co-RE and Reducibility

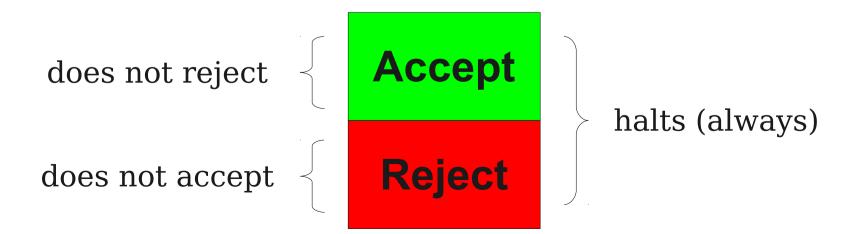
Friday Four Square! Today at 4:15PM, Outside Gates

Announcements

- Problem Set 6 graded, will be returned at end of lecture.
 - Late submissions will be graded by Monday.
- Problem Set 7 due this Monday, March 4 at the start of lecture.
 - We are working on shuffling around OH for this weekend; we'll send out an email with updates.

Major Ideas from Last Time

- Some Turing machines always halt; they never go into an infinite loop.
- Turing machines of this sort are called deciders.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.



Major Ideas from Last Time

- A language *L* is called **decidable** iff there is a decider *M* such that $\mathscr{L}(M) = L$.
- Given a decider M, you can learn whether or not a string $w \in \mathcal{L}(M)$.
 - Run *M* on *w*.
 - Although it might take a staggeringly long time, M will eventually accept or reject w.
- The set ${\bf R}$ is the set of all decidable languages.

 $L \in \mathbf{R}$ iff *L* is decidable

R and **RE** Languages

- Intuitively, a language is in **RE** if there is some way that you could exhaustively search for a proof that $w \in L$.
 - If you find it, accept!
 - If you don't find one, keep looking!
- Intuitively, a language is in **R** if there is a concrete algorithm that can determine whether $w \in L$.
 - It tends to be much harder to show that a language is in ${f R}$ than in ${f RE}$.

The Limits of Computability

R

Regular DCFLs CFLS

RE

Μ

Outline for Today

- The Halting Problem
 - An important problem about TMs.
- co-RE Languages
 - Resolving a fundamental asymmetry.
- Mapping Reductions
 - A tool for finding unsolvable problems.

The Halting Problem

The Halting Problem

- The halting problem is the following problem:
 Given a TM M and string w, does M halt on w?
- Note that *M* doesn't have to *accept w*; it just has to *halt* on *w*.
- As a formal language:

 $HALT = \{ \langle M, w \rangle \mid M \text{ is a TM and} \\ M \text{ halts on } w. \}$

• Is $HALT \in \mathbf{R}$? Is $HALT \in \mathbf{RE}$?

HALT is Recognizable

• Consider this Turing machine:

 $H = "On input \langle M, w \rangle:$ Run M on w. If M accepts, accept. If M rejects, accept."

- Then H accepts $\langle M, w \rangle$ iff M halts on w.
- Thus $\mathcal{L}(H) = HALT$, so $HALT \in \mathbf{RE}$.

Theorem: HALT ∉ **R**.

(The halting problem is undecidable)

Proving $HALT \notin \mathbf{R}$

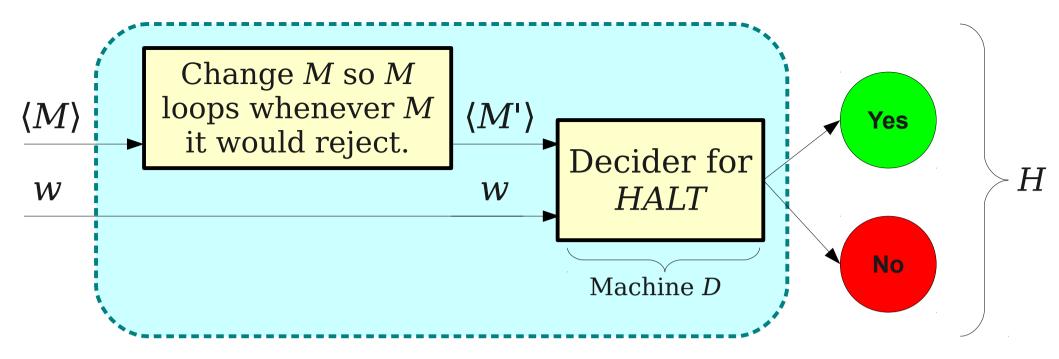
- Our proof will work as follows:
 - Suppose that $HALT \in \mathbf{R}$.
 - Using a decider for HALT, construct a decider for $A_{\rm TM}.$
 - Reach a contradiction, since there is no decider for A_{TM} ($A_{TM} \notin \mathbf{R}$).
 - Conclude, therefore, that $HALT \notin \mathbf{R}$.

Accepting, Rejecting, and Looping

- Suppose we have a TM *M* and a string *w*.
- Then *M* either
 - Accepts, or
 - **Does not accept** (by rejecting or looping).
- What if *M* never rejects?
- Then *M* either
 - Accepts, or
 - **Does not accept** (by looping).

The Key Insight

- If M never rejects, then
 M accepts w iff M halts on w
- In other words, if M never rejects, then $(M, w) \in A_{TM}$ iff $(M, w) \in HALT$
- If we can modify an arbitrary TM M so that M never rejects, then a decider for *HALT* can be made to decide A_{TM} .
 - Since $A_{TM} \notin \mathbf{R}$, this is a contradiction!



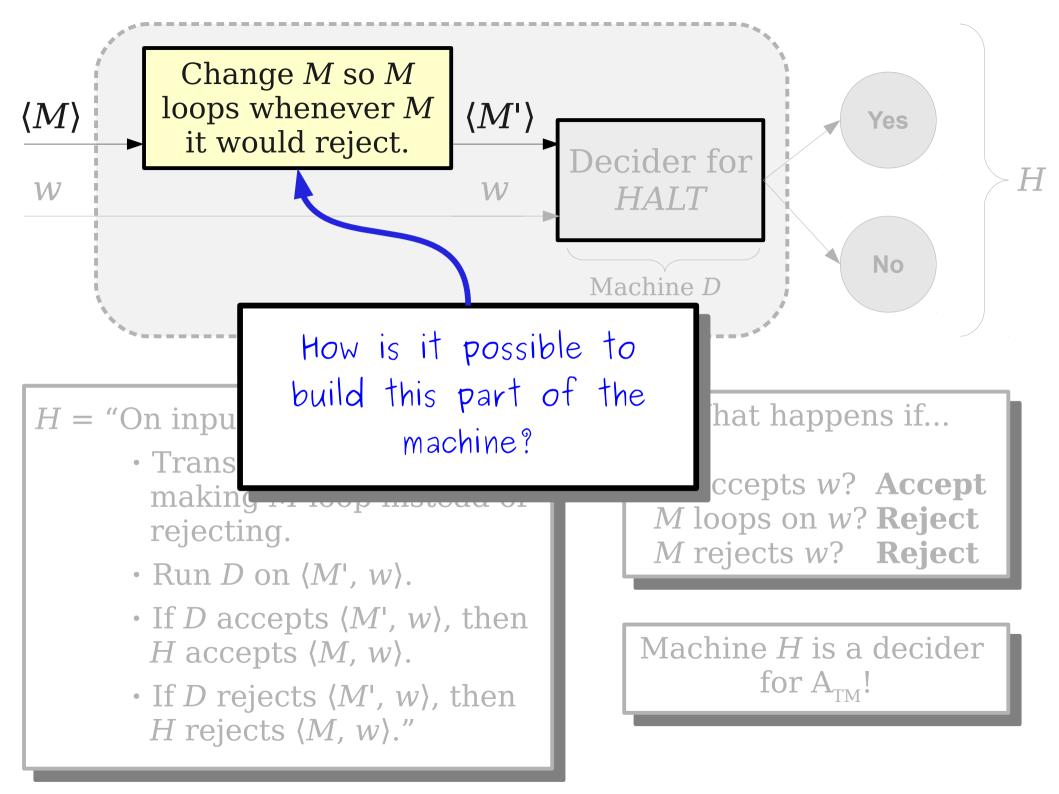
H = "On input $\langle M, w \rangle$:

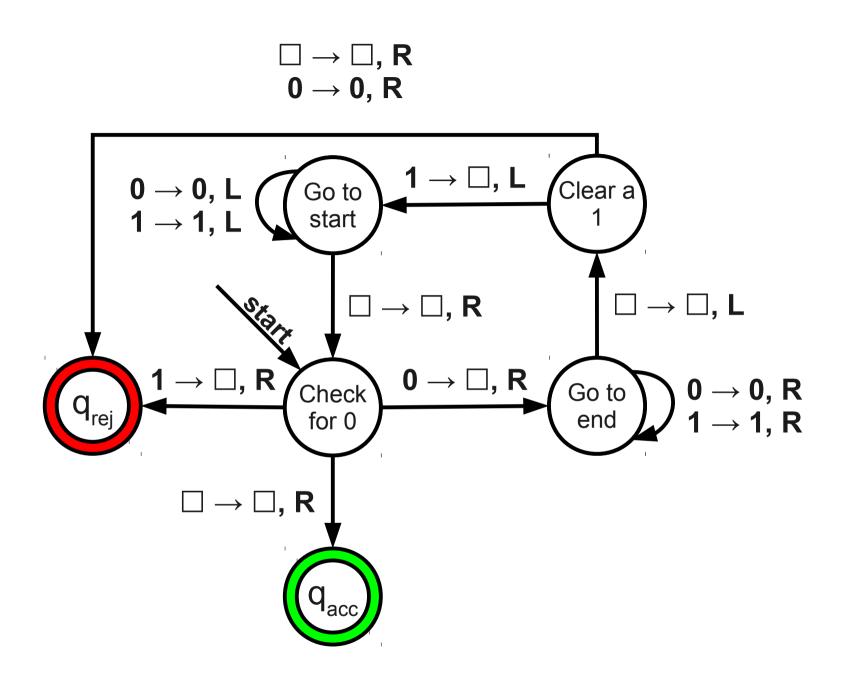
- Transform *M* into *M*' by making *M* loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

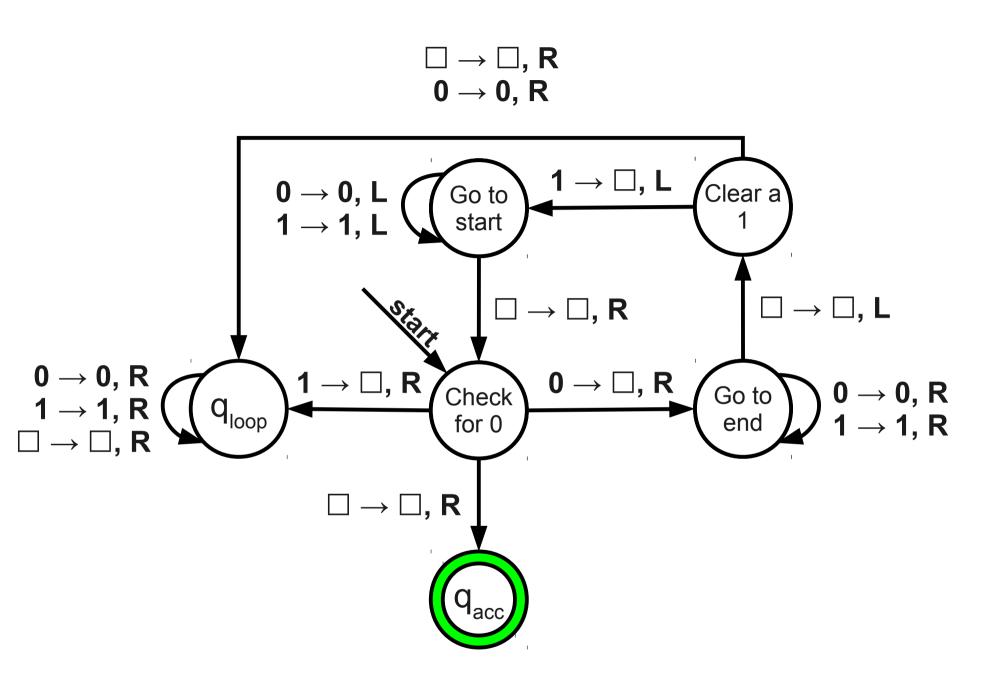
What happens if...

M accepts w?AcceptM loops on w?RejectM rejects w?Reject

Machine H is a decider for A_{TM} !







Theorem: HALT \notin **R**.

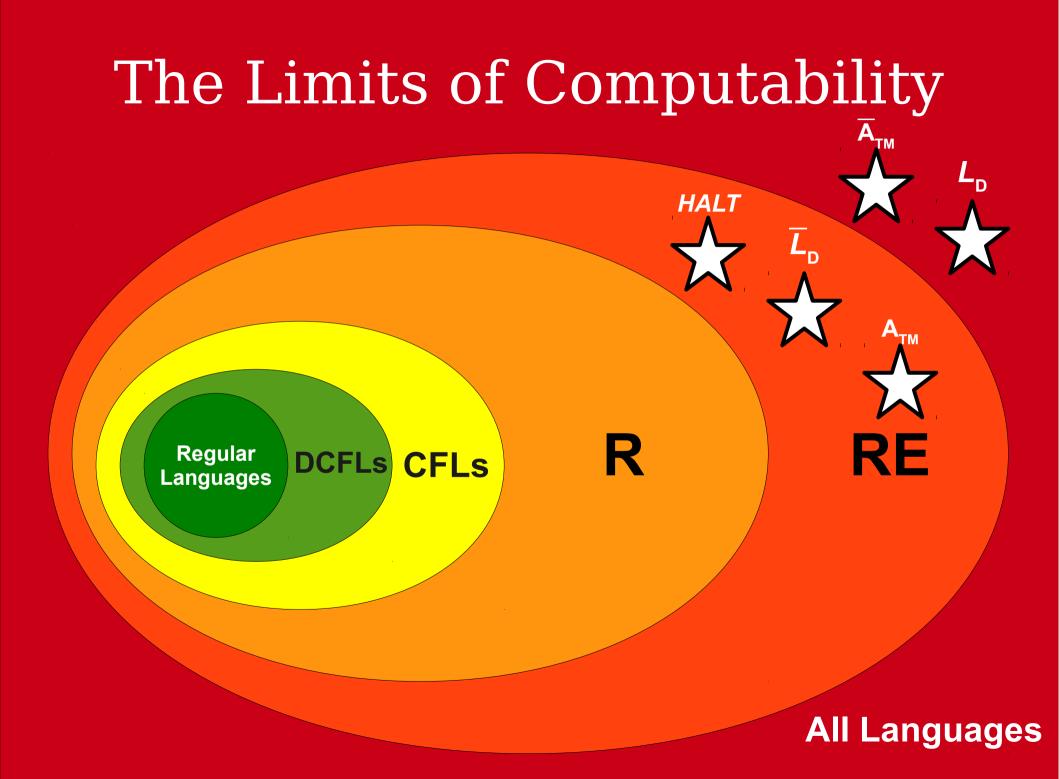
Proof: By contradiction; assume $HALT \in \mathbf{R}$. Then there must be some decider D for HALT. Consider the following TM H:

 $\begin{array}{l} H = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:} \\ & \text{Transform } M \text{ into } M' \text{ by making } M' \text{ loop whenever } M \text{ rejects.} \\ & \text{Run } D \text{ on } \langle M', w \rangle. \\ & \text{If } D \text{ accepts } \langle M', w \rangle, \text{ then } H \text{ accepts } \langle M, w \rangle. \\ & \text{If } D \text{ rejects } \langle M', w \rangle, \text{ then } H \text{ rejects } \langle M, w \rangle. \end{array}$

We claim that *H* is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so *HALT* $\notin \mathbf{R}$, as required.

First, we prove *H* is a decider. Note that on any input $\langle M, w \rangle$, *H* constructs the machine *M*' (which can be done in finite time), then runs *D* on $\langle M', w \rangle$. Since *D* is a decider, *D* always halts. Since *H* halts as soon as *D* halts, we know *H* halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that *H* halts on all inputs, so *H* is a decider.

Next, we prove that $\mathscr{L}(H) = A_{TM}$. To see this, note that H accepts $\langle M, w \rangle$ iff D accepts $\langle M', w \rangle$. Since D decides HALT, D accepts $\langle M', w \rangle$ iff M' halts on w. By construction, M' halts iff it accepts, so M' halts on w iff M' accepts w. Again by construction, M' accepts w iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus H accepts $\langle M, w \rangle$ iff $\langle M, w \rangle \in A_{TM}$, and so $\mathscr{L}(H) = A_{TM}$, as required.

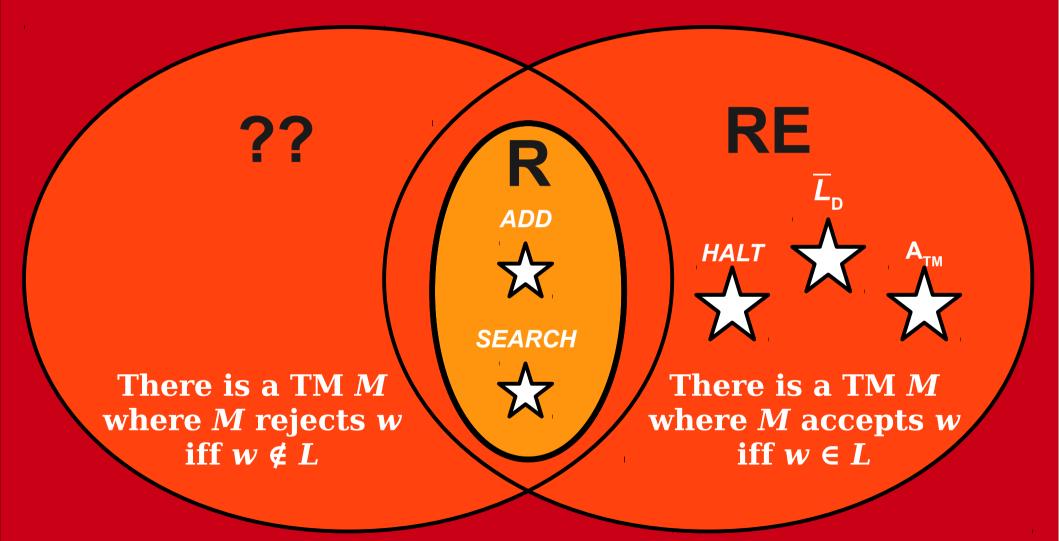


$\boldsymbol{A}_{\!_{TM}}$ and $H\!ALT$

- Both A_{TM} and *HALT* are undecidable.
 - There is no way to decide whether a TM will accept or eventually terminate.
- However, both $A_{_{\rm TM}}$ and HALT are recognizable.
 - We can always run a TM on a string *w* and accept if that TM accepts or halts.
- Intuition: The only general way to learn what a TM will do on a given string is to run it and see what happens.

Resolving an Asymmetry

The Limits of Computability



A New Complexity Class

- A language L is in **RE** iff there is a TM M such that
 - if $w \in L$, then M accepts w.
 - if $w \notin L$, then *M* does not accept *w*.
- A TM *M* of this sort is called a *recognizer*, and *L* is called *recognizable*.
- A language L is in co-RE iff there is a TM M such that
 - if $w \in L$, then *M* does not reject *w*.
 - if $w \notin L$, then *M* rejects *w*.
- A TM M of this sort is called a *co-recognizer*, and *L* is called *co-recognizable*.

RE and co-**RE**

- Intuitively, **RE** consists of all problems where a TM can exhaustively search for proof that $w \in L$.
 - If $w \in L$, the TM will find the proof.
 - If $w \notin L$, the TM cannot find a proof.
- Intuitively, co-**RE** consists of all problems where a TM can exhaustively search for a disproof that $w \in L$.
 - If $w \in L$, the TM cannot find the disproof.
 - If $w \notin L$, the TM will find the disproof.

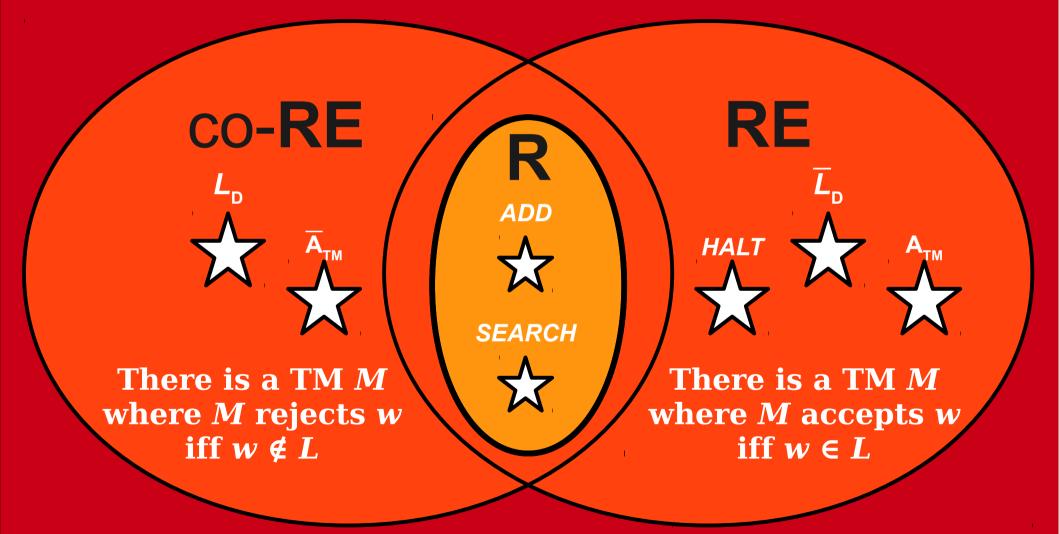
RE and co-**RE** Languages

- A_{TM} is an **RE** language:
 - Simulate the TM *M* on the string *w*.
 - If you find that *M* accepts *w*, accept.
 - If you find that *M* rejects *w*, reject.
 - (If *M* loops, we implicitly loop forever)
- \overline{A}_{TM} is a co-**RE** language:
 - Simulate the TM *M* on the string *w*.
 - If you find that *M* accepts *w*, reject.
 - If you find that *M* rejects *w*, accept.
 - (If *M* loops, we implicitly loop forever)

RE and co-**RE** Languages

- $\overline{L}_{\rm D}$ is an **RE** language.
 - Simulate M on $\langle M \rangle$.
 - If you find that M accepts $\langle M \rangle$, accept.
 - If you find that M rejects $\langle M \rangle$, reject.
 - (If *M* loops, we implicitly loop forever)
- $L_{\rm D}$ is a co-**RE** language.
 - Simulate M on $\langle M \rangle$.
 - If you find that M accepts $\langle M \rangle$, reject.
 - If you find that M rejects $\langle M \rangle$, accept.
 - (If *M* loops, we implicitly loop forever)

The Limits of Computability



RE and co-**RE**

Theorem: $L \in \mathbf{RE}$ iff $\overline{L} \in \mathbf{co} \cdot \mathbf{RE}$.

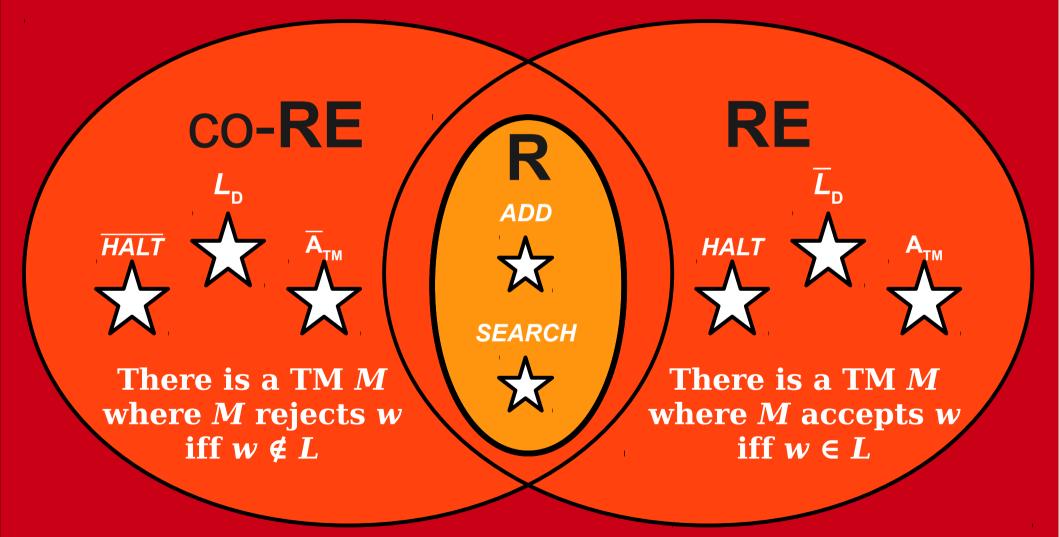
Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

 $\begin{array}{l}M' \text{ rejects } w\\ \text{iff } M \text{ accepts } w\\ \text{ iff } w \in L\\ \text{ iff } w \notin \overline{L}.\end{array}$

 $\begin{array}{l}M' \text{ does not reject } w\\ \text{iff } M' \text{ accepts } w \text{ or } M' \text{ loops on } w\\ \text{iff } M \text{ rejects } w \text{ or } M \text{ loops on } w\\ \text{ iff } w \notin L\\ \text{ iff } w \in \overline{L}.\end{array}$

The same approach works if we flip the accept and reject states of a co-recognizer for \overline{L} .

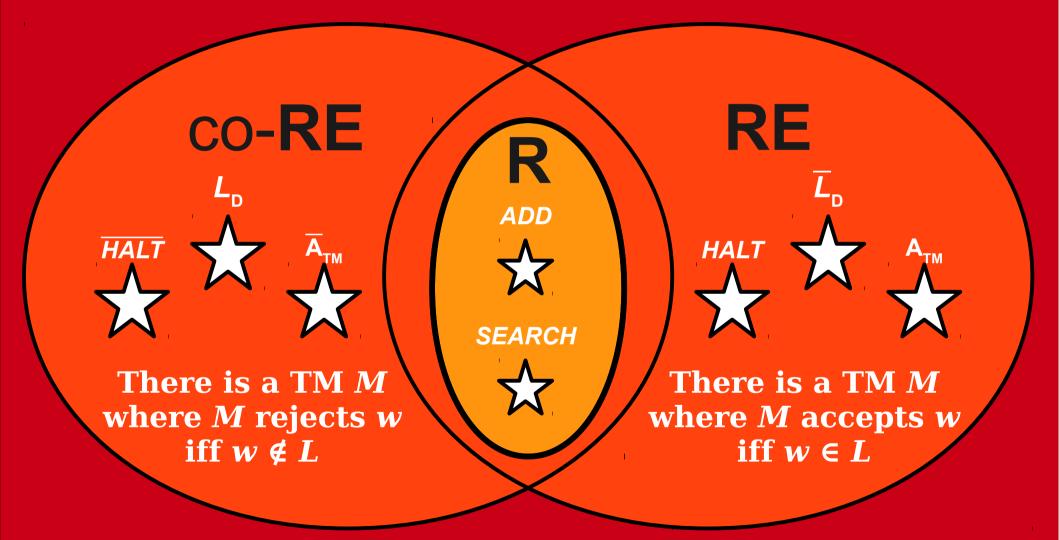
The Limits of Computability



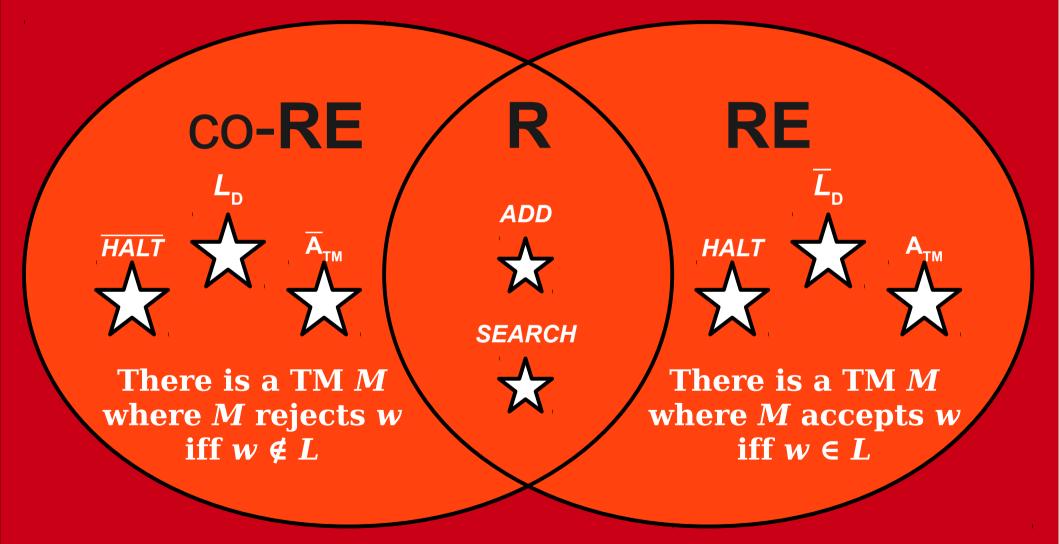
R, RE, and co-RE

- Every language in **R** is in both **RE** and co-**RE**.
- Why?
 - A decider for L accepts all $w \in L$ and rejects all $w \notin L$.
- In other words, $\mathbf{R} \subseteq \mathbf{RE} \cap \mathbf{co} \cdot \mathbf{RE}$.
- **Question:** Does $\mathbf{R} = \mathbf{R}\mathbf{E} \cap \text{co-}\mathbf{R}\mathbf{E}$?

Which Picture is Correct?



Which Picture is Correct?



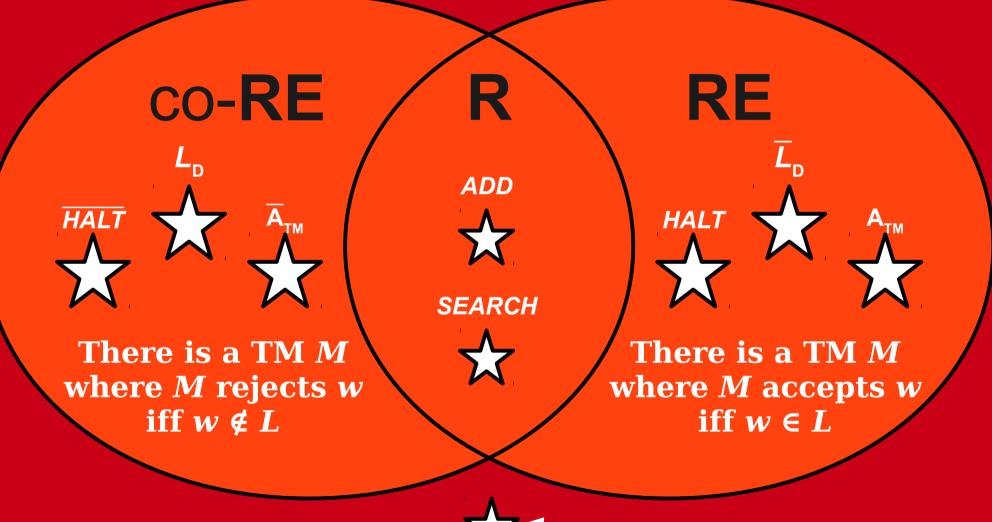
R, RE, and co-RE

- **Theorem:** If $L \in \mathbf{RE}$ and $L \in \mathbf{co}$ -**RE**, then $L \in \mathbf{R}$.
- **Proof sketch:** Since $L \in \mathbf{RE}$, there is a recognizer M for it. Since $L \in \text{co-RE}$, there is a co-recognizer \overline{M} for it.

This TM *D* is a decider for *L*:

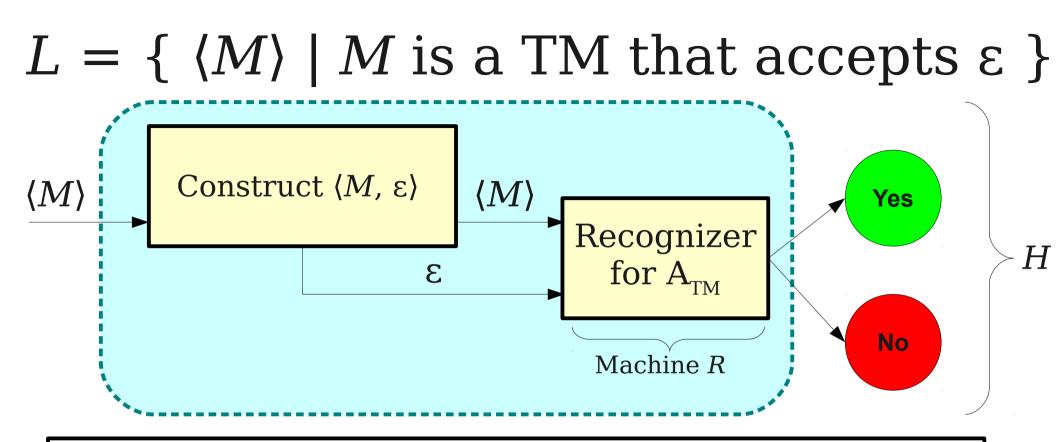
 $\begin{array}{l} D = \text{``On input } w: \\ & \text{Run } M \text{ on } w \text{ and } \overline{M} \text{ on } w \text{ in parallel.} \\ & \text{If } \underline{M} \text{ accepts } w, \text{ accept.} \\ & \text{If } \overline{M} \text{ rejects } w, \text{ reject.} \end{array}$

The Limits of Computability



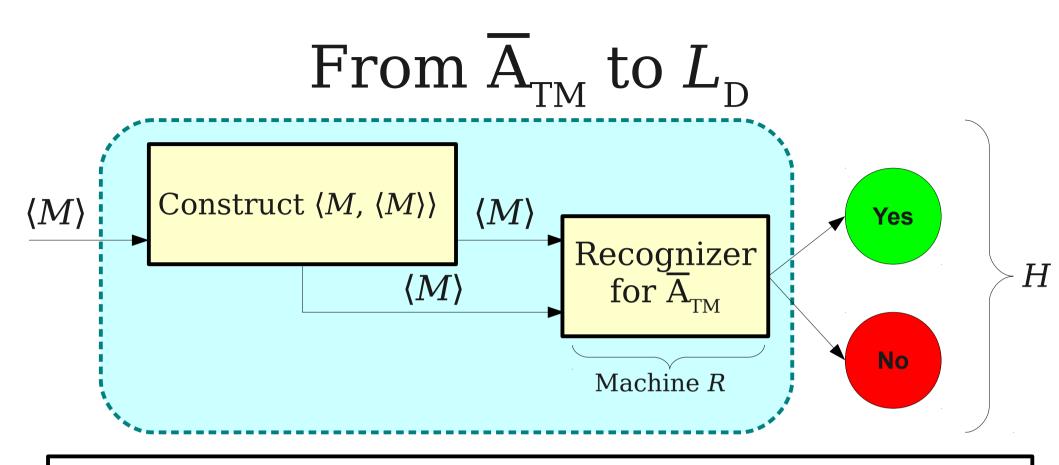
- What's out here?

A Repeating Pattern



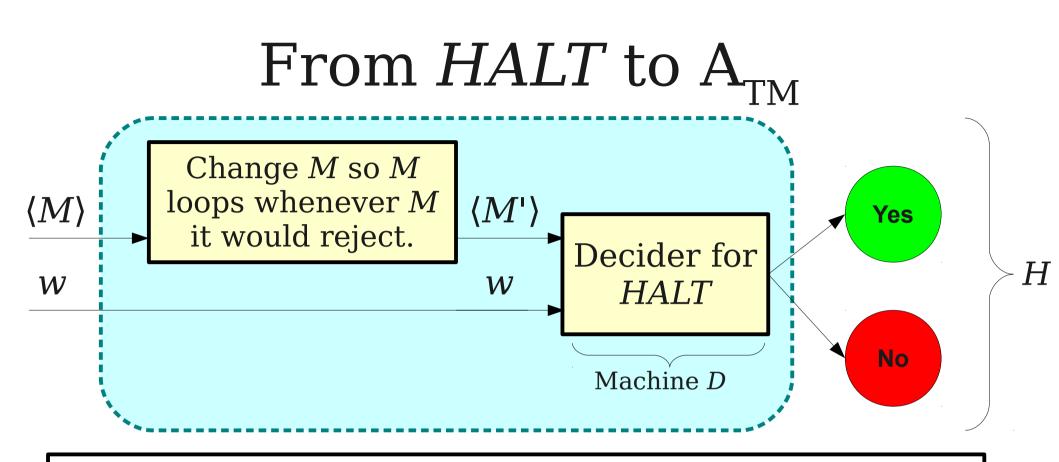
H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \varepsilon \rangle$.
- Run R on $\langle M, \varepsilon \rangle$.
- If *R* accepts $\langle M, \varepsilon \rangle$, then *H* accepts $\langle M, \varepsilon \rangle$.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects $\langle M, \varepsilon \rangle$."



H = "On input $\langle M \rangle$:

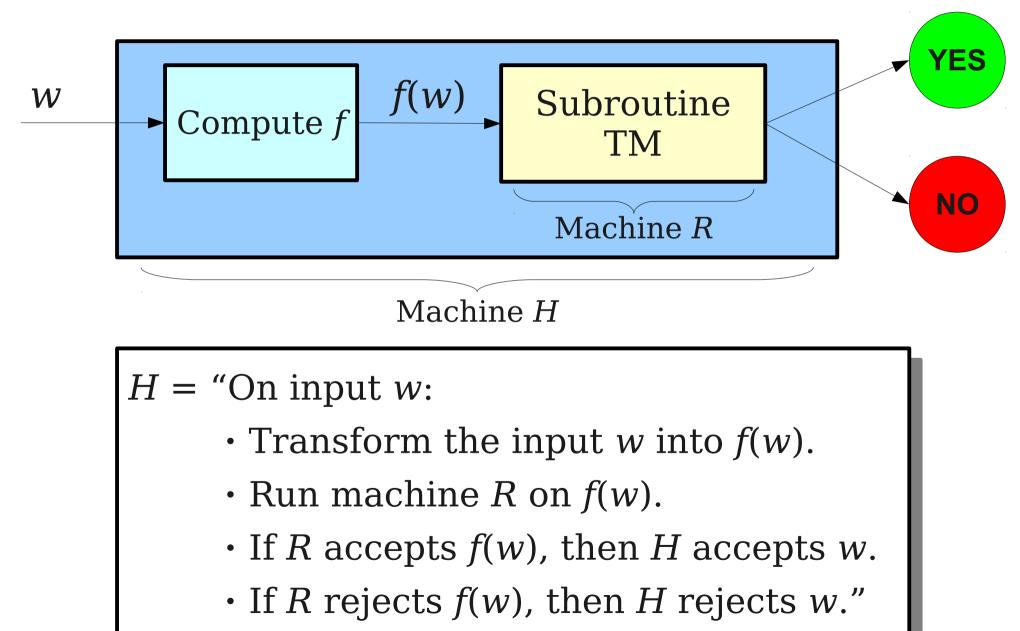
- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M, \langle M \rangle \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M, \langle M \rangle \rangle$."



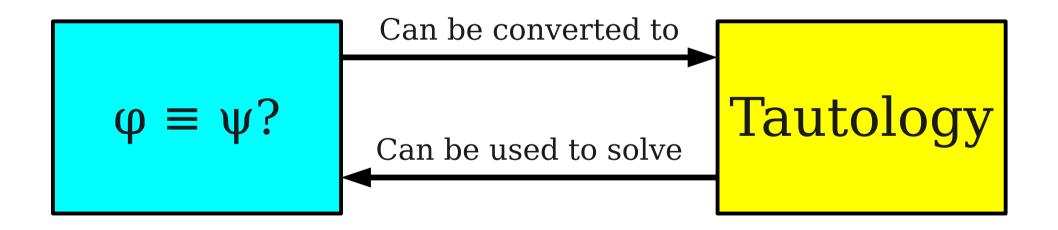
H = "On input $\langle M, w \rangle$:

- Build *M* into *M*' so *M*' loops when *M* rejects.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

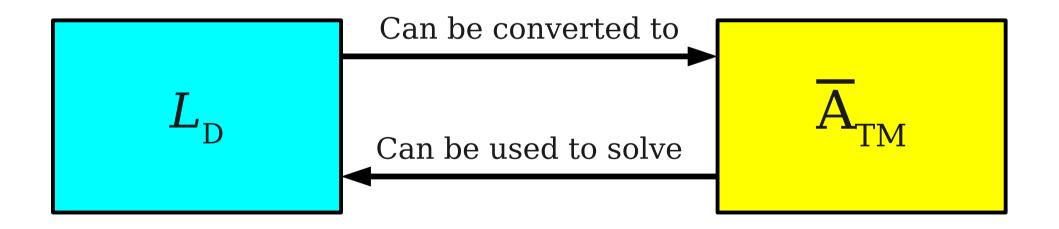
The General Pattern



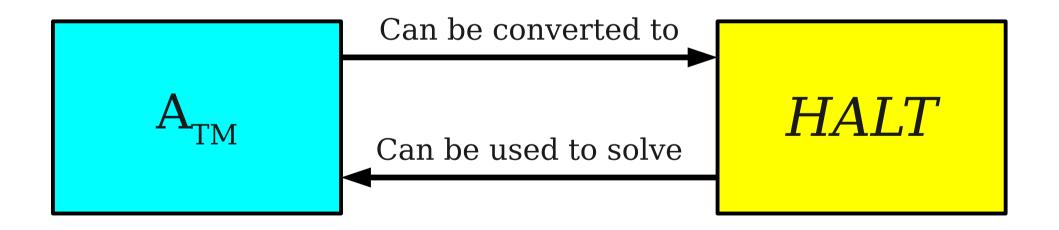
• Intuitively, problem A **reduces** to problem B iff a solver for B can be used to solve problem A.



• Intuitively, problem A **reduces** to problem B iff a solver for B can be used to solve problem A.



• Intuitively, problem A **reduces** to problem B iff a solver for B can be used to solve problem A.



- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.
- Reductions can be used to show certain problems are "solvable:"

If A reduces to B and B is "solvable," then A is "solvable."

 Reductions can be used to show certain problems are "unsolvable:"

If A reduces to B and A is "unsolvable," then B is "unsolvable."

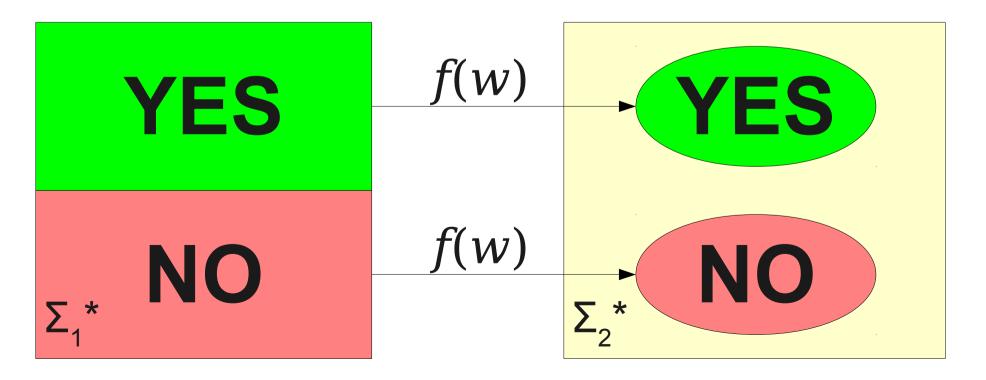
Formalizing Reductions

- In order to make the previous intuition more rigorous, we need to formally define reductions.
- There are many ways to do this; we'll explore two:
 - Mapping reducibility (today / Monday), and
 - **Polynomial-time reducibility** (next week).

Defining Reductions

• A **reduction** from *A* to *B* is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$



Defining Reductions

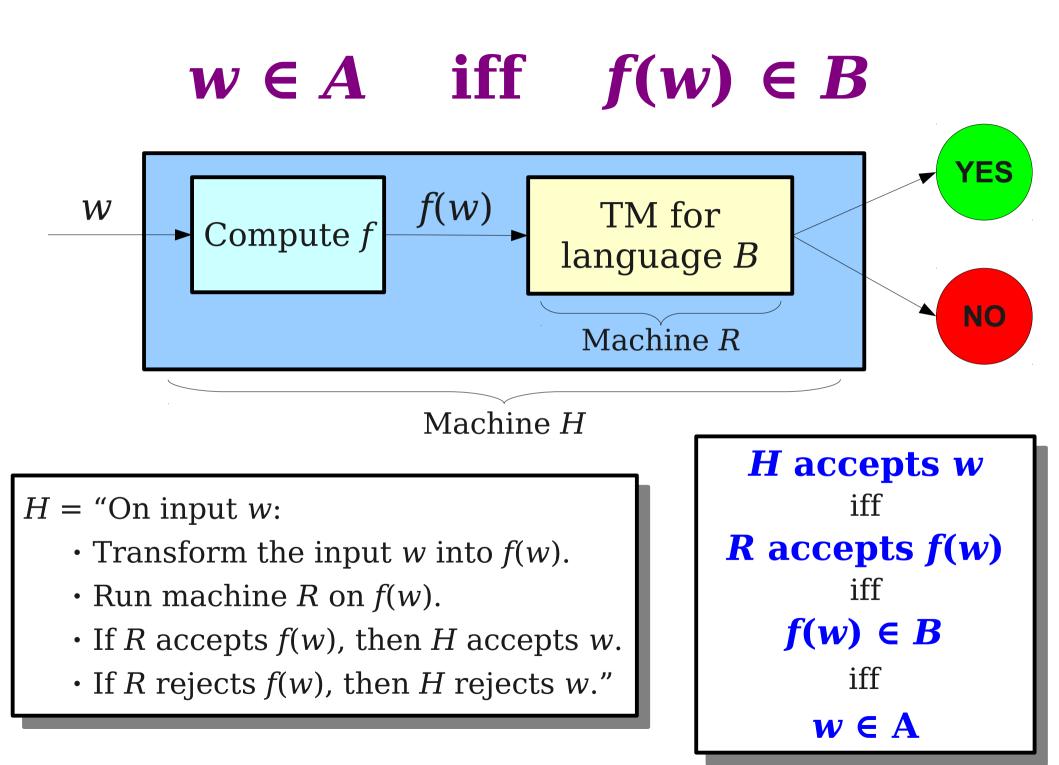
• A **reduction** from *A* to *B* is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

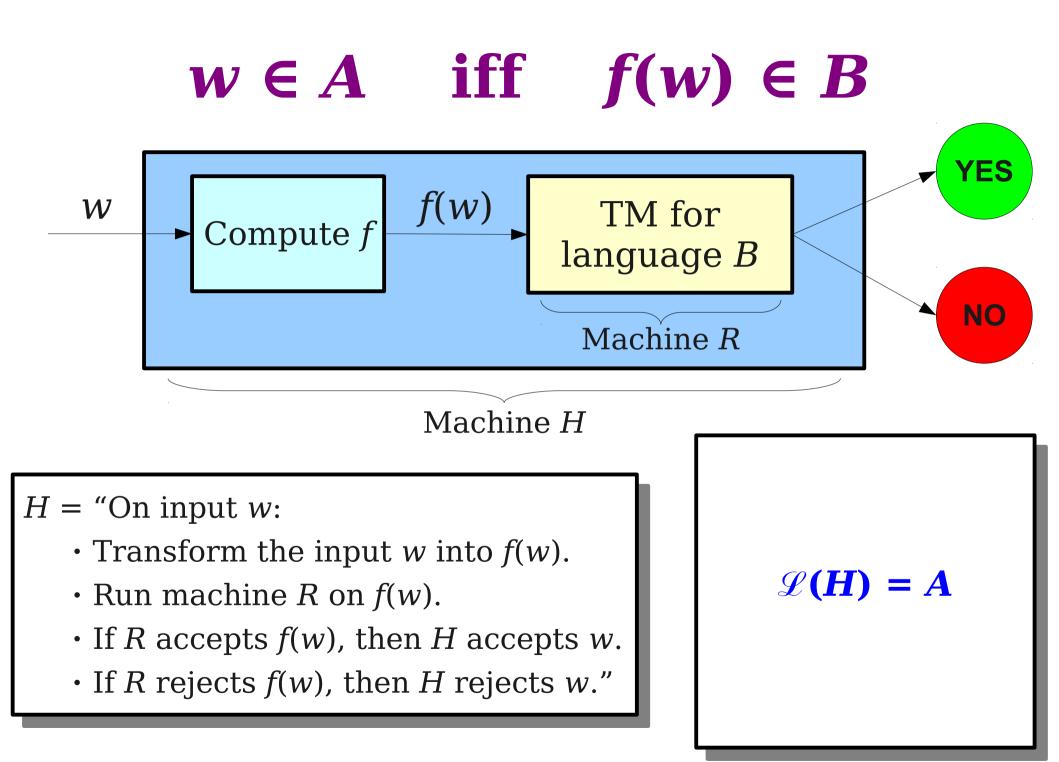
For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$

- Every $w \in A$ maps to some $f(w) \in B$.
- Every $w \notin A$ maps to some $f(w) \notin B$.
- *f* does not have to be injective or surjective.

Why Reductions Matter

- If language A reduces to language B, we can use a recognizer / co-recognizer / decider for B to recognize / co-recognize / decide problem A.
 - (There's a slight catch we'll talk about this in a second).
- How is this possible?





A Problem

• Recall: *f* is a reduction from *A* to *B* iff

$w \in A$ iff $f(w) \in B$

- Under this definition, any language A reduces to any language B unless $B = \emptyset$ or Σ^* .
- Since $B \neq \emptyset$ and $B \neq \Sigma^*$, there is some $w_{yes} \in B$ and some $w_{no} \notin B$.
- Define $f: \Sigma_1^* \to \Sigma_2^*$ as follows:

If $w \in A$, then $f(w) = w_{ves}$

If $w \notin A$, then $f(w) = w_{no}$

• Then *f* is a reduction from *A* to *B*.

A Problem

- Example: let's reduce $L_{\rm D}$ to 0*1*.
- Take $w_{yes} = 01$, $w_{no} = 10$.
- Then f(w) is defined as
 - If $w \in L_{D}$, f(w) = 01.
 - If $w \notin L_{D}$, f(w) = 10.
- There is no TM that can actually evaluate the function f(w) on all inputs, since no TM can decide whether or not $w \in L_{D}$.

A Problem

- Example: let's reduce $L_{\rm D}$ to 0*1*.
- Take $w_{yes} = 01$, $w_{no} = 10$.
- Then f(w) is defined as
 - If $w \in L_{D}$, f(w) = 01.
 - If $w \notin L_{D}$, f(w) = 10.
- There is no TM that can actually evaluate the function f(w) on all inputs, since no TM can decide whether or not $w \in L_{D}$.

Computable Functions

- This general reduction is mathematically well-defined, but might be impossible to actually compute!
- To fix our definition, we need to introduce the idea of a computable function.
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **computable function** if there is some TM *M* with the following behavior:

"On input *w*:

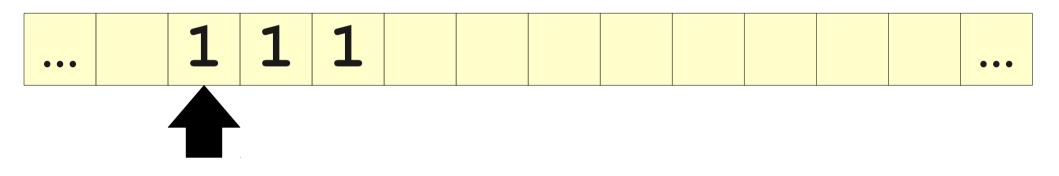
Compute f(w) and write it on the tape.

Move the tape head to the start of f(w).

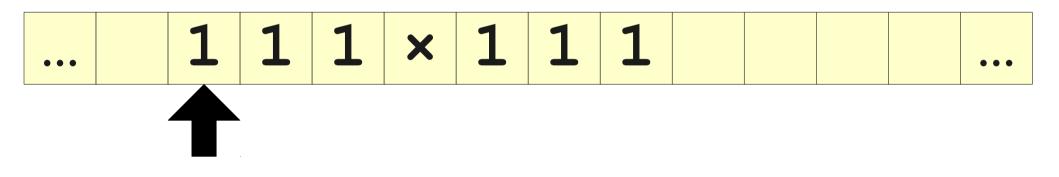
Halt."

Computable Functions

 $f(1^n) = 1^{3n+1}$

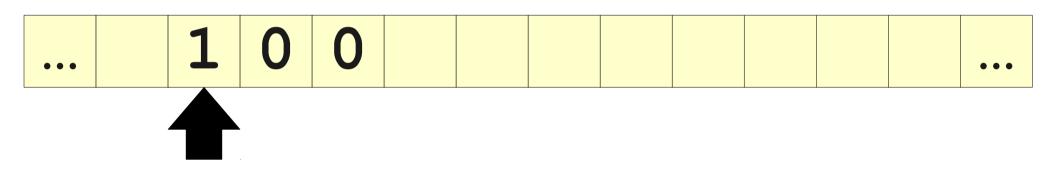


Computable Functions $f(w) = \begin{cases} 1^{mn} \text{ if } w = 1^n \times 1^m \\ \varepsilon \text{ otherwise} \end{cases}$



Computable Functions

$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$



Mapping Reductions

- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **mapping reduction** from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - *f* is a computable function.
- Intuitively, a mapping reduction from *A* to *B* says that a computer can transform any instance of *A* into an instance of *B* such that the answer to *B* is the answer to *A*.