

The Limits of Regular Languages

Announcements

● Midterm tomorrow night in Hewlett
200/201, 7PM – 10PM.
● Open-book, open-note, open-computer,

closed-network.
● Covers material up to and including DFAs.

Regular Expressions

The Regular Expressions

● Goal: Assemble all regular languages
from smaller building blocks!

● Atomic regular expressions:

Ø ε a

● Compound regular expressions:

R1R2 R1 | R2 R* (R)

Operator Precedence

● Regular expression operator precedence:

(R)

R*

R1R2

R1 | R2

● ab*c|d is parsed as ((a(b*))c)|d

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

aa* (.aa*)* aa*.aa*@ (.aa*)*

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

a+(.a+)*@a+(.a+)+

Regular Expressions are Awesome

a+(.a+)*@a+(.a+)+

q
1

start
q

3
@

q
2

. a

q
0

a

 a a

q
5

. q
6

q
7

. a

 a

a

q
8

@, .

., @ @ @, .
 @

@, .

q
0

q
4

q
0

a

@, .
a, @, .

The Power of Regular Expressions

Theorem: If R is a regular expression,
then (ℒ R) is regular.

Proof idea: Induction over the structure
of regular expressions. Atomic regular
expressions are the base cases, and the
inductive step handles each way of
combining regular expressions.

A Marvelous Construction

● To show that any language described by a regular
expression is regular, we show how to convert a
regular expression into an NFA.

● Theorem: For any regular expression R, there is an
NFA N such that

● ℒ(R) = (ℒ N)

● N has exactly one accepting state.

● N has no transitions into its start state.

● N has no transitions out of its accepting state.

start

A Marvelous Construction

To show that any language described by a regular
expression is regular, we show how to convert a
regular expression into an NFA.

Theorem: For any regular expression R, there is an
NFA N such that

ℒ(R) = (ℒ N)

● N has exactly one accepting state.

● N has no transitions into its start state.

● N has no transitions out of its accepting state.

start

These are stronger
requirements than are

necessary for a normal NFA.
 We enforce these rules to
simplify the construction.

These are stronger
requirements than are

necessary for a normal NFA.
 We enforce these rules to
simplify the construction.

Base Cases

εstart

Automaton for ε

astart

Automaton for single character a

start

Automaton for Ø

Machine for R1

Construction for R1R2

Machine for R2

start
ε

Construction for R1 | R2

Machine for R2

Machine for R1start

ε

ε

ε

ε

Construction for R*

Machine for R

start ε ε

ε

ε

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

From NFAs to Regular Expressions

 s1, s2, …, sn

start

Regular expression: (s
1
 | s

2
 | … | s

n
)*

From NFAs to Regular Expressions

 s1 | s2 | … | sn

start

Regular expression: (s
1
 | s

2
 | … | s

n
)*

Key idea: Label
transitions with
arbitrary regular

expressions.

Key idea: Label
transitions with
arbitrary regular

expressions.

From NFAs to Regular Expressions

start

Regular expression: R

R

Key idea: If we can convert any
NFA into something that looks
like this, we can easily read off

the regular expression.

Key idea: If we can convert any
NFA into something that looks
like this, we can easily read off

the regular expression.

From NFAs to Regular Expressions

start

 s1 | s2 | … | sn

start

Regular expression: R

R

From NFAs to Regular Expressions

start

start

Regular expression: R

R

(s
1
 | s

2
 | … | s

n
)*

Regular expression: (s
1
 | s

2
 | … | s

n
)*

From NFAs to Regular Expressions

start

Regular expression: R

R

 s1 | s2 | … | sn

start

From NFAs to Regular Expressions

start

Regular expression: R

R

start

Regular expression: Ø

Ø

From NFAs to Regular Expressions

start

Regular expression: R

R

q
1

R
11

start q
2

R
22

R
12

R
21

q
2

From NFAs to Regular Expressions

start

Regular expression: R

R

q
1

start q
2

q
2

R
11

* R
12

 (R
22

 | R
21

R
11

*R
12

)*

From NFAs to Regular Expressions

q
1

start q
2

R
12

R
21

R
11

R
22

q
2

From NFAs to Regular Expressions

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

From NFAs to Regular Expressions

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

Could we eliminate
this state from

the NFA?

Could we eliminate
this state from

the NFA?

From NFAs to Regular Expressions

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

ε R
11

* R
12

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

From NFAs to Regular Expressions

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

ε R
11

* R
12

R
21

 R
11

* R
12

From NFAs to Regular Expressions

q
s

q
f

q
f

q
2

R
22

start ε

ε R
11

* R
12

R
21

 R
11

* R
12

From NFAs to Regular Expressions

q
s

q
f

q
f

q
2

start ε

R
11

* R
12

R
22

 | R
21

 R
11

* R
12

Note: We're using union
to combine these

transitions together.

Note: We're using union
to combine these

transitions together.

From NFAs to Regular Expressions

q
s

q
f

q
f

q
2

start εR
11

* R
12

R
22

 | R
21

 R
11

* R
12

From NFAs to Regular Expressions

q
s

q
f

q
f

q
2

start εR
11

* R
12

R
22

 | R
21

 R
11

* R
12

R
11

* R
12

 (R
22

 | R
21

R
11

*R
12

)* ε

From NFAs to Regular Expressions

q
s

q
f

q
f

start

R
11

* R
12

 (R
22

 | R
21

R
11

*R
12

)*

q
1

start q
2

R
12

R
21

R
11

R
22

q
2

The Construction at a Glance

● Start with an NFA for the language L.

● Add a new start state qs and accept state qf to
the NFA.
● Add ε-transitions from each original accepting state

to qf, then mark them as not accepting.

● Repeatedly remove states other than qs and qf
from the NFA by “shortcutting” them until only
two states remain: qs and qf.

● The transition from qs to qf is then a regular
expression for the NFA.

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

recursive transform

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

Why This All Matters

● DFAs correspond to computers with finite
memory.

● The equivalence of DFAs and NFAs tells us
that given finite memory, nondeterminism
does not increase computational power.
● Though it might save on memory.

● The equivalence of DFAs and regular
expressions tells us that all problems
solvable by finite computers can be
assembled out of smaller building blocks.

Is every language regular?

An Important Observation

q
1

q
2

q
3

q
0

0

1 1

0 1

q
5

1

0

0

 0, 1

0, 1

q
4

start

0 1 1 0 1 1
q

0
q

1
q

2
q

3
q

1
q

2

1
q

4
q

3

An Important Observation

q
1

q
2

q
3

q
0

0

1 1

0 1

q
5

1

0

0

 0, 1

0, 1

q
4

start

0 1 1 0 1 1
q

0
q

1
q

2
q

3
q

1
q

2

1
q

4
q

3

An Important Observation

q
1

q
2

q
3

q
0

0

1 1

0 1

q
5

1

0

0

 0, 1

0, 1

q
4

start

0 1 1
q

0
q

1
q

2

1
q

4
q

3

An Important Observation

q
1

q
2

q
3

q
0

0

1 1

0 1

q
5

1

0

0

 0, 1

0, 1

q
4

start

0 1 1 0 1 1
q

0
q

1
q

2

1
q

3
q

1
q

2
q

4
q

3

An Important Observation

q
1

q
2

q
3

q
0

0

1 1

0 1

q
5

1

0

0

 0, 1

0, 1

q
4

start

0 1 1 0 1 1
q

0
q

1
q

2

11 1 0
q

3
q

1
q

2
q

4
q

3
q

1
q

2
q

3

Visiting Multiple States

● Let D be a DFA with n states.
● Any string w accepted by D that has length at least

n must visit some state twice.
● Number of states visited is equal to the length of the

string plus one.
● By the pigeonhole principle, some state is duplicated.

● The substring of w between those revisited states
can be removed, duplicated, tripled, etc. without
changing the fact that D accepts w.

Intuitively

x z

y

start

Informally

● Let L be a regular language.
● If we have a string w ∈ L that is

“sufficiently long,” then we can split the
string into three pieces and “pump” the
middle.

● We can write w = xyz such that xy0z,
xy1z, xy2z, …, xynz, … are all in L.
● Notation: yn means “n copies of y.”

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular
Languages states that

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 y ≠ ε

 xyiz ∈ L

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular
Languages states that

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 y ≠ ε

 xyiz ∈ L

This number n is
sometimes called the
pumping length.

This number n is
sometimes called the
pumping length.

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular
Languages states that

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 y ≠ ε

 xyiz ∈ L

Strings longer than
the pumping length
must have a special

property.

Strings longer than
the pumping length
must have a special

property.

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular
Languages states that

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 y ≠ ε

 xyiz ∈ L
where the middle piece can be
replicated zero or more times.

where the middle piece isn't empty,

w can be broken into three pieces,

The Weak Pumping Lemma

● Let Σ = {0, 1} and L = { w ∈ Σ* | w
contains 00 as a substring. }

● Any string of length 3 or greater can be
split into three pieces, the second of
which can be “pumped.”

The Weak Pumping Lemma

● Let Σ = {0, 1} and
L = { ε, 0, 1, 00, 01, 10, 11 }

● Any string of length 3 or greater can be
split into three pieces, the second of
which can be “pumped.”

The weak pumping lemma holds
for finite languages because
the pumping length can be

longer than the longest string!

The weak pumping lemma holds
for finite languages because
the pumping length can be

longer than the longest string!

Testing Equality

● The equality problem is defined as follows:

Given two strings x and y, decide if x = y.
● Let Σ = {0, 1, ?}. We can encode the

equality problem as a string of the form x?y.
● “Is 001 equal to 110 ?” would be 001?110
● “Is 11 equal to 11 ?” would be 11?11
● “Is 110 equal to 110 ?” would be 110?110

● Let EQUAL = { w?w | w ∈ {0, 1}* }

● Question: Is EQUAL a regular language?

The Weak Pumping Lemma

● The Weak Pumping Lemma for Regular
Languages states that

For any regular language L,

 There exists a positive natural number n such that

 For any w ∈ L with |w| ≥ n,

 There exists strings x, y, z such that

 For any natural number i,

 w = xyz,

 y ≠ ε

 xyiz ∈ L

w can be broken into three pieces,

where the middle piece can be
replicated zero or more times.

where the middle piece isn't empty,

Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 0 ? 0 0 0

Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 0 0 0 0

Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 0 ? 0 0 0

Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 0 ? 0 0 00 0

Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 00 0 0?

Using the Weak Pumping Lemma

EQUAL = { w?w | w ∈ {0, 1}* }

0 0 00 0 ?

What's Going On?

● The weak pumping lemma says that for
“sufficiently long” strings, we should be able
to pump some part of the string.

● We can't pump any part containing the ?,
because we can't duplicate or remove it.

● We can't pump just one part of the string,
because then the strings on opposite sides of
the ? wouldn't match.

● Can we formally show that EQUAL is not
regular?

Theorem: EQUAL is not regular.
Proof: By contradiction; assume that EQUAL is regular. Let n be the pumping

length guaranteed by the weak pumping lemma. Let w = 0n?0n. Then
w ∈ EQUAL and |w| = 2n + 1 ≥ n. Thus by the weak pumping lemma, we can
write w = xyz such that y ≠ ε and for any i ∈ ℕ, xyiz ∈ EQUAL. Then y cannot
contain ?, since otherwise if we let i = 0, then xyiz = xz does not contain ? and
would not be in EQUAL. So y is either completely to the left of the ? or
completely to the right of the ?. Let |y| = k, so k > 0. Since y is completely to
the left or right of the ?, then y = 0k. Now, we consider two cases:

Case 1: y is to the left of the ?. Then xy2z = 0n+k?0n ∉ EQUAL, contradicting the
weak pumping lemma.

Case 2: y is to the right of the ?. Then xy2z = 0n?0n+k ∉ EQUAL, contradicting
the weak pumping lemma.

In either case we reach a contradiction, so our assumption was wrong. Thus
EQUAL is not regular. ■

For any regular language L,
 There exists a positive natural number n such that
 For any w ∈ L with |w| ≥ n,
 There exists strings x, y, z such that
 For any natural number i,

 w = xyz,
 y ≠ ε
 xyiz ∈ L

Nonregular Languages

● The weak pumping lemma describes a
property common to all regular
languages.

● Any language L which does not have this
property cannot be regular.

● What other languages can we find that
are not regular?

A Canonical Nonregular Language

● Consider the language L = { 0n1n | n ∈ ℕ }.

L = { ε, 01, 0011, 000111, 00001111, … }

● L is a classic example of a nonregular
language.

● Intuitively: If you have only finitely many
states in a DFA, you can't “remember” an
arbitrary number of 0s.

● How would we prove that L is nonregular?

The Pumping Lemma as a Game

● The weak pumping lemma can be thought of as a game
between you and an adversary.

● You win if you can prove that the pumping lemma fails.

● The adversary wins if the adversary can make a choice
for which the pumping lemma succeeds.

● The game goes as follows:

● The adversary chooses a pumping length n.

● You choose a string w with |w| ≥ n and w ∈ L.

● The adversary breaks it into x, y, and z.

● You choose an i such that xyiz ∉ L (if you can't, you lose!)

The Pumping Lemma Game

ADVERSARY YOU

Maliciously choose
pumping length n.

Maliciously split
w = xyz, y ≠ ε

Cleverly choose a string
w L, |w| ≥ n∈

Cleverly choose i
 such that xyiz L∉

Grrr! Aaaargh!

L = { 0n1n | n }∈ ℕ

0n1n

Theorem: L = { 0n1n | n ∈ ℕ } is not regular.
Proof: By contradiction; assume L is regular. Let n be the

pumping length guaranteed by the weak pumping
lemma. Consider the string w = 0n1n. Then
|w| = 2n ≥ n and w ∈ L, so we can write w = xyz
such that y ≠ ε and for any i ∈ ℕ, we have xyiz ∈ L.
We consider three cases:

Case 1: y consists solely of 0s. Then
xy0z = xz = 0n - |y|1n, and since |y| > 0, xz ∉ L.

Case 2: y consists solely of 1s. Then
xy0z = xz = 0n1n - |y|, and since |y| > 0, xz ∉ L.

Case 3: y consists of k > 0 0s followed by m > 0
1s. Then xy2z has the form 0n1m0k1n, so
xy2z ∉ L.

In all three cases we reach a contradiction, so our
assumption was wrong and L is not regular. ■

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

