
CS103 Handout 14
Winter 2012-2013 February 8, 2013

Problem Set 5

This fifth problem set explores the regular languages, their properties, and their limits.  This will 
be your first foray into computability theory, and I hope you find it fun and exciting!

In any question that asks for a proof, you must provide a rigorous mathematical proof.  You can-
not draw a picture or argue by intuition.  You should, at the very least, state what type of proof  
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what 
it is that you are trying to show.  If we specify that a proof must be done a certain way, you must 
use that particular proof technique; otherwise you may prove the result however you wish.

As always, please feel free to drop by office hours or send us emails if you have any questions.  
We'd be happy to help out.

This problem set has 125 possible points.  It is weighted at 7% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so do be aware that the difficulty of the prob-
lems does increase over the course of this problem set.

Good luck, and have fun!

Due Friday, February 15th at 12:50PM



Problem One: Constructing DFAs (24 Points)

For each of the following languages over the indicated alphabets, construct a DFA that accepts pre-
cisely those strings that are in the indicated language.  Your DFA does not have to have the fewest num-
ber of states possible.  You should specify your DFA as either a state-transition diagram (the graphical 
representation we've seen in class) or as a table.

We have an online tool you can use to design, test, and submit the DFAs in this problem .  To use 
it, visit https://www.stanford.edu/class/cs103/cgi-bin/nfa/nfa.php.  We strongly suggest using this tool, 
as it makes it easy to design, test, debug, and submit your solutions.  If you submit through this system,  
please make a note of it in your problem set submission so that we know to look online for your an-
swers.

i. For the alphabet Σ = {0, 1, 2}, construct a DFA for the language L = { w  Σ* | ∈ w contains ex-
actly two 2s. }

ii. For the alphabet  Σ = {0, 1}, construct a DFA for the language L = { w  Σ* | ∈ w contains the 
same number of instances of the substring 01 and the substring 10 }.  Note that substrings are 
allowed to overlap, so 010  ∈ L and 10101  ∈ L.

iii. For the alphabet  Σ = {a, b, c, …, z}, construct a DFA for the language L = { w  Σ* | ∈ w con-
tains the word “cocoa” as a substring }.  Remember that as a shorthand, you can specify mul-
tiple letters in a transition by using set operations on Σ (for example,  Σ – {a, b}) *

iv. Suppose that you are taking a walk with your dog along a straight-line path.  Your dog is on a 
leash that has length two, meaning that the distance between you and your dog can be at most 
two units.  You and your dog start at the same position.  Consider the alphabet Σ = {Y, D}.  A 
string in Σ* can be thought of as a series of events in which either you or your dog moves for-
ward one unit.  For example, the string “YYDD” means that you take two steps forward, then 
your dog takes two steps forward.  Let L = { w  Σ* | ∈ w describes a series of steps that ensures 
that you and your dog are never more than two units apart }.  Construct a DFA for L.

Problem Two: Constructing NFAs (20 Points)

For each of the following languages over the indicated alphabets, construct an NFA that accepts pre-
cisely those strings that are in the indicated language.  You should specify your NFA as either a state-
transition diagram (the graphical representation we've seen in class) or as a table.  Your NFA may use 
ε-transitions if you wish.  As in Problem One, we recommend designing, testing, and submitting 
your automata using our online system.

i. For the alphabet Σ = {0, 1, 2}, construct an NFA for the language { w  Σ* | ∈ w ends in 0, 11, 
or 222. }

ii. For the alphabet Σ = {a, b, c, d, e}, construct an NFA for the language { w  Σ*∈  | the last char-
acter of w appears nowhere else in the string, and |w| ≥ 1 }

iii. For the alphabet Σ = {0, 1}, construct an NFA for the language { w  Σ* | ∈ w contains at least 
two  1's with exactly five characters between them. }  For example,  1000001 is in the lan-
guage, as is 00100110100 and 0111110100000001, but 11111 is not, nor are 11101 or 
000101.

* DFAs are often used to search large blocks of text for specific substrings, and several string searching algorithms are 
built on top of specially-constructed DFAs.  The Knuth-Morris-Pratt and Aho-Corasick algorithms use slightly modified 
DFAs to find substrings extremely efficiently.

https://www.stanford.edu/class/cs103/cgi-bin/nfa/nfa.php


Problem Three: Designing Regular Expressions (20 Points)

Below are a list of alphabets and languages over those alphabets.  For each language, write a regular 
expression for that language.

We have an online tool you can use to design, test, and submit the regular expressions in this 
problem.   It's  available  online at  https://www.stanford.edu/class/cs103/cgi-bin/simpleregex/edit.php. 
We strongly suggest using this tool, as it makes it easy to design, test, debug, and submit your solu-
tions.  If you submit through this system, please make a note of it in your problem set submission so 
that we know to look online for your answers.

i. Let Σ = {a, b} and let L = { w  Σ* | ∈ w does not contain ba as a substring }.  Write a regular 
expression for L.

ii. Let Σ = {a, b} and let L = { w  Σ* | ∈ w contains an even number of a's }.  Write a regular ex-
pression for L.

iii. Suppose that you are taking a walk with your dog on a leash (as in Problem 1.iv).  As in that 
problem, your leash has length two.  Let Σ = {Y, D} and let L = { w  Σ* | ∈ w represents a walk 
with your dog on a leash where you and your dog both end up at the same location }.  For ex-
ample,  YYDDDDYY  ∈ L, because you and your dog are never more than two steps apart and 
both of you end up four steps ahead of where you started, and similarly DDYDYY  ∈ L.  How-
ever,  YYYDDD  ∉ L, since halfway through your walk you are three steps ahead of your dog; 
DDYD  ∉ L, because your dog ends up two steps ahead of you; and DDYDDYYY  ∉ L, because 
partway through your walk your dog is three steps ahead of you.  Write a regular expression for  
L.

iv. Let Σ = {a, b} and let L = { w  Σ* | ∈ w ≠ ab }.  Write a regular expression for L.

Problem Four: Finite and Cofinite Languages (16 Points)

A language L is called finite iff L contains finitely many strings.  More precisely, a language L is a fi-
nite language iff |L| is a natural number.  A language L is called cofinite iff its complement is a finite 
language; that is, L is cofinite iff |L| is a natural number.

i. Prove that any finite language is regular. (Hint: Use induction.)

ii. Prove that any cofinite language is regular.

https://www.stanford.edu/class/cs103/cgi-bin/simpleregex/edit.php


We will cover the material necessary to solve these next two problems in Monday's lecture.

Problem Five: The Complexity of Addition (20 Points)

This problem explores the question

How hard is it to add two numbers?

Suppose that we want to check whether x + y = z, where x, y, and z are all natural numbers.  If we want 
to phrase this as a problem as a question of strings and languages, we will need to find some way to 
standardize our notation.  In this problem, we will be using the unary number system, a number system 
in which the number n is represented by writing out n 1's.  For example, the number 5 would be written 
as 11111, the number 7 as 1111111, and the number 12 as 111111111111.  Given the alphabet 
Σ = {1, +, =}, we can encode x + y = z by writing out x, y, and z in unary.  For example:

4 + 3 = 7 would be encoded as 111+1111=1111111

7 + 1 = 8 would be encoded as 1111111+1=11111111

0 + 1 = 1 would be encoded as +1=1

Consider the language ADD = {1m+1n=1m+n | m, n ∈ ℕ }.  That is, ADD consists of strings encoding 
two unary numbers and their sum.  Prove that ADD is not a regular language.

Problem Six: The Complexity of String Searching (20 Points)

The problem explores the question

How hard is it to search a string for a substring?

A common task in computer programming is to search a string to see if some other string appears as a 
substring.  This task arises in computational biology (searching an organism's genome for some particu-
lar DNA sequence), information storage (finding all copies of some phrase in the full text of a book), 
and in spam filtering (searching for some key words in an email).

More formally, we can define the substring search problem as follows.  The string search problem is 
given a string to search for (called the pattern) and a string in which the search should be conducted 
(called the  text), to determine whether the pattern appears in the text.  To encode this as a language 
problem, let Σ = {0,  1,  ?}.  We can then encode instances of the string search problem as the string 
pattern?text.  For example:

“Does 0110 appear in 1110110 ?” would be encoded as 0110?1110110

“Does 11 appear in 0001 ?” would be encoded as 11?0001

“Does ε appear in 1100 ?” would be encoded as ?1100

Let the language SEARCH = { p?t | p, t  {∈ 0, 1}* and p is a substring of t }.  Prove that SEARCH is 
not regular, which means that no DFA, NFA, or regular expression is powerful enough to describe 
SEARCH.



Problem Seven: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're 
doing.  For a free five points, please answer the following questions.  We'll give you full credit no mat-
ter what you write (as long as you write something!), but we'd appreciate it if you're honest about how 
we're doing.

i. How hard did you find this problem set?  How long did it take you to finish?  Does that seem 
unreasonably difficult or time-consuming for a five-unit class? 

ii. Did you attend the midterm review session?  If so, did you find it useful?

iii. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

iv. Is there anything in particular we could do better?  Is there anything in particular that you think 
we're doing well?

Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest way 
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout 
hangout in the Gates building.  If you haven't been there before, it's right inside the entrance la-
beled “Stanford Engineering Venture Fund Laboratories.”  There will be a clearly-labeled filing 
cabinet where you can submit your solutions.

3. Send  an  email  with  an  electronic  copy  of  your  answers  to  the  submission  mailing  list 
(cs103-win1213-submissions@lists.stanford.edu) with the string “[PS5]” somewhere in the sub-
ject line.  You should receive automatic confirmation of your submission.  If you submit elec-
tronically, please submit your assignment as a single PDF if at all possible.  Sending multiple 
files makes it harder to print out and grade your submission.

Extra Credit Problem: Splitting Regular Languages (5 Points)

Let L be an arbitrary infinite regular language.  Prove that there exist languages L1 and L2 such that

1. L1  ∪ L2 = L,

2. L1 ∩ L2 = Ø,

3. L1 and L2 are infinite, and

4. L1 and L2 are regular.

This shows that it is always possible to split an infinite regular language into two other infinite regular 
languages.  (Hint: Use the pumping lemma, along with the fact that regular languages are closed under  
subtraction.  That is, if L1 and L2 are regular, then L1 – L2 is regular.)

mailto:cs103-win1213-submissions@lists.stanford.edu

