Decidability and Undecidability

Major Ideas from Last Time

- Every TM can be converted into a string representation of itself.
 - The **encoding** of *M* is denoted $\langle M \rangle$.
- The **universal Turing machine** U_{TM} accepts an encoding $\langle M, w \rangle$ of a TM M and string w, then simulates the execution of M on w.
- The language of $\boldsymbol{U}_{_{TM}}$ is the language $\boldsymbol{A}_{_{TM}}$:

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w. \}$

• Equivalently:

 $\mathbf{A}_{_{\mathrm{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in \mathcal{L}(M) \}$

Major Ideas from Last Time

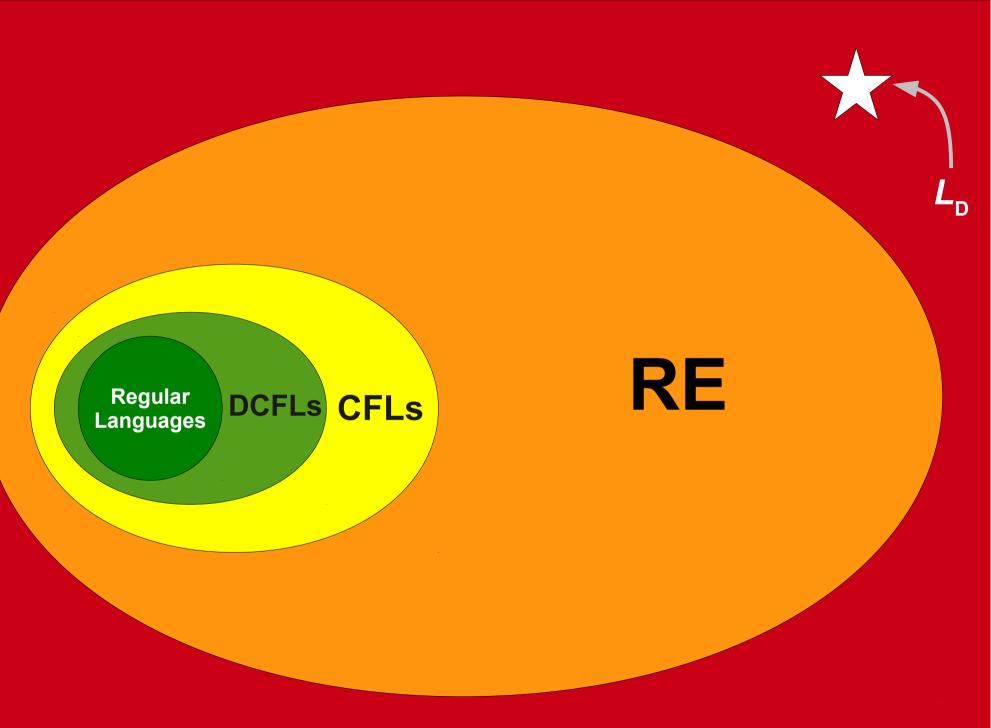
- The universal Turing machine $\rm U_{\rm TM}$ can be used as a subroutine in other Turing machines.
 - H = "On input $\langle M \rangle$, where M is a Turing machine:
 - Run M on ε .
 - If *M* accepts ε , then *H* accepts $\langle M \rangle$.
 - If *M* rejects ε , then *H* rejects $\langle M \rangle$.
 - H = "On input $\langle M \rangle$, where M is a Turing machine:
 - Nondeterministically guess a string *w*.
 - Run M on w.
 - If *M* accepts *w*, then *H* accepts $\langle M \rangle$.
 - If *M* rejects *w*, then *H* rejects $\langle M \rangle$.

Major Ideas from Last Time

The diagonalization language, which we denote L_n, is defined as

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$

- That is, $L_{\rm D}$ is the set of descriptions of Turing machines that do not accept themselves.
- Theorem: $L_{\rm D} \notin \mathbf{RE}$



All Languages

Outline for Today

- More non-RE Languages
 - We now know $L_{D} \notin \mathbf{RE}$. Can we use this to find other non-**RE** languages?
- Decidability and Class R
 - How do we formalize the idea of an algorithm?
- Undecidable Problems
 - What problems admit no algorithmic solution?

Additional Unsolvable Problems

Finding Unsolvable Problems

- We can use the fact that $L_{\rm D} \notin \mathbf{RE}$ to show that other languages are also not \mathbf{RE} .
- General proof approach: to show that some language *L* is not **RE**, we will do the following:
 - Assume for the sake of contradiction that $L \in \mathbf{RE}$, meaning that there is some TM M for it.
 - Show that we can build a TM that uses M as a subroutine in order to recognize $L_{\rm D}$.
 - Reach a contradiction, since no TM recognizes $L_{\rm D}$.
 - Conclude, therefore, that $L \notin \mathbf{RE}$.

The Complement of $A_{_{\rm TM}}$

- Recall: the language $A_{_{TM}}$ is the language of the universal Turing machine $U_{_{TM}}$:

$$A_{TM} = \mathscr{L}(U_{TM}) = \{ \langle M, w \rangle \mid M \text{ is a TM and} \\ M \text{ accepts } w \}$$

- The complement of $A_{_{TM}}$ (denoted $\overline{A}_{_{TM}}$) is the language of all strings not contained in $A_{_{TM}}$.
- Questions:
 - What language is this?
 - Is this language **RE**?

 A_{TM} and A_{TM}

- The language $\boldsymbol{A}_{\!_{TM}}$ is defined as

 $\{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$

• Equivalently:

{x | x = (M, w) for some TM M
 and string w, and M accepts w}

- Thus \overline{A}_{TM} is

 $\{x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \\ \text{ or } M \text{ is a TM that does not accept } w \}$

Cheating With Math

• As a mathematical simplification, we will assume the following:

Every string can be decoded into any collection of objects.

- Every string is an encoding of some TM M.
- Every string is an encoding of some TM *M* and string *w*.
- Can do this as follows:
 - If the string is a legal encoding, go with that encoding.
 - Otherwise, pretend the string decodes to some predetermined group of objects.

Cheating With Math

- Example: Every string will be a valid C++ program.
- If it's already a C++ program, just compile it.
- Otherwise, pretend it's this program:

```
int main() {
    return 0;
}
```

$A_{\rm TM}$ and $\overline{A}_{\rm TM}$

- The language $\boldsymbol{A}_{\!_{TM}}$ is defined as

 $\{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$

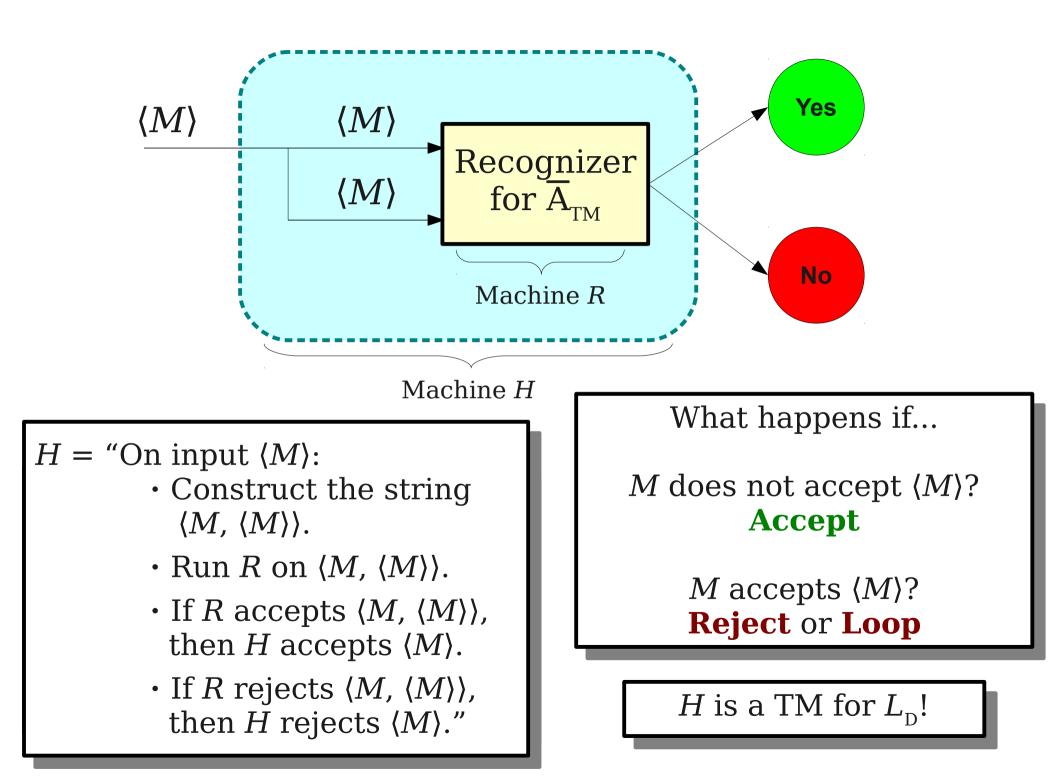
- Thus $\overline{A}_{_{TM}}$ is the language

 $\{\langle M, w \rangle \mid M \text{ is a TM that doesn't accept } w\}$

- Although the language $A_{TM} \in \mathbf{RE}$ (since it's the language of U_{TM}), its complement $\overline{A}_{TM} \notin \mathbf{RE}$.
- We will prove this as follows:
 - Assume, for contradiction, that $\overline{A}_{TM} \in \mathbf{RE}$.
 - This means there is a TM R for \overline{A}_{TM} .
 - Using R as a subroutine, we will build a TM H that will recognize $L_{\rm D}$.
 - This is impossible, since $L_{\rm D} \notin \mathbf{RE}$.
 - Conclude, therefore, that $\overline{A}_{TM} \notin \mathbf{RE}$.

Comparing $L_{\rm D}$ and $\overline{\rm A}_{\rm TM}$

- The languages $L_{\rm D}$ and $\overline{\rm A}_{\rm TM}$ are closely related:
 - $L_{\rm D}$: Does *M* not accept $\langle M \rangle$?
 - \overline{A}_{TM} : Does *M* not accept string *w*?
- Given this connection, we will show how to turn a hypothetical recognizer for \overline{A}_{TM} into a hypothetical recognizer for L_{D} .



Theorem: $\overline{A}_{TM} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it *R*.

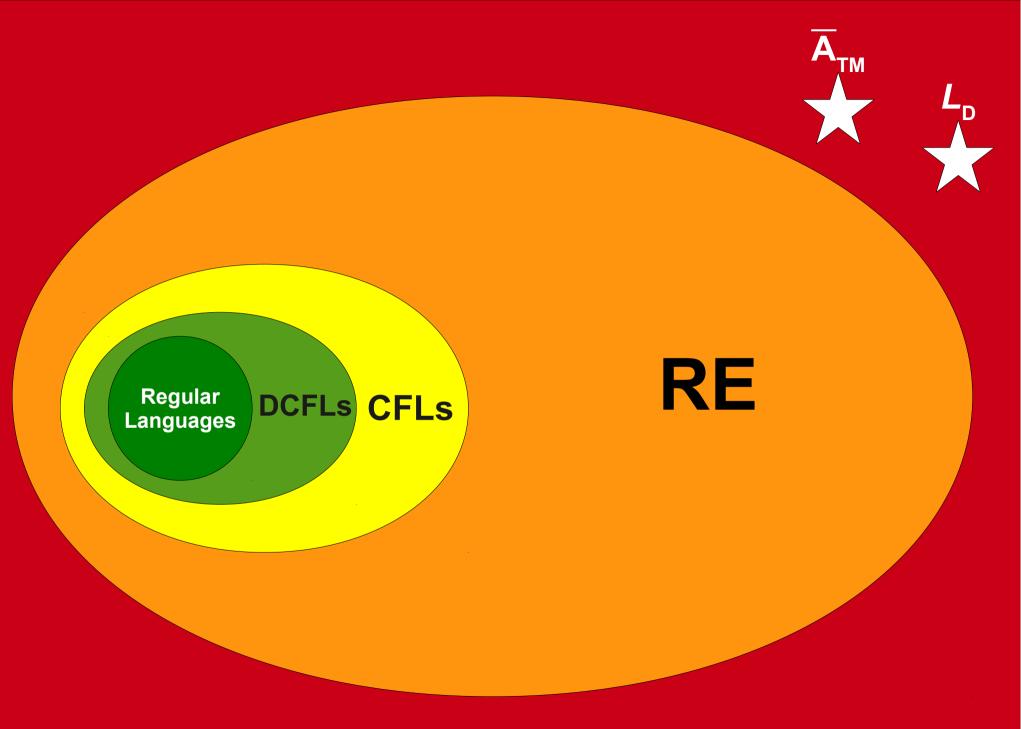
Consider the TM *H* defined below:

 $\begin{array}{l} H = \text{``On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \\ & \text{Construct the string } \langle M, \langle M \rangle \rangle. \\ & \text{Run } R \text{ on } \langle M, \langle M \rangle \rangle. \\ & \text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle. \\ & \text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle. \end{array}$

We claim that $\mathscr{L}(H) = L_{D}$. We will prove this by showing that $\langle M \rangle \in L_{D}$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM} , R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_{D}$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_{D}$, so $\mathscr{L}(H) = L_{D}$. But this is impossible, since $L_{D} \notin \mathbf{RE}$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $\overline{A}_{TM} \notin \mathbf{RE}$, as required.



All Languages

Why All This Matters

- We *finally* have found concrete examples of unsolvable problems!
- We are starting to see a line of reasoning we can use to find unsolvable problems:
 - Start with a known unsolvable problem.
 - Try to show that the unsolvability of that problem entails the unsolvability of other problems.
- We will see this used extensively in the upcoming weeks.

Revisiting **RE**

Recall: Language of a TM

• The language of a Turing machine M, denoted $\mathscr{L}(M)$, is the set of all strings that M accepts:

 $\mathcal{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$

- For any $w \in \mathcal{L}(M)$, M accepts w.
- For any $w \notin \mathscr{L}(M)$, M does not accept w.
 - It might loop forever, or it might explicitly reject.
- A language is called **recognizable** if it is the language of some TM.
- Notation: **RE** is the set of all recognizable languages.

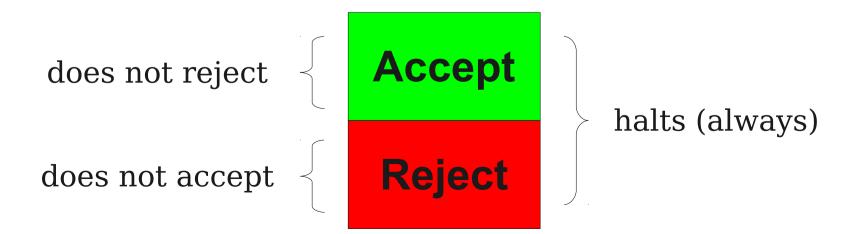
$L \in \mathbf{RE}$ iff *L* is recognizable

Why "Recognizable?"

- Given TM M with language $\mathscr{L}(M)$, running M on a string w will not necessarily tell you whether $w \in \mathscr{L}(M)$.
- If the machine is running, you can't tell whether
 - It is eventually going to halt, but just needs more time, or
 - It is never going to halt.
- However, if you know for a fact that $w \in \mathcal{L}(M)$, then the machine can confirm this (it eventually accepts).
- The machine can't *decide* whether or not $w \in \mathcal{L}(M)$, but it can *recognize* strings that are in the language.
- We sometimes call a TM for a language *L* a **recognizer** for *L*.

Deciders

- Some Turing machines always halt; they never go into an infinite loop.
- Turing machines of this sort are called deciders.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.



Decidable Languages

- A language *L* is called **decidable** iff there is a decider *M* such that $\mathscr{L}(M) = L$.
- Given a decider M, you can learn whether or not a string $w \in \mathcal{L}(M)$.
 - Run *M* on *w*.
 - Although it might take a staggeringly long time, *M* will eventually accept or reject *w*.
- The set ${\bf R}$ is the set of all decidable languages.

 $L \in \mathbf{R}$ iff *L* is decidable

R and **RE** Languages

- Intuitively, a language is in **RE** if there is some way that you could exhaustively search for a proof that $w \in L$.
 - If you find it, accept!
 - If you don't find one, keep looking!
- Intuitively, a language is in **R** if there is a concrete algorithm that can determine whether $w \in L$.
 - It tends to be much harder to show that a language is in ${f R}$ than in ${f RE}$.

Examples of ${\bf R}$ Languages

- All regular languages are in ${\bf R}.$
 - If *L* is regular, we can run the DFA for *L* on a string *w* and then either accept or reject *w* based on what state it ends in.
- { $\mathbf{0}^{n}\mathbf{1}^{n} \mid n \in \mathbb{N}$ } is in **R**.
 - The TM we built last Wednesday is a decider.
- Multiplication is in **R**.
 - Can check if $m \times n = p$ by repeatedly subtracting out copies of n. If the equation balances, accept; if not, reject.

CFLs and **R**

- Using an NTM, we sketched a proof that all CFLs are in **RE**.
 - Nondeterministically guess a derivation, then deterministically check that derivation.
- Harder result: all CFLs are in \mathbf{R} .
 - Read Sipser, Ch. 4.1 for details.
 - Or come talk to me after lecture!

Why R Matters

- If a language is in **R**, there is an algorithm that can decide membership in that language.
 - Run the decider and see what it says.
- If there is an algorithm that can decide membership in a language, that language is in ${f R}$.
 - By the Church-Turing thesis, any effective model of computation is equivalent in power to a Turing machine.
 - Thus if there is *any* algorithm for deciding membership in the language, there must be a decider for it.
 - Thus the language is in ${\bf R}.$
- A language is in R iff there is an algorithm for deciding membership in that language.

$\mathbf{R} \stackrel{?}{=} \mathbf{R}\mathbf{E}$

- Every decider is a Turing machine, but not every Turing machine is a decider.
- Thus $\mathbf{R} \subseteq \mathbf{RE}$.
- Hugely important theoretical question:

Is **R** = **RE**?

• That is, if we can *verify* that a string is in a language, can we *decide* whether that string is in the language?

Which Picture is Correct?

R

RE

Regular DCFLs CFLS

Which Picture is Correct?

R

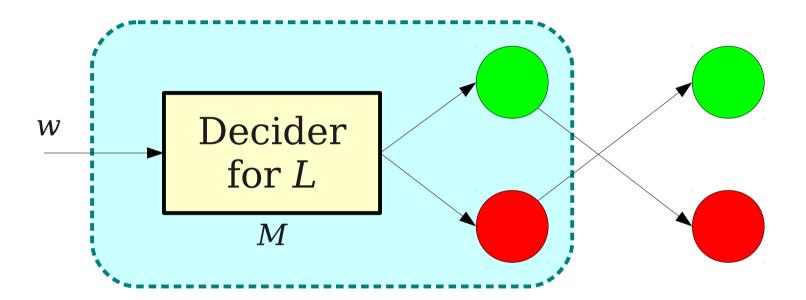
Regular DCFLs CFLS

All Languages

An Important Observation

R is Closed Under Complementation

If $L \in \mathbf{R}$, then $\overline{L} \in \mathbf{R}$ as well.



M' = "On input w: Run M on w.If M accepts w, reject. If M rejects w, accept."

Will this work if M is a recognizer, rather than a decider? Theorem: **R** is closed under complementation.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathscr{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$: Run M on w. If M accepts w, reject. If M rejects w, accept."

We need to show that M' is a decider and that $\mathscr{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathscr{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w. M does not accept w iff $w \notin \mathscr{L}(M)$. Thus M' accepts w iff $w \in \Sigma^*$ and $w \notin \mathscr{L}(M)$, so M' accepts w iff $w \in \overline{L}$. Therefore, $\mathscr{L}(M') = \overline{L}$.

Since *M*' is a decider with $\mathscr{L}(M') = \overline{L}$, we have $\overline{L} \in \mathbf{R}$, as required.

$\mathbf{R} \stackrel{?}{=} \mathbf{R}\mathbf{E}$

- We can now resolve the question of $\mathbf{R} \stackrel{?}{=} \mathbf{R}\mathbf{E}$.
- If R = RE, we need to show that if there is a recognizer for *any* RE language L, there has to be a decider for L.
- If $\mathbf{R} \neq \mathbf{R}\mathbf{E}$, we just need to find a single language in $\mathbf{R}\mathbf{E}$ that is not in \mathbf{R} .

- Recall: the language $A_{_{TM}}$ is the language of the universal Turing machine $U_{_{TM}}$.
- Consequently, $A_{TM} \in \mathbf{RE}$.
- Is $A_{TM} \in \mathbf{R}$?

Theorem: $A_{TM} \notin \mathbf{R}$. Proof: By contradiction; assume $A_{TM} \in \mathbf{R}$. Since \mathbf{R} is closed under complementation, this means that $\overline{A}_{TM} \in \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{R}\mathbf{E}$, this means that $\overline{A}_{TM} \in \mathbf{R}\mathbf{E}$. But this is impossible, since we know $\overline{A}_{TM} \notin \mathbf{R}\mathbf{E}$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $A_{TM} \notin \mathbf{R}$, as required.

The Limits of Computability

R

Regular DCFLs CFLS

RE

What this Means

- The undecidability of $A_{_{TM}}$ means that we cannot "cheat" with Turing machines.
- We cannot necessarily build a TM to do an exhaustive search over a space (i.e. a recognizer), then decide whether it accepts without running it.
- **Intuition:** In most cases, you cannot *decide* what a TM will do without running it to see what happens.
- In some cases, you can *recognize* when a TM has performed some task.
- In some cases, you can't do either. For example, you cannot always recognize that a TM will not accept a string.

What this Means

- Major result: $\mathbf{R} \neq \mathbf{RE}$.
- There are some problems where we can only give a "yes" answer when the answer is "yes" and cannot necessarily give a yes-or-no answer.
- Solving a problem is *fundamentally harder* than recognizing a correct answer.

Another Undecidable Problem

$L_{\rm\scriptscriptstyle D}$ Revisited

- The diagonalization language $L_{\rm D}$ is the language

$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$

- As we saw before, $L_{\rm D} \notin \mathbf{RE}$.
- But what about $\overline{L}_{\rm D}$?

$\overline{L}_{ ext{D}}$

- The language $L_{\rm \scriptscriptstyle D}$ is the language

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$

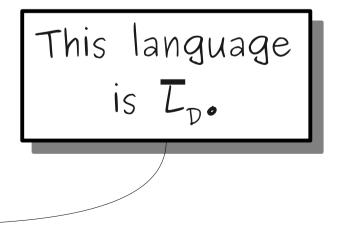
- Therefore, $\overline{L}_{\rm D}$ is the language

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M) \}$

- Two questions:
 - What is this language?
 - Is this language **RE**?

	$\langle M_0 \rangle$	(Μ ₁)	$\langle M_2 \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

 $\{ \langle M \rangle \mid M \text{ is a TM} \\ and \langle M \rangle \in \mathscr{L}(M) \}$



Acc Acc Acc No Acc No ...

$\overline{L}_{\rm D} \in \mathbf{RE}$

- Here's an TM for $\overline{L}_{\rm D}$:
- $$\begin{split} R &= \text{``On input } \langle M \rangle \text{:} \\ & \text{Run } M \text{ on } \langle M \rangle \text{.} \\ & \text{If } M \text{ accepts } \langle M \rangle \text{, accept.} \\ & \text{If } M \text{ rejects } \langle M \rangle \text{, reject.''} \\ & \text{Then } R \text{ accepts } \langle M \rangle \text{ iff } \langle M \rangle \in \mathscr{L}(M) \text{ iff } \\ & \langle M \rangle \in \overline{L}_{\text{D}} \text{, so } \mathscr{L}(R) = \overline{L}_{\text{D}} \text{.} \end{split}$$

Is \overline{L}_{D} Decidable?

- We know that $\overline{L}_{D} \in \mathbf{RE}$. Is $\overline{L}_{D} \in \mathbf{R}$?
- No by a similar argument from before.
 - If $\overline{L}_{D} \in \mathbf{R}$, then $\overline{L}_{D} = L_{D} \in \mathbf{R}$.
 - Since $\mathbf{R} \subset \mathbf{RE}$, this means that $L_{D} \in \mathbf{RE}$.
 - This contradicts that $L_{\rm D} \notin \mathbf{RE}$.
 - So our assumption is wrong and $\overline{L}_{\rm D} \notin \mathbf{R}$.

The Limits of Computability

R

Regular DCFLs CFLS

RE

Finding Unsolvable Problems

