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Major Ideas from Last Time

● Every TM can be converted into a string 
representation of itself.

● The encoding of M is denoted ⟨M⟩.

● The universal Turing machine UTM accepts an 
encoding ⟨M, w⟩ of a TM M and string w, then 
simulates the execution of M on w.

● The language of UTM is the language ATM:

ATM = { ⟨M, w⟩ | M is a TM that accepts w. }

● Equivalently:

ATM = { ⟨M, w⟩ | M is a TM and w ∈ (ℒ M) }



  

Major Ideas from Last Time

● The universal Turing machine UTM can be used as a 
subroutine in other Turing machines.

 H = “On input ⟨M⟩, where M is a Turing machine:
 

· Run M on ε.
 

· If M accepts ε, then H accepts ⟨M⟩.
 

· If M rejects ε, then H rejects ⟨M⟩. 

 H = “On input ⟨M⟩, where M is a Turing machine:
 

· Run M on ε.
 

· If M accepts ε, then H accepts ⟨M⟩.
 

· If M rejects ε, then H rejects ⟨M⟩. 

  

H = “On input ⟨M⟩, where M is a Turing machine:
 

· Nondeterministically guess a string w.
  

· Run M on w.
 

· If M accepts w, then H accepts ⟨M⟩.
 

· If M rejects w, then H rejects ⟨M⟩. 

  

  

H = “On input ⟨M⟩, where M is a Turing machine:
 

· Nondeterministically guess a string w.
  

· Run M on w.
 

· If M accepts w, then H accepts ⟨M⟩.
 

· If M rejects w, then H rejects ⟨M⟩. 

  



  

Major Ideas from Last Time

● The diagonalization language, which we 
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) } 

● That is, LD is the set of descriptions of 
Turing machines that do not accept 
themselves.

● Theorem: LD ∉ RE
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Outline for Today

● More non-RE Languages
● We now know LD ∉ RE.  Can we use this to find 

other non-RE languages?

● Decidability and Class R
● How do we formalize the idea of an algorithm?

● Undecidable Problems
● What problems admit no algorithmic solution?



  

Additional Unsolvable Problems



  

Finding Unsolvable Problems

● We can use the fact that LD ∉ RE to show that 
other languages are also not RE.

● General proof approach: to show that some 
language L is not RE, we will do the following:

● Assume for the sake of contradiction that L ∈ RE, 
meaning that there is some TM M for it.

● Show that we can build a TM that uses M as a 
subroutine in order to recognize LD.

● Reach a contradiction, since no TM recognizes LD.

● Conclude, therefore, that L ∉ RE. 



  

The Complement of ATM

● Recall: the language ATM is the language of the 
universal Turing machine UTM:

  ATM = ℒ(UTM) = { ⟨M, w⟩ | M is a TM and
                                           M accepts w }

● The complement of ATM (denoted ATM) is the 
language of all strings not contained in ATM.

● Questions:
● What language is this?
● Is this language RE?



  

ATM and ATM

● The language ATM is defined as

 {⟨M, w⟩ | M is a TM that accepts w}

● Equivalently:

        {x | x = ⟨M, w⟩ for some TM M
              and string w, and M accepts w}

● Thus ATM is

   {x | x ≠ ⟨M, w⟩ for any TM M and string w,
         or M is a TM that does not accept w}



  

Cheating With Math

● As a mathematical simplification, we will assume 
the following:

Every string can be decoded
into any collection of objects.

● Every string is an encoding of some TM M.

● Every string is an encoding of some TM M and 
string w.

● Can do this as follows:
● If the string is a legal encoding, go with that 

encoding.
● Otherwise, pretend the string decodes to some 

predetermined group of objects.



  

Cheating With Math

● Example: Every string will be a valid C++ 
program.

● If it's already a C++ program, just 
compile it.

● Otherwise, pretend it's this program:
int main() {

    return 0;

}



  

ATM and ATM

● The language ATM is defined as

 {⟨M, w⟩ | M is a TM that accepts w}

● Thus ATM is the language

{⟨M, w⟩ | M is a TM that doesn't accept w}



  

ATM ∉ RE

● Although the language ATM ∈ RE (since it's the 
language of UTM), its complement ATM ∉ RE.

● We will prove this as follows:

● Assume, for contradiction, that ATM ∈ RE.

● This means there is a TM R for ATM.

● Using R as a subroutine, we will build a TM H 
that will recognize LD.

● This is impossible, since LD ∉ RE.

● Conclude, therefore, that ATM ∉ RE.



  

Comparing LD and ATM

● The languages LD and ATM are closely 
related:

● LD: Does M not accept ⟨M⟩?

● ATM: Does M not accept string w?

● Given this connection, we will show how 
to turn a hypothetical recognizer for ATM 
into a hypothetical recognizer for LD.



  

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

⟨M⟩                       

 

H = “On input ⟨M⟩:
 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩,
    then H accepts ⟨M⟩.

 

  · If R rejects ⟨M, ⟨M⟩⟩,
    then H rejects ⟨M⟩.”

 

 

H = “On input ⟨M⟩:
 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩,
    then H accepts ⟨M⟩.

 

  · If R rejects ⟨M, ⟨M⟩⟩,
    then H rejects ⟨M⟩.”

 

Machine R

Machine H

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

What happens if...

M does not accept ⟨M⟩?
Accept

M accepts ⟨M⟩?
Reject or Loop

H is a TM for LD!H is a TM for LD!

 

H = “On input ⟨M⟩:
  · Construct the string
     ⟨M, ⟨M⟩⟩.

 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩,
    then H accepts ⟨M⟩.

 

  · If R rejects ⟨M, ⟨M⟩⟩,
    then H rejects ⟨M⟩.”

 

 

H = “On input ⟨M⟩:
  · Construct the string
     ⟨M, ⟨M⟩⟩.

 

  · Run R on ⟨M, ⟨M⟩⟩.
 

  · If R accepts ⟨M, ⟨M⟩⟩,
    then H accepts ⟨M⟩.

 

  · If R rejects ⟨M, ⟨M⟩⟩,
    then H rejects ⟨M⟩.”

 



  

Theorem: ATM ∉ RE.
Proof: By contradiction; assume that ATM ∈ RE.  Then there must be a

recognizer for ATM; call it R.
 

Consider the TM H defined below:
 

H = “On input ⟨M⟩, where M is a TM:
Construct the string ⟨M, ⟨M⟩⟩.
Run R on ⟨M, ⟨M⟩⟩.
If R accepts ⟨M, ⟨M⟩⟩, H accepts ⟨M⟩.
If R rejects ⟨M, ⟨M⟩⟩, H rejects ⟨M⟩.”

 

We claim that (ℒ H) = LD.  We will prove this by showing that ⟨M⟩ ∈ LD

iff H accepts ⟨M⟩.
 

By construction we have that H accepts ⟨M⟩ iff R accepts ⟨M, ⟨M⟩⟩. 
Since R is a recognizer for ATM, R accepts ⟨M, ⟨M⟩⟩ iff M does not
accept ⟨M⟩.  Finally, note that M does not accept ⟨M⟩ iff ⟨M⟩ ∈ LD. 
Therefore, we have H accepts ⟨M⟩ iff ⟨M⟩ ∈ LD, so (ℒ H) = LD.  But this
is impossible, since LD ∉ RE.

 

We have reached a contradiction, so our assumption must have been
incorrect. Thus ATM ∉ RE, as required. ■
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Why All This Matters

● We finally have found concrete examples 
of unsolvable problems!

● We are starting to see a line of reasoning 
we can use to find unsolvable problems:
● Start with a known unsolvable problem.
● Try to show that the unsolvability of that 

problem entails the unsolvability of other 
problems.

● We will see this used extensively in the 
upcoming weeks.



  

Revisiting RE



  

Recall: Language of a TM

● The language of a Turing machine M, denoted 
(ℒ M), is the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.
● It might loop forever, or it might explicitly reject.

● A language is called recognizable if it is the 
language of some TM.

● Notation: RE is the set of all recognizable 
languages.

L ∈ RE  iff   L is recognizable    



  

Why “Recognizable?”

● Given TM M with language ℒ(M), running M on a 
string w will not necessarily tell you whether 
w ∈  (ℒ M).

● If the machine is running, you can't tell whether

● It is eventually going to halt, but just needs more time, or

● It is never going to halt.

● However, if you know for a fact that w ∈ (ℒ M), then the 
machine can confirm this (it eventually accepts).

● The machine can't decide whether or not w ∈ (ℒ M), 
but it can recognize strings that are in the language.

● We sometimes call a TM for a language L a recognizer 
for L.



  

Deciders

● Some Turing machines always halt; they never 
go into an infinite loop.

● Turing machines of this sort are called 
deciders.

● For deciders, accepting is the same as not 
rejecting and rejecting is the same as not 
accepting.

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Decidable Languages

● A language L is called decidable iff there is a 
decider M such that (ℒ M) = L.

● Given a decider M, you can learn whether or not a 
string w ∈ (ℒ M).

● Run M on w.
● Although it might take a staggeringly long time, M 

will eventually accept or reject w.

● The set R is the set of all decidable languages.

L ∈ R   iff   L is decidable



  

R and RE Languages

● Intuitively, a language is in RE if there is 
some way that you could exhaustively 
search for a proof that w ∈ L.
● If you find it, accept!
● If you don't find one, keep looking!

● Intuitively, a language is in R if there is a 
concrete algorithm that can determine 
whether w ∈ L.
● It tends to be much harder to show that a 

language is in R than in RE.



  

Examples of R Languages

● All regular languages are in R.
● If L is regular, we can run the DFA for L on a 

string w and then either accept or reject w 
based on what state it ends in.

● { 0n1n | n ∈ ℕ } is in R.
● The TM we built last Wednesday is a decider.

● Multiplication is in R.
● Can check if m × n = p by repeatedly 

subtracting out copies of n.  If the equation 
balances, accept; if not, reject.



  

CFLs and R

● Using an NTM, we sketched a proof that 
all CFLs are in RE.
● Nondeterministically guess a derivation, 

then deterministically check that derivation.

● Harder result: all CFLs are in R.
● Read Sipser, Ch. 4.1 for details.
● Or come talk to me after lecture!



  

Why R Matters

● If a language is in R, there is an algorithm that can 
decide membership in that language.

● Run the decider and see what it says.

● If there is an algorithm that can decide membership in 
a language, that language is in R.

● By the Church-Turing thesis, any effective model of 
computation is equivalent in power to a Turing machine.

● Thus if there is any algorithm for deciding membership in 
the language, there must be a decider for it.

● Thus the language is in R.

● A language is in R iff there is an algorithm for 
deciding membership in that language.



  

R  ≟ RE

● Every decider is a Turing machine, but not 
every Turing machine is a decider.

● Thus R ⊆ RE.

● Hugely important theoretical question:

Is R = RE?  
● That is, if we can verify that a string is in a 

language, can we decide whether that string is 
in the language?
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An Important Observation



  

R is Closed Under Complementation

If L ∈ R, then L ∈ R as well.

Decider
for L

w            

M

M' = “On input w:
  Run M on w.
  If M accepts w, reject.
  If M rejects w, accept.”

Will this work if M is 
a recognizer, rather 

than a decider?

Will this work if M is 
a recognizer, rather 

than a decider?



  

Theorem: R is closed under complementation.
Proof: Consider any L ∈ R.  We will prove that L ∈ R by constructing a

decider M' such that (ℒ M') = L.
 

Let M be a decider for L.  Then construct the machine M' as follows:
 

M' = “On input w ∈ Σ*:
Run M on w.
If M accepts w, reject.
If M rejects w, accept.”

 

We need to show that M' is a decider and that (ℒ M') = L.
 

To show that M' is a decider, we will prove that it always halts.  
Consider what happens if we run M' on any input w.  First, M' runs
M on w.  Since M is a decider, M either accepts w or rejects w.  If
M accepts w, M' rejects w.  If M rejects w, M' accepts w.  Thus M'
always accepts or rejects, so M' is a decider.

 

To show that (ℒ M') = L, we will prove that M' accepts w iff w ∈ L. 
Note that M' accepts w iff w ∈ Σ* and M rejects w.  Since M is a
decider, M rejects w iff M does not accept w.  M does not accept w iff
w ∉ (ℒ M).  Thus M' accepts w iff w ∈ Σ* and w ∉ (ℒ M), so M' accepts
w iff w ∈ L.  Therefore, (ℒ M') = L.

 

Since M' is a decider with (ℒ M') = L, we have L ∈ R, as required. ■



  

● We can now resolve the question of R  ≟ RE.

● If R = RE, we need to show that if there is a 
recognizer for any RE language L, there has to 
be a decider for L.

● If R ≠ RE, we just need to find a single 
language in RE that is not in R.

R ≟ RE



  

ATM

● Recall: the language ATM is the language 
of the universal Turing machine UTM.

● Consequently, ATM ∈ RE.

● Is ATM ∈ R?



  

Theorem: ATM ∉ R.
Proof: By contradiction; assume ATM ∈ R.  Since R

is closed under complementation, this means
that ATM ∈ R.  Since R ⊆ RE, this means that
ATM ∈ RE.  But this is impossible, since we
know ATM ∉ RE.

We have reached a contradiction, so our
assumption must have been incorrect.  Thus
ATM ∉ R, as required. ■
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What this Means

● The undecidability of ATM means that we cannot 
“cheat” with Turing machines.

● We cannot necessarily build a TM to do an exhaustive 
search over a space (i.e. a recognizer), then decide 
whether it accepts without running it.

● Intuition: In most cases, you cannot decide what a TM 
will do without running it to see what happens.

● In some cases, you can recognize when a TM has 
performed some task.

● In some cases, you can't do either.  For example, you 
cannot always recognize that a TM will not accept a 
string.



  

What this Means

● Major result: R ≠ RE.
● There are some problems where we can 

only give a “yes” answer when the 
answer is “yes” and cannot necessarily 
give a yes-or-no answer.

● Solving a problem is fundamentally 
harder than recognizing a correct 
answer.



  

Another Undecidable Problem



  

LD Revisited

● The diagonalization language LD is the 
language

LD = {⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M)} 

● As we saw before, LD ∉ RE.

● But what about LD?



  

LD

● The language LD is the language

LD = {⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M)} 

● Therefore, LD is the language

LD = {⟨M⟩ | M is a TM and ⟨M⟩ ∈ ℒ(M)} 

● Two questions:
● What is this language?
● Is this language RE?



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

This language 
is LD.

This language 
is LD.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc Acc Acc No Acc No …

…

No

Acc

Acc

Acc

Acc

No

Acc Acc Acc No Acc No …

{ ⟨M⟩ | M is a TM  
and ⟨M⟩ ∈ ℒ(M) }



  

LD ∈ RE

● Here's an TM for LD:

        R = “On input ⟨M⟩:

                   Run M on ⟨M⟩.

                   If M accepts ⟨M⟩, accept.

                   If M rejects ⟨M⟩, reject.”
● Then R accepts ⟨M⟩ iff ⟨M⟩ ∈ (ℒ M) iff 

⟨M⟩ ∈ LD, so (ℒ R) = LD.



  

Is LD Decidable?

● We know that LD ∈ RE.  Is LD ∈ R?

● No – by a similar argument from before.
● If LD ∈ R, then LD = LD ∈ R.

● Since R ⊂ RE, this means that LD ∈ RE.

● This contradicts that LD ∉ RE.

● So our assumption is wrong and LD ∉ R.
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Finding Unsolvable Problems

A
TML

D
A

TM

Not RE Not RE Not R

L
D

Not R


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

