
  

The Limits of Regular Languages



  

Announcements

● Midterm tomorrow night in Hewlett 
200/201, 7PM – 10PM.
● Open-book, open-note, open-computer, 

closed-network.
● Covers material up to and including DFAs.



  

 

Regular Expressions



  

The Regular Expressions

● Goal: Assemble all regular languages 
from smaller building blocks!

● Atomic regular expressions:

Ø     ε     a   

● Compound regular expressions:

R1R2    R1 | R2     R*    (R)    



  

Operator Precedence

● Regular expression operator precedence:

(R)

R*

R1R2

R1 | R2 

● ab*c|d is parsed as ((a(b*))c)|d



  

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Regular expression for email addresses:

aa* (.aa*)* aa*.aa*@ (.aa*)*

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov 



  

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents 
“some letter.”
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Regular Expressions are Awesome

a+(.a+)*@a+(.a+)+
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The Power of Regular Expressions

Theorem: If R is a regular expression, 
then (ℒ R) is regular.

Proof idea: Induction over the structure 
of regular expressions.  Atomic regular 
expressions are the base cases, and the 
inductive step handles each way of 
combining regular expressions.



  

A Marvelous Construction

● To show that any language described by a regular 
expression is regular, we show how to convert a 
regular expression into an NFA.

● Theorem: For any regular expression R, there is an 
NFA N such that

● ℒ(R) = (ℒ N)

● N has exactly one accepting state.

● N has no transitions into its start state.

● N has no transitions out of its accepting state.

start
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These are stronger 
requirements than are 

necessary for a normal NFA. 
 We enforce these rules to 
simplify the construction.

These are stronger 
requirements than are 

necessary for a normal NFA. 
 We enforce these rules to 
simplify the construction.



  

Base Cases

εstart

Automaton for ε

astart

Automaton for single character a

start

Automaton for Ø



  

Machine for R1

Construction for R1R2

Machine for R2

start         
ε



  

Construction for R1 | R2

Machine for R2

Machine for R1start

ε

ε

ε
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Construction for R*

Machine for R

start ε ε

ε

ε



  

The Power of Regular Expressions

Theorem: If L is a regular language, 
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an 
arbitrary NFA into a regular expression.



  

From NFAs to Regular Expressions

                           s1, s2, …, sn
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From NFAs to Regular Expressions

start

Regular expression: R

R
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NFA into something that looks 
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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The Construction at a Glance

● Start with an NFA for the language L.

● Add a new start state qs and accept state qf to 
the NFA.
● Add ε-transitions from each original accepting state 

to qf, then mark them as not accepting.

● Repeatedly remove states other than qs and qf 
from the NFA by “shortcutting” them until only 
two states remain: qs and qf.

● The transition from qs to qf is then a regular 
expression for the NFA.



  

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

recursive transform



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

Why This All Matters

● DFAs correspond to computers with finite 
memory.

● The equivalence of DFAs and NFAs tells us 
that given finite memory, nondeterminism 
does not increase computational power.
● Though it might save on memory.

● The equivalence of DFAs and regular 
expressions tells us that all problems 
solvable by finite computers can be 
assembled out of smaller building blocks.



  

Is every language regular?



  

An Important Observation
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Visiting Multiple States

● Let D be a DFA with n states.
● Any string w accepted by D that has length at least 

n must visit some state twice.
● Number of states visited is equal to the length of the 

string plus one.
● By the pigeonhole principle, some state is duplicated.

● The substring of w between those revisited states 
can be removed, duplicated, tripled, etc. without 
changing the fact that D accepts w.



  

Intuitively

x z

y

start



  

Informally

● Let L be a regular language.
● If we have a string w ∈ L that is 

“sufficiently long,” then we can split the 
string into three pieces and “pump” the 
middle.

● We can write w = xyz such that xy0z, 
xy1z, xy2z, …, xynz, … are all in L.
● Notation: yn means “n copies of y.”



  

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular 
Languages states that

For any regular language L,

     There exists a positive natural number n such that

          For any w ∈ L with |w| ≥ n,

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz ∈ L
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The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular 
Languages states that

For any regular language L,

     There exists a positive natural number n such that

          For any w ∈ L with |w| ≥ n,

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz ∈ L
where the middle piece can be 
replicated zero or more times.

where the middle piece isn't empty,

w can be broken into three pieces,



  

The Weak Pumping Lemma

● Let Σ = {0, 1} and L = { w ∈ Σ* | w 
contains 00 as a substring. }

● Any string of length 3 or greater can be 
split into three pieces, the second of 
which can be “pumped.”



  

The Weak Pumping Lemma

● Let Σ = {0, 1} and 
L = { ε, 0, 1, 00, 01, 10, 11 }

● Any string of length 3 or greater can be 
split into three pieces, the second of 
which can be “pumped.”

The weak pumping lemma holds 
for finite languages because 
the pumping length can be 

longer than the longest string!
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Testing Equality

● The equality problem is defined as follows:

Given two strings x and y, decide if x = y.
● Let Σ = {0, 1, ?}.  We can encode the 

equality problem as a string of the form x?y.
● “Is 001 equal to 110 ?” would be 001?110
● “Is 11 equal to 11 ?” would be 11?11
● “Is 110 equal to 110 ?” would be 110?110

● Let EQUAL = { w?w | w ∈ {0, 1}* }

● Question: Is EQUAL a regular language?



  

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular 
Languages states that

For any regular language L,

     There exists a positive natural number n such that

          For any w ∈ L with |w| ≥ n,

               There exists strings x, y, z such that

                    For any natural number i,

                         w = xyz,

                         y ≠ ε

                         xyiz ∈ L

w can be broken into three pieces,

where the middle piece can be 
replicated zero or more times.

where the middle piece isn't empty,



  

Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 0 ? 0 0 0
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Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 0 ? 0 0 00 0



  

Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 00 0 0?



  

Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 00 0 ?



  

What's Going On?

● The weak pumping lemma says that for 
“sufficiently long” strings, we should be able 
to pump some part of the string.

● We can't pump any part containing the ?, 
because we can't duplicate or remove it.

● We can't pump just one part of the string, 
because then the strings on opposite sides of 
the ? wouldn't match.

● Can we formally show that EQUAL is not 
regular?



  

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular.  Let n be the pumping

length guaranteed by the weak pumping lemma.  Let w = 0n?0n.  Then
w ∈ EQUAL and |w| = 2n + 1 ≥ n.  Thus by the weak pumping lemma, we can
write w = xyz such that y ≠ ε and for any i ∈ ℕ, xyiz ∈ EQUAL.  Then y cannot
contain ?, since otherwise if we let i = 0, then xyiz = xz does not contain ? and
would not be in EQUAL.  So y is either completely to the left of the ? or
completely to the right of the ?.  Let |y| = k, so k > 0.  Since y is completely to
the left or right of the ?, then y = 0k.  Now, we consider two cases:

 

Case 1: y is to the left of the ?.  Then xy2z = 0n+k?0n ∉ EQUAL, contradicting the
weak pumping lemma.

 

Case 2: y is to the right of the ?.  Then xy2z = 0n?0n+k ∉ EQUAL, contradicting
the weak pumping lemma.

 

In either case we reach a contradiction, so our assumption was wrong.  Thus
EQUAL is not regular. ■ 

For any regular language L,
     There exists a positive natural number n such that
          For any w ∈ L with |w| ≥ n,
               There exists strings x, y, z such that
                    For any natural number i,

                    w = xyz,
                    y ≠ ε
                    xyiz ∈ L



  

Nonregular Languages

● The weak pumping lemma describes a 
property common to all regular 
languages.

● Any language L which does not have this 
property cannot be regular.

● What other languages can we find that 
are not regular?



  

A Canonical Nonregular Language

● Consider the language L = { 0n1n | n ∈ ℕ }.

L = { ε, 01, 0011, 000111, 00001111, … }

● L is a classic example of a nonregular 
language.

● Intuitively: If you have only finitely many 
states in a DFA, you can't “remember” an 
arbitrary number of 0s.

● How would we prove that L is nonregular?



  

The Pumping Lemma as a Game

● The weak pumping lemma can be thought of as a game 
between you and an adversary.

● You win if you can prove that the pumping lemma fails.

● The adversary wins if the adversary can make a choice 
for which the pumping lemma succeeds.

● The game goes as follows:

● The adversary chooses a pumping length n.

● You choose a string w with |w| ≥ n and w ∈ L.

● The adversary breaks it into x, y, and z.

● You choose an i such that xyiz ∉ L (if you can't, you lose!)



  

The Pumping Lemma Game

ADVERSARY YOU

Maliciously choose 
pumping length n.

Maliciously split 
w = xyz, y ≠ ε

Cleverly choose a string 
w  L, |w| ≥ n∈

Cleverly choose i
 such that xyiz  L∉

Grrr!  Aaaargh!

L = { 0n1n | n   }∈ ℕ

0n1n



  

Theorem: L = { 0n1n | n ∈ ℕ } is not regular.
Proof: By contradiction; assume L is regular.  Let n be the

pumping length guaranteed by the weak pumping
lemma.  Consider the string w = 0n1n.  Then
|w| = 2n ≥ n and w ∈ L, so we can write w = xyz
such that y ≠ ε and for any i ∈ ℕ, we have xyiz ∈ L. 
We consider three cases:

 

Case 1: y consists solely of 0s.  Then
xy0z = xz = 0n - |y|1n, and since |y| > 0, xz ∉ L.

 

Case 2: y consists solely of 1s.  Then
xy0z = xz = 0n1n - |y|, and since |y| > 0, xz ∉ L.

 

Case 3: y consists of k > 0 0s followed by m > 0
1s.  Then xy2z has the form 0n1m0k1n, so
xy2z ∉ L.

 

In all three cases we reach a contradiction, so our
assumption was wrong and L is not regular. ■
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