

co-RE and Reducibility

Friday Four Square!
Today at 4:15PM, Outside Gates

Announcements

● Problem Set 6 graded, will be returned at
end of lecture.
● Late submissions will be graded by Monday.

● Problem Set 7 due this Monday, March 4
at the start of lecture.
● We are working on shuffling around OH for

this weekend; we'll send out an email with
updates.

Major Ideas from Last Time

● Some Turing machines always halt; they never
go into an infinite loop.

● Turing machines of this sort are called
deciders.

● For deciders, accepting is the same as not
rejecting and rejecting is the same as not
accepting.

Accept

Reject
 halts (always)

does not accept

does not reject

Major Ideas from Last Time

● A language L is called decidable iff there is a
decider M such that (ℒ M) = L.

● Given a decider M, you can learn whether or not a
string w ∈ (ℒ M).

● Run M on w.
● Although it might take a staggeringly long time, M

will eventually accept or reject w.

● The set R is the set of all decidable languages.

L ∈ R iff L is decidable

R and RE Languages

● Intuitively, a language is in RE if there is
some way that you could exhaustively
search for a proof that w ∈ L.
● If you find it, accept!
● If you don't find one, keep looking!

● Intuitively, a language is in R if there is a
concrete algorithm that can determine
whether w ∈ L.
● It tends to be much harder to show that a

language is in R than in RE.

Regular
Languages CFLsDCFLs

All Languages

R RE

The Limits of Computability

A
TM

L
D

A
TM

L
D

Outline for Today

● The Halting Problem
● An important problem about TMs.

● co-RE Languages
● Resolving a fundamental asymmetry.

● Mapping Reductions
● A tool for finding unsolvable problems.

The Halting Problem

The Halting Problem

● The halting problem is the following problem:

Given a TM M and string w,
does M halt on w?

● Note that M doesn't have to accept w; it just
has to halt on w.

● As a formal language:

HALT = { ⟨M, w⟩ | M is a TM and
 M halts on w. }

● Is HALT ∈ R? Is HALT ∈ RE?

HALT is Recognizable

● Consider this Turing machine:

H = “On input ⟨M, w⟩:

 Run M on w.

 If M accepts, accept.

 If M rejects, accept.”

● Then H accepts ⟨M, w⟩ iff M halts on w.
● Thus (ℒ H) = HALT, so HALT ∈ RE.

Theorem: HALT ∉ R.

(The halting problem is undecidable)

Proving HALT ∉ R

● Our proof will work as follows:
● Suppose that HALT ∈ R.
● Using a decider for HALT, construct a

decider for ATM.

● Reach a contradiction, since there is no
decider for ATM (ATM ∉ R).

● Conclude, therefore, that HALT ∉ R.

Accepting, Rejecting, and Looping

● Suppose we have a TM M and a string w.
● Then M either

● Accepts, or
● Does not accept (by rejecting or looping).

● What if M never rejects?
● Then M either

● Accepts, or
● Does not accept (by looping).

The Key Insight

● If M never rejects, then

M accepts w iff M halts on w
● In other words, if M never rejects, then

⟨M, w⟩ ∈ ATM iff ⟨M, w⟩ ∈ HALT

● If we can modify an arbitrary TM M so
that M never rejects, then a decider for
HALT can be made to decide ATM.

● Since ATM ∉ R, this is a contradiction!

Decider for
HALT

Yes

No

⟨M'⟩

w

Machine D

H = “On input ⟨M, w⟩:

· Transform M into M' by
 making M loop instead of
 rejecting.

· Run D on ⟨M', w⟩.

· If D accepts ⟨M', w⟩, then
 H accepts ⟨M, w⟩.

· If D rejects ⟨M', w⟩, then
 H rejects ⟨M, w⟩.”

H = “On input ⟨M, w⟩:

· Transform M into M' by
 making M loop instead of
 rejecting.

· Run D on ⟨M', w⟩.

· If D accepts ⟨M', w⟩, then
 H accepts ⟨M, w⟩.

· If D rejects ⟨M', w⟩, then
 H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w

⟨M⟩

H

What happens if...

 M accepts w? Accept
 M loops on w? Reject
 M rejects w? Reject

What happens if...

 M accepts w? Accept
 M loops on w? Reject
 M rejects w? Reject

Machine H is a decider
for ATM!

Machine H is a decider
for ATM!

Decider for
HALT

Yes

No

⟨M'⟩

w

Machine D

H = “On input ⟨M, w⟩:

· Transform M into M' by
 making M loop instead of
 rejecting.

· Run D on ⟨M', w⟩.

· If D accepts ⟨M', w⟩, then
 H accepts ⟨M, w⟩.

· If D rejects ⟨M', w⟩, then
 H rejects ⟨M, w⟩.”

H = “On input ⟨M, w⟩:

· Transform M into M' by
 making M loop instead of
 rejecting.

· Run D on ⟨M', w⟩.

· If D accepts ⟨M', w⟩, then
 H accepts ⟨M, w⟩.

· If D rejects ⟨M', w⟩, then
 H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w

⟨M⟩

H

What happens if...

 M accepts w? Accept
 M loops on w? Reject
 M rejects w? Reject

What happens if...

 M accepts w? Accept
 M loops on w? Reject
 M rejects w? Reject

Machine H is a decider
for ATM!

Machine H is a decider
for ATM!

How is it possible to
 build this part of the

machine?

How is it possible to
 build this part of the

machine?

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R

q
loop

1 → , R☐

 → ☐ ☐, R
0 → 0, R

0 → 0, R
1 → 1, R
 → ☐ ☐, R

Theorem: HALT ∉ R.
Proof: By contradiction; assume HALT ∈ R. Then there must be some
 decider D for HALT. Consider the following TM H:

H = “On input ⟨M, w⟩, where M is a TM and w is a string:
Transform M into M' by making M' loop whenever M rejects.
Run D on ⟨M', w⟩.
If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

 We claim that H is a decider for ATM. This means that ATM ∈ R, which
 contradicts the fact that ATM ∉ R. This means our assumption was
 wrong, and so HALT ∉ R, as required.

 First, we prove H is a decider. Note that on any input ⟨M, w⟩, H
 constructs the machine M' (which can be done in finite time), then runs
 D on ⟨M', w⟩. Since D is a decider, D always halts. Since H halts as
 soon as D halts, we know H halts on ⟨M, w⟩. Since our choice of ⟨M, w⟩
 was arbitrary, this means that H halts on all inputs, so H is a decider.

 Next, we prove that (ℒ H) = ATM. To see this, note that H accepts ⟨M, w⟩
 iff D accepts ⟨M', w⟩. Since D decides HALT, D accepts ⟨M', w⟩ iff M'
 halts on w. By construction, M' halts iff it accepts, so M' halts on w iff
 M' accepts w. Again by construction, M' accepts w iff M accepts w.
 Finally, M accepts w iff ⟨M, w⟩ ∈ ATM. Thus H accepts ⟨M, w⟩ iff
 ⟨M, w⟩ ∈ ATM, and so (ℒ H) = ATM, as required. ■

Regular
Languages CFLsDCFLs

All Languages

R RE

The Limits of Computability

A
TM

L
D

HALT

A
TM

L
D

ATM and HALT

● Both ATM and HALT are undecidable.

● There is no way to decide whether a TM will
accept or eventually terminate.

● However, both ATM and HALT are recognizable.

● We can always run a TM on a string w and
accept if that TM accepts or halts.

● Intuition: The only general way to learn what
a TM will do on a given string is to run it and
see what happens.

Resolving an Asymmetry

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

?? R
ADD

SEARCH

A New Complexity Class

● A language L is in RE iff there is a TM M such that
● if w ∈ L, then M accepts w.
● if w ∉ L, then M does not accept w.

● A TM M of this sort is called a recognizer, and L is
called recognizable.

● A language L is in co-RE iff there is a TM M such
that

● if w ∈ L, then M does not reject w.
● if w ∉ L, then M rejects w.

● A TM M of this sort is called a co-recognizer, and
L is called co-recognizable.

RE and co-RE

● Intuitively, RE consists of all problems where a
TM can exhaustively search for proof that
w ∈ L.
● If w ∈ L, the TM will find the proof.
● If w ∉ L, the TM cannot find a proof.

● Intuitively, co-RE consists of all problems
where a TM can exhaustively search for a
disproof that w ∈ L.
● If w ∈ L, the TM cannot find the disproof.
● If w ∉ L, the TM will find the disproof.

RE and co-RE Languages

● ATM is an RE language:

● Simulate the TM M on the string w.
● If you find that M accepts w, accept.
● If you find that M rejects w, reject.
● (If M loops, we implicitly loop forever)

● ATM is a co-RE language:

● Simulate the TM M on the string w.
● If you find that M accepts w, reject.
● If you find that M rejects w, accept.
● (If M loops, we implicitly loop forever)

RE and co-RE Languages

● LD is an RE language.

● Simulate M on ⟨M⟩.
● If you find that M accepts ⟨M⟩, accept.
● If you find that M rejects ⟨M⟩, reject.
● (If M loops, we implicitly loop forever)

● LD is a co-RE language.

● Simulate M on ⟨M⟩.
● If you find that M accepts ⟨M⟩, reject.
● If you find that M rejects ⟨M⟩, accept.
● (If M loops, we implicitly loop forever)

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

SEARCH

A
TM

L
D

RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to
make machine M'. Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w

iff w ∉ L
iff w ∈ L.

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

SEARCH

A
TM

L
D

HALT

R, RE, and co-RE

● Every language in R is in both RE and
co-RE.

● Why?
● A decider for L accepts all w ∈ L and rejects

all w ∉ L.

● In other words, R ⊆ RE ∩ co-RE.
● Question: Does R = RE ∩ co-RE?

Which Picture is Correct?

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

SEARCH

A
TMHALT

L
D

Which Picture is Correct?

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

SEARCH

A
TMHALT

L
D

R, RE, and co-RE

● Theorem: If L ∈ RE and L ∈ co-RE, then
 L ∈ R.

● Proof sketch: Since L ∈ RE, there is a
recognizer M for it. Since L ∈ co-RE,
there is a co-recognizer M for it.

This TM D is a decider for L:

 D = “On input w:
Run M on w and M on w in parallel.
If M accepts w, accept.
If M rejects w, reject.

 D = “On input w:
Run M on w and M on w in parallel.
If M accepts w, accept.
If M rejects w, reject.

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

SEARCH

A
TMHALT

L
D

What's out here?

A Repeating Pattern

Recognizer
for ATM

Yes

No

⟨M⟩

ε

Machine R

H = “On input ⟨M⟩:

· Construct the string ⟨M, ε⟩.

· Run R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

H = “On input ⟨M⟩:

· Construct the string ⟨M, ε⟩.

· Run R on ⟨M, ε⟩.

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

Construct ⟨M, ε⟩ ⟨M⟩

H

L = { ⟨M⟩ | M is a TM that accepts ε }

Recognizer
for ATM

Yes

No

⟨M⟩

⟨M⟩

Machine R

H = “On input ⟨M⟩:

· Construct the string ⟨M, ⟨M⟩⟩.

· Run R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

H = “On input ⟨M⟩:

· Construct the string ⟨M, ⟨M⟩⟩.

· Run R on ⟨M, ⟨M⟩⟩.

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

Construct ⟨M, ⟨M⟩⟩ ⟨M⟩

H

From ATM to LD

Decider for
HALT

Yes

No

⟨M'⟩

w

Machine D

H = “On input ⟨M, w⟩:

· Build M into M' so M' loops when M rejects.

· Run D on ⟨M', w⟩.

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

H = “On input ⟨M, w⟩:

· Build M into M' so M' loops when M rejects.

· Run D on ⟨M', w⟩.

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w

⟨M⟩

H

From HALT to ATM

Subroutine
TM

Machine R

YES

NO

Compute f
f(w)w

Machine H

The General Pattern

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

Reductions

● Intuitively, problem A reduces to
problem B iff a solver for B can be used
to solve problem A.

φ ≡ ψ? Tautology

Can be converted to

Can be used to solve

Reductions

● Intuitively, problem A reduces to
problem B iff a solver for B can be used
to solve problem A.

LD ATM

Can be converted to

Can be used to solve

Reductions

● Intuitively, problem A reduces to
problem B iff a solver for B can be used
to solve problem A.

ATM HALT

Can be converted to

Can be used to solve

Reductions

● Intuitively, problem A reduces to
problem B iff a solver for B can be used
to solve problem A.

● Reductions can be used to show certain
problems are “solvable:”

If A reduces to B and B is “solvable,”
then A is “solvable.”

● Reductions can be used to show certain
problems are “unsolvable:”

If A reduces to B and A is “unsolvable,”
then B is “unsolvable.”

Formalizing Reductions

● In order to make the previous intuition
more rigorous, we need to formally define
reductions.

● There are many ways to do this; we'll
explore two:
● Mapping reducibility (today / Monday), and
● Polynomial-time reducibility (next week).

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

NO
Σ

1
* Σ

2
*

YES YES

NO

f(w)

f(w)

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B

● Every w ∈ A maps to some f(w) ∈ B.
● Every w ∉ A maps to some f(w) ∉ B.
● f does not have to be injective or

surjective.

Why Reductions Matter

● If language A reduces to language B, we
can use a recognizer / co-recognizer /
decider for B to recognize /
co-recognize / decide problem A.
● (There's a slight catch – we'll talk about this

in a second).

● How is this possible?

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

H accepts w

iff

R accepts f(w)

 iff

f(w) ∈ B

iff

w ∈ A

TM for
language B

Machine R

YES

NO

Compute f
f(w)w

Machine H

w ∈ A iff f(w) ∈ B

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

H = “On input w:

· Transform the input w into f(w).

· Run machine R on f(w).

· If R accepts f(w), then H accepts w.

· If R rejects f(w), then H rejects w.”

ℒ(H) = Aℒ(H) = A

A Problem

● Recall: f is a reduction from A to B iff

w ∈ A iff f(w) ∈ B
● Under this definition, any language A reduces to any

language B unless B = Ø or Σ*.

● Since B ≠ Ø and B ≠ Σ*, there is some wyes ∈ B and
some wno ∉ B.

● Define f : Σ1* → Σ2* as follows:

If w ∈ A, then f(w) = wyes

If w ∉ A, then f(w) = wno

● Then f is a reduction from A to B.

A Problem

● Example: let's reduce LD to 0*1*.

● Take wyes = 01, wno = 10.

● Then f(w) is defined as
● If w ∈ LD, f(w) = 01.

● If w ∉ LD, f(w) = 10.

● There is no TM that can actually evaluate
the function f(w) on all inputs, since no
TM can decide whether or not w ∈ LD.

A Problem

● Example: let's reduce LD to 0*1*.

● Take wyes = 01, wno = 10.

● Then f(w) is defined as
● If w ∈ LD, f(w) = 01.

● If w ∉ LD, f(w) = 10.

● There is no TM that can actually evaluate
the function f(w) on all inputs, since no
TM can decide whether or not w ∈ LD.

Computable Functions

● This general reduction is mathematically well-defined,
but might be impossible to actually compute!

● To fix our definition, we need to introduce the idea of a
computable function.

● A function f : Σ1* → Σ2* is called a computable
function if there is some TM M with the following
behavior:

 “On input w:

 Compute f(w) and write it on the tape.

 Move the tape head to the start of f(w).

 Halt.”

Computable Functions

f(1n) = 13n+1

… 1 1 1 …

Computable Functions

f(w) =
 1mn if w = 1n×1m

 ε otherwise

… 1 1 1 × 1 1 1 …

Computable Functions

f(⟨M⟩) = ⟨M, ⟨M⟩⟩

… 1 0 0 …

Mapping Reductions

● A function f : Σ1* → Σ2* is called a
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A
to B says that a computer can transform
any instance of A into an instance of B
such that the answer to B is the answer
to A.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

