:

● Whenever we see a 0, push it onto the stack.

● Whenever we see a 1, pop the corresponding 0
from the stack (or fail if not matched)

● When input is consumed, if the stack is empty, accept.

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Z
0

To find an applicable
transition, match the

current input/stack pair.

To find an applicable
transition, match the

current input/stack pair.

A transition of the form

a, b → z

Means “If the current input
symbol is a and the current
stack symbol is b, then

follow this transition, pop b,
and push the string z.

A transition of the form

a, b → z

Means “If the current input
symbol is a and the current
stack symbol is b, then

follow this transition, pop b,
and push the string z.

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

If a transition reads the top
symbol of the stack, it always
pops that symbol (though it

might replace it)

If a transition reads the top
symbol of the stack, it always
pops that symbol (though it

might replace it)

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

0
Each transition then pushes some

(possibly empty) string back onto the
stack. Notice that the leftmost
symbol is pushed onto the top.

Each transition then pushes some
(possibly empty) string back onto the

stack. Notice that the leftmost
symbol is pushed onto the top.

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

00
We now push the string onto ε

the stack, which adds no new
characters. This essentially

means “pop the stack.”

We now push the string onto ε

the stack, which adds no new
characters. This essentially

means “pop the stack.”

Z
0

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

This transition can be taken at any
time Z

0
 is atop the stack, but we've

nondeterministically guessed that this
would be a good time to take it.

This transition can be taken at any
time Z

0
 is atop the stack, but we've

nondeterministically guessed that this
would be a good time to take it.

A Simple Pushdown Automaton

ε, Z
0
 → ε

start

0 0 0 1 1 1

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

Pushdown Automata

● Formally, a pushdown automaton is a
nondeterministic machine defined by the 7-tuple (Q, Σ,
Γ, δ, q0, Z0, F), where

● Q is a finite set of states,
● Σ is an alphabet,
● Γ is the stack alphabet of symbols that can be pushed on

the stack,

● δ : Q × Σε × Γε → (Q × Γ*) is the ℘ transition function,
where no tuple is mapped to an infinite set,

● q0 ∈ Q is the start state,

● Z0 ∈ Γ is the stack start symbol, and

● F ⊆ Q is the set of accepting states.
● The automaton accepts if it ends in an accepting state

with no input remaining.

The Language of a PDA

● The language of a PDA is the set of
strings that the PDA accepts:

ℒ(P) = { w ∈ Σ* | P accepts w }
● If P is a PDA where (ℒ P) = L, we say that

P recognizes L.

A Note on Terminology

● Finite automata are highly standardized.
● There are many equivalent but different

definitions of PDAs.
● The one we will use is a slight variant on the one

described in Sipser.
● Sipser does not have a start stack symbol.
● Sipser does not allow transitions to push multiple

symbols onto the stack.

● Feel free to use either this version or Sipser's;
the two are equivalent to one another.

A PDA for Palindromes

● A palindrome is a string that is the same forwards
and backwards.

● Let Σ = {0, 1} and consider the language

PALINDROME = { w ∈ Σ* | w is a palindrome }.

● How would we build a PDA for PALINDROME?

● Idea: Push the first half of the symbols on to the stack,
then verify that the second half of the symbols match.

● Nondeterministically guess when we've read half of
the symbols.

● This handles even-length strings; we'll see a cute trick
to handle odd-length strings in a minute.

A PDA for Palindromes

start

0, ε → 0
1, ε → 1

This transition indicates
that the transition does

not pop anything from the
stack. It just pushes on
a new symbol instead.

A PDA for Palindromes

start

Σ, ε → Σ

The here refers to the Σ

same symbol in both
contexts. It is a

shorthand for “treat any
symbol in this way”Σ

The here refers to the Σ

same symbol in both
contexts. It is a

shorthand for “treat any
symbol in this way”Σ

A PDA for Palindromes

ε, ε → ε
start

Σ, ε → Σ

This transition means “don't consume any input,
don't change the top of the stack, and don't
add anything to a stack. It's the equivalent of

an -transition in an NFA.ε

This transition means “don't consume any input,
don't change the top of the stack, and don't
add anything to a stack. It's the equivalent of

an -transition in an NFA.ε

A PDA for Palindromes

ε, ε → ε
Σ, ε → ε

start

Σ, ε → Σ Σ, Σ → ε

ε, Z
0
 → ε

This transition lets us consume
one character before we start

matching what we just saw. This
lets us match odd-length

palindromes

This transition lets us consume
one character before we start

matching what we just saw. This
lets us match odd-length

palindromes

A Note on Nondeterminism

● In a PDA, if there are multiple
nondeterministic choices, you cannot
treat the machine as being in multiple
states at once.
● Each state might have its own stack

associated with it.

● Instead, there are multiple parallel
copies of the machine running at once,
each of which has its own stack.

A PDA for Arithmetic

● Let Σ = { int, +, *, (,) } and consider
the language

ARITH = { w ∈ Σ* | w is a legal
 arithmetic expression }

● Examples:
● int + int * int
● ((int + int) * (int + int)) + (int)

● Can we build a PDA for ARITH?

A PDA for Arithmetic

int, ε → ε

+, ε → ε
*, ε → ε

ε, Z
0
 → ε

(, ε → (), (→ ε

start

Why PDAs Matter

● Recall: A language is context-free iff there is some CFG
that generates it.

● Important, non-obvious theorem: A language is
context-free iff there is some PDA that recognizes it.

● Need to prove two directions:
● If L is context-free, then there is a PDA for it.
● If there is a PDA for L, then L is context-free.

● Part (1) is absolutely beautiful and we'll see it in a
second.

● Part (2) is brilliant, but a bit too involved for lecture
(you should read this in Sipser).

From CFGs to PDAs

● Theorem: If G is a CFG for a language L,
then there exists a PDA for L as well.

● Idea: Build a PDA that simulates
expanding out the CFG from the start
symbol to some particular string.

● Stack holds the part of the string we
haven't matched yet.

From CFGs to PDAs

● Example: Let Σ = { 1, ≥ } and let
GE = { 1m≥1n | m, n ∈ ℕ ∧ m ≥ n }
● 111≥11 ∈ GE

● 11≥11 ∈ GE

● 1111≥11 ∈ GE

● ≥ ∈ GE

● One CFG for GE is the following:

S → 1S1 | 1S | ≥

● How would we build a PDA for GE?

From CFGs to PDAs

S → 1S1
S → 1S
S → ≥

ε, S → 1S
ε, S → 1S1
ε, S → ≥
Σ, Σ → ε

ε, ε → S ε, Z
0
 → Z

0start

S → 1S1
S → 1S
S → ≥

From CFGs to PDAs

● Make three states: start, parsing, and accepting.

● There is a transition ε, ε → S from start to parsing.

● Corresponds to starting off with the start symbol S.

● There is a transition ε, A → ω from parsing to itself for
each production A → ω.

● Corresponds to predicting which production to use.

● There is a transition Σ, Σ → ε from parsing to itself.

● Corresponds to matching a character of the input.

● There is a transition ε, Z0 → Z0 from parsing to
accepting.

● Corresponds to completely matching the input.

From CFGs to PDAs

● The PDA constructed this way is called a
predict/match parser.

● Each step either predicts which
production to use or matches some
symbol of the input.

From PDAs to CFGs

● The other direction of the proof (converting
a PDA to a CFG) is much harder.

● Intuitively, create a CFG representing paths
between states in the PDA.

● Lots of tricky details, but a marvelous proof.
● It's just too large to fit into the margins of this

slide.

● Read Sipser for more details.

Regular and Context-Free Languages

Theorem: Any regular language is context-free.

Proof Sketch: Let L be any regular language and consider
a DFA D for L. Then we can convert D into a PDA for L by
converting any transition on a symbol a into a transition
a, ε → ε that ignores the stack. This new PDA accepts L,
so L is context-free. ■-ish

Refining the Context-Free Languages

NPDAs and DPDAs

● With finite automata, we considered both
deterministic (DFAs) and
nondeterministic (NFAs) automata.

● So far, we've only seen nondeterministic
PDAs (or NPDAs).

● What about deterministic PDAs
(DPDAs)?

DPDAs

● A deterministic pushdown automaton is a PDA with the
extra property that

For each state in the PDA, and for any combination
of a current input symbol and a current stack symbol,

there is at most one transition defined.

● In other words, there is at most one legal sequence of
transitions that can be followed for any input.

● This does not preclude ε-transitions, as long as there is never a
conflict between following the ε-transition or some other
transition.

● However, there can be at most one ε-transition that could be
followed at any one time.

● This does not preclude the automaton “dying” from having no
transitions defined; DPDAs can have undefined transitions.

Is this a DPDA?

ε, Z
0
 → ε

start

0, Z
0
 → 0Z

0

0, 0 → 00
1, 0 → ε

This ε-transition is allowable
because no other transitions in this

state use the input symbol 0

This ε-transition is allowable
because no other transitions in this

state use the input symbol 0

Is this a DPDA?

0, ε → 0

0, 0 → 00
1, 0 → ε

ε, Z
0
 → Z

0

start

This ε-transition is allowable
because no other transitions in this
state use the stack symbol Z0.

This ε-transition is allowable
because no other transitions in this
state use the stack symbol Z0.

Why DPDAs Matter

● Because DPDAs are deterministic, they can
be simulated efficiently:
● Keep track of the top of the stack.
● Store an action/goto table that says what

operations to perform on the stack and what
state to enter on each input/stack pair.

● Loop over the input, processing input/stack pairs
until the automaton rejects or ends in an
accepting state with all input consumed.

● If we can find a DPDA for a CFL, then we can
recognize strings in that language efficiently.

If we can find a DPDA for a CFL, then we
can recognize strings in that language

efficiently.

Can we guarantee that we can always find
a DPDA for a CFL?

The Power of Nondeterminism

● When dealing with finite automata, there is no
difference in the power of NFAs and DFAs.

● However, when dealing with PDAs, there are CFLs
that can be recognized by NPDAs that cannot be
recognized by DPDAs.

● Simple example: The language of palindromes.
● How do you know when you've read half the string?

● NPDAs are more powerful than DPDAs.

Deterministic CFLs

● A context-free language L is called a
deterministic context-free language (DCFL) if
there is some DPDA that recognizes L.

● Not all CFLs are DCFLs, though many important
ones are.

● Balanced parentheses, most programming
languages, etc.

Regular
Languages CFLs DCFLsWhy are all regular

languages DCFLs?

Why are all regular
languages DCFLs?

Summary

● Automata can be augmented with a memory
storage to increase their power.

● PDAs are finite automata equipped with a
stack.

● PDAs accept precisely the context-free
languages:
● Any CFG can be converted to a PDA.
● Any PDA can be converted to a CFG.

● Deterministic PDAs are strictly weaker than
nondeterministic PDAs.

Next Time

● The Limits of CFLs
● A New Pumping Lemma
● Non-Closure Properties of CFLs

● Turing Machines
● An extremely powerful computing device...
● ...that is almost impossible to program.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

