
  

co-RE and Reducibility



  

Friday Four Square!
Today at 4:15PM, Outside Gates



  

Announcements

● Problem Set 6 graded, will be returned at 
end of lecture.
● Late submissions will be graded by Monday.

● Problem Set 7 due this Monday, March 4 
at the start of lecture.
● We are working on shuffling around OH for 

this weekend; we'll send out an email with 
updates.



  

Major Ideas from Last Time

● Some Turing machines always halt; they never 
go into an infinite loop.

● Turing machines of this sort are called 
deciders.

● For deciders, accepting is the same as not 
rejecting and rejecting is the same as not 
accepting.

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Major Ideas from Last Time

● A language L is called decidable iff there is a 
decider M such that (ℒ M) = L.

● Given a decider M, you can learn whether or not a 
string w ∈ (ℒ M).

● Run M on w.
● Although it might take a staggeringly long time, M 

will eventually accept or reject w.

● The set R is the set of all decidable languages.

L ∈ R   iff   L is decidable



  

R and RE Languages

● Intuitively, a language is in RE if there is 
some way that you could exhaustively 
search for a proof that w ∈ L.
● If you find it, accept!
● If you don't find one, keep looking!

● Intuitively, a language is in R if there is a 
concrete algorithm that can determine 
whether w ∈ L.
● It tends to be much harder to show that a 

language is in R than in RE.
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Outline for Today

● The Halting Problem
● An important problem about TMs.

● co-RE Languages
● Resolving a fundamental asymmetry.

● Mapping Reductions
● A tool for finding unsolvable problems.



  

The Halting Problem



  

The Halting Problem

● The halting problem is the following problem:

Given a TM M and string w,
does M halt on w? 

● Note that M doesn't have to accept w; it just 
has to halt on w.

● As a formal language:

HALT = { ⟨M, w⟩ | M is a TM and
                                 M halts on w. }  

● Is HALT ∈ R?  Is HALT ∈ RE?



  

HALT is Recognizable

● Consider this Turing machine:

H = “On input ⟨M, w⟩:

             Run M on w.

             If M accepts, accept.

             If M rejects, accept.”

● Then H accepts ⟨M, w⟩ iff M halts on w.
● Thus (ℒ H) = HALT, so HALT ∈ RE.



  

Theorem: HALT ∉ R.

(The halting problem is undecidable)



  

Proving HALT ∉ R

● Our proof will work as follows:
● Suppose that HALT ∈ R.
● Using a decider for HALT, construct a 

decider for ATM.

● Reach a contradiction, since there is no 
decider for ATM (ATM ∉ R).

● Conclude, therefore, that HALT ∉ R.



  

Accepting, Rejecting, and Looping

● Suppose we have a TM M and a string w.
● Then M either

● Accepts, or
● Does not accept (by rejecting or looping).

● What if M never rejects?
● Then M either

● Accepts, or
● Does not accept (by looping).



  

The Key Insight

● If M never rejects, then

M accepts w   iff   M halts on w 
● In other words, if M never rejects, then

⟨M, w⟩ ∈ ATM   iff   ⟨M, w⟩ ∈ HALT  

● If we can modify an arbitrary TM M so 
that M never rejects, then a decider for 
HALT can be made to decide ATM.

● Since ATM ∉ R, this is a contradiction!



  

Decider for
HALT

Yes

No

⟨M'⟩ 

w  

Machine D

 

H = “On input ⟨M, w⟩:
 

· Transform M into M' by 
  making M loop instead of
  rejecting.

 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then
  H accepts ⟨M, w⟩.

 

· If D rejects ⟨M', w⟩, then
  H rejects ⟨M, w⟩.”

 

H = “On input ⟨M, w⟩:
 

· Transform M into M' by 
  making M loop instead of
  rejecting.

 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then
  H accepts ⟨M, w⟩.

 

· If D rejects ⟨M', w⟩, then
  H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w                                         

⟨M⟩      

H

What happens if...

  M accepts w? Accept
  M loops on w? Reject
  M rejects w? Reject

What happens if...

  M accepts w? Accept
  M loops on w? Reject
  M rejects w? Reject

Machine H is a decider 
for ATM!

Machine H is a decider 
for ATM!
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How is it possible to
 build this part of the 

machine?
 

 

How is it possible to
 build this part of the 

machine?
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Theorem: HALT ∉ R.
Proof: By contradiction; assume HALT ∈ R.  Then there must be some
   decider D for HALT.  Consider the following TM H:
 

H = “On input ⟨M, w⟩, where M is a TM and w is a string:
Transform M into M' by making M' loop whenever M rejects.
Run D on ⟨M', w⟩.
If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

 

   We claim that H is a decider for ATM.  This means that ATM ∈ R, which
   contradicts the fact that ATM ∉ R.  This means our assumption was
   wrong, and so HALT ∉ R, as required.
 

   First, we prove H is a decider.  Note that on any input ⟨M, w⟩, H
   constructs the machine M' (which can be done in finite time), then runs
   D on ⟨M', w⟩.  Since D is a decider, D always halts.  Since H halts as
   soon as D halts, we know H halts on ⟨M, w⟩.  Since our choice of ⟨M, w⟩
   was arbitrary, this means that H halts on all inputs, so H is a decider.
 

   Next, we prove that (ℒ H) = ATM.  To see this, note that H accepts ⟨M, w⟩
   iff D accepts ⟨M', w⟩.  Since D decides HALT, D accepts ⟨M', w⟩ iff M'
   halts on w.  By construction, M' halts iff it accepts, so M' halts on w iff
   M' accepts w.  Again by construction, M' accepts w iff M accepts w.
   Finally, M accepts w iff ⟨M, w⟩ ∈ ATM.  Thus H accepts ⟨M, w⟩ iff
   ⟨M, w⟩ ∈ ATM, and so (ℒ H) = ATM, as required. ■
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ATM and HALT

● Both ATM and HALT are undecidable.

● There is no way to decide whether a TM will 
accept or eventually terminate.

● However, both ATM and HALT are recognizable.

● We can always run a TM on a string w and 
accept if that TM accepts or halts.

● Intuition: The only general way to learn what 
a TM will do on a given string is to run it and 
see what happens.



  

Resolving an Asymmetry
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A New Complexity Class

● A language L is in RE iff there is a TM M such that
● if w ∈ L, then M accepts w.
● if w ∉ L, then M does not accept w.

● A TM M of this sort is called a recognizer, and L is 
called recognizable.

● A language L is in co-RE iff there is a TM M such 
that

● if w ∈ L, then M does not reject w.
● if w ∉ L, then M rejects w.

● A TM M of this sort is called a co-recognizer, and 
L is called co-recognizable.



  

RE and co-RE

● Intuitively, RE consists of all problems where a 
TM can exhaustively search for proof that 
w ∈ L.
● If w ∈ L, the TM will find the proof.
● If w ∉ L, the TM cannot find a proof.

● Intuitively, co-RE consists of all problems 
where a TM can exhaustively search for a 
disproof that w ∈ L.
● If w ∈ L, the TM cannot find the disproof.
● If w ∉ L, the TM will find the disproof.



  

RE and co-RE Languages

● ATM is an RE language:

● Simulate the TM M on the string w.
● If you find that M accepts w, accept.
● If you find that M rejects w, reject.
● (If M loops, we implicitly loop forever)

● ATM is a co-RE language:

● Simulate the TM M on the string w.
● If you find that M accepts w, reject.
● If you find that M rejects w, accept.
● (If M loops, we implicitly loop forever)



  

RE and co-RE Languages

● LD is an RE language.

● Simulate M on ⟨M⟩.
● If you find that M accepts ⟨M⟩, accept.
● If you find that M rejects ⟨M⟩, reject.
● (If M loops, we implicitly loop forever)

● LD is a co-RE language.

● Simulate M on ⟨M⟩.
● If you find that M accepts ⟨M⟩, reject.
● If you find that M rejects ⟨M⟩, accept.
● (If M loops, we implicitly loop forever)
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RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to 
make machine M'.  Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w 

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w 

iff w ∉ L
iff w ∈ L.



  

The Limits of Computability
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R, RE, and co-RE

● Every language in R is in both RE and 
co-RE.

● Why?
● A decider for L accepts all w ∈ L and rejects 

all w ∉ L.

● In other words, R ⊆ RE ∩ co-RE.
● Question: Does R = RE ∩ co-RE?



  

Which Picture is Correct?
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R, RE, and co-RE

● Theorem: If L ∈ RE and L ∈ co-RE, then
    L ∈ R.

● Proof sketch: Since L ∈ RE, there is a 
recognizer M for it.  Since L ∈ co-RE, 
there is a co-recognizer M for it.

This TM D is a decider for L:
 

 D = “On input w:
Run M on w and M on w in parallel.
If M accepts w, accept.
If M rejects w, reject.

 

 

 D = “On input w:
Run M on w and M on w in parallel.
If M accepts w, accept.
If M rejects w, reject.
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A Repeating Pattern



  

Recognizer
for ATM

Yes

No

⟨M⟩ 

ε

Machine R

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ε⟩.
 

· Run R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.
 

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ε⟩.
 

· Run R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.
 

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

Construct ⟨M, ε⟩ ⟨M⟩      

H

L = { ⟨M⟩ | M is a TM that accepts ε }
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· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.
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Construct ⟨M, ⟨M⟩⟩ ⟨M⟩      

H

From ATM to LD



  

Decider for
HALT

Yes

No

⟨M'⟩ 

w  

Machine D

 

H = “On input ⟨M, w⟩:
 

· Build M into M' so M' loops when M rejects.
 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
 

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

 

H = “On input ⟨M, w⟩:
 

· Build M into M' so M' loops when M rejects.
 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
 

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w                                         

⟨M⟩      

H

From HALT to ATM



  

Subroutine
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Machine R

YES

NO

Compute f
f(w)w        

Machine H

The General Pattern

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

φ ≡ ψ? Tautology

Can be converted to

Can be used to solve
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Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

● Reductions can be used to show certain 
problems are “solvable:”

If A reduces to B and B is “solvable,”    
then A is “solvable.”    

● Reductions can be used to show certain 
problems are “unsolvable:”

If A reduces to B and A is “unsolvable,”  
then B is “unsolvable.”    



  

Formalizing Reductions

● In order to make the previous intuition 
more rigorous, we need to formally define 
reductions.

● There are many ways to do this; we'll 
explore two:
● Mapping reducibility (today / Monday), and
● Polynomial-time reducibility (next week).



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B      

NO
Σ

1
* Σ

2
*

YES YES

NO

f(w)   

f(w)   



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B      

● Every w ∈ A maps to some f(w) ∈ B.
● Every w ∉ A maps to some f(w) ∉ B.
● f does not have to be injective or 

surjective.



  

Why Reductions Matter

● If language A reduces to language B, we 
can use a recognizer / co-recognizer / 
decider for B to recognize / 
co-recognize / decide problem A.
● (There's a slight catch – we'll talk about this 

in a second).

● How is this possible?
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NO
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f(w)w    

Machine H

w ∈ A    iff    f(w) ∈ B
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· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

H accepts w
  

iff
  

R accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A

H accepts w
  

iff
  

R accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A
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H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
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· If R rejects f(w), then H rejects w.”

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

ℒ(H) = Aℒ(H) = A



  

A Problem

● Recall: f is a reduction from A to B iff

w ∈ A   iff   f(w) ∈ B
● Under this definition, any language A reduces to any 

language B unless B = Ø or Σ*.

● Since B ≠ Ø and B ≠ Σ*, there is some wyes ∈ B and 
some wno ∉ B.

● Define f : Σ1* → Σ2* as follows:

If w ∈ A, then f(w) = wyes  

If w ∉ A, then f(w) = wno  

● Then f is a reduction from A to B.



  

A Problem

● Example: let's reduce LD to 0*1*.

● Take wyes = 01, wno = 10.

● Then f(w) is defined as
● If w ∈ LD, f(w) = 01.

● If w ∉ LD, f(w) = 10.

● There is no TM that can actually evaluate 
the function f(w) on all inputs, since no 
TM can decide whether or not w ∈ LD.
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Computable Functions

● This general reduction is mathematically well-defined, 
but might be impossible to actually compute!

● To fix our definition, we need to introduce the idea of a 
computable function.

● A function f : Σ1* → Σ2* is called a computable 
function if there is some TM M with the following 
behavior:

          “On input w:

                Compute f(w) and write it on the tape.

                Move the tape head to the start of f(w).

                Halt.”



  

Computable Functions

f(1n) = 13n+1

… 1 1 1 …



  

Computable Functions

f(w) =               
                            1mn if w = 1n×1m

                         ε    otherwise

… 1 1 1 × 1 1 1 …



  

Computable Functions

f(⟨M⟩) = ⟨M, ⟨M⟩⟩

… 1 0 0 …



  

Mapping Reductions

● A function f : Σ1* → Σ2* is called a 
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A 
to B says that a computer can transform 
any instance of A into an instance of B 
such that the answer to B is the answer 
to A.
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