

Finite Automata
Part Three

Problem Set Four is
due in the box up

front.

Problem Set Four is
due in the box up

front.

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Can have zero or more transitions
defined for each state/symbol pair.

● An NFA N accepts a string w iff there is
some possible series of transitions N can
follow that ends in an accepting state.

q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

q0

start
q2

q3

0 1

ε

q4
0 q5

0 q5

q2

0

1

Designing NFAs

● When designing NFAs, embrace the
nondeterminism!

● Good model: Guess-and-check:
● Have the machine nondeterministically

guess what the right choice is.
● Have the machine deterministically check

that the choice was correct.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1

0 1

start Σ

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

New Stuff!

NFAs and DFAs

● Any language that can be accepted by a
DFA can be accepted by an NFA.

● Why?
● Just use the same set of transitions as

before.

● Question: Can any language accepted by
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!

Finite Automata

● NFAs and DFAs are finite automata; there
can only be finitely many states in an NFA
or DFA.

● An NFA can be in any combination of its
states, but there are only finitely many
possible combations.

● Idea: Build a DFA where each state of the
DFA corresponds to a set of states in the
NFA.

Simulating an NFA with a DFA

q1q0

start
q2

q3

0 1

ε

q4

0 q5

0 q5

q2

0

1

q03

start
q14

0

q

1

q5

0

q2

1

q2 q5

q1

 0

1 0

q3

 1

 0
1

q4 0

 10
1

0, 1

The Subset Construction

● This construction for transforming an NFA into a
DFA is called the subset construction (or
sometimes the powerset construction).
● States of the new DFA correspond to sets of states of the

NFA.
● The initial state is the start state, plus all states

reachable from the start state via ε-transitions.
● Transition on state S on character a is found by following

all possible transitions on a for each state in S, then
taking the set of states reachable from there by
ε-transitions.

● Accepting states are any set of states where some state
in the set is an accepting state.

● Read Sipser for a formal account.

The Subset Construction

● In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

● Fact: |℘(S)| = 2|S| for any finite set S.
● In the worst-case, the construction can

result in a DFA that is exponentially
larger than the original NFA.

● Interesting challenge: Find a language
for which this worst-case behavior occurs
(there are infinitely many of them!)

A language L is called a regular language
iff there exists a DFA D such that (ℒ D) = L.

An Important Result

Theorem: A language L is regular iff there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily
convert into an NFA. If L is accepted by
some NFA, we can use the subset
construction to convert it into a DFA that
accepts the same language, so L is
regular. ■

Announcements!

Problem Set Five

● Problem Set Five released, due on Monday,
November 4.
● Note the due date is Monday rather than

Friday.
● Late periods now carry over to Wednesday

rather than Monday.
● No checkpoint problem.

● Explore finite automata, regular languages,
and their properties!

Midterm Logistics

● Midterm is next Tuesday, October 29 from
7PM – 10PM.

● Covers material up through and including DFAs.
● Review handout on exam policies and procedures

for open-note and limited-computer policies.

● Alternate exams: Contact Keith ASAP if you
haven't heard back about alternate exams.

● Review session: 2:15PM – 4:15PM on Saturday in
room 370-370.

● Have questions for the review session: ask them on
Google Moderator!

Your Questions

“I am having trouble being confident in my
first order logic translations. Are there

ways to self check the translation?

Also, is it possible to release some more
English-to-first-order-logic translation

problems as practice‽”

“Diagonalization is a really cool and
powerful proof technique, but are there
other ways to show that that infinite sets

have different cardinalities? What happens
if the problem does not easily lend itself to

diagonal arguments?”

Back to Automata...

Why This Matters

● We now have two perspectives on regular
languages:
● Regular languages are languages accepted

by DFAs.
● Regular languages are languages accepted

by NFAs.

● We can now reason about the regular
languages in two different ways.

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

start

ε

ε

Machine for L1

Machine for L2Machine for
L1 ∪ L2

 L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

Hey, it's De
Morgan's laws!
Hey, it's De
Morgan's laws!

Concatenation

● The concatenation of two languages L1
and L2 over the alphabet Σ is the
language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● The set of strings that can be split into

two pieces: a piece from L₁ and a piece
from L₂.

● Conceptually similar to the Cartesian
product of two sets, only with strings.

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider
these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is

{ ThePuppyHugsTheWhale,
 TheWhaleLovesTheRainbow,
 TheRainbowJugglesTheRainbow, … }

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

● Idea: Run the automaton for L1 on w, and
whenever L1 reaches an accepting state,
optionally hand the rest off w to L2.

● If L2 accepts the remainder, then L1 accepted the first
part and the string is in L1L2.

● If L2 rejects the remainder, then the split was
incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

● Idea: Run the automaton for L1 on w, and
whenever L1 reaches an accepting state,
optionally hand the rest off w to L2.

● If L2 accepts the remainder, then L1 accepted the first
part and the string is in L1L2.

● If L2 rejects the remainder, then the split was
incorrect.

Concatenating Regular Languages

start

ε

ε

ε

start

Machine for
L1

Machine for
L2

Machine for L1L2

Lots and Lots of Concatenation

● Consider the language L = { aa, b }

● LL is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating triples of
strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

● LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

● We can define what it means to
“exponentiate” a language as follows:

● L0 = { ε }
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero

strings together is the empty string.

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together
works by concatenating n strings, then
concatenating one more.

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

● Mathematically:

w ∈ L* iff ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of
concatenating any number of copies of
strings in L together.

∪∞ Li L* =
i = 0

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● A Bad Line of Reasoning:

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is

regular.

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning About the Infinite

● If a series of finite objects all have some
property, their infinite union does not
necessarily have that property!
● No matter how many times we zigzag that line, it's

never straight.
● Concluding that it must be equal “in the limit” is

not mathematically valid (nor is it correct!)
● (This is why calculus is interesting).

● Better idea: Can we convert an NFA for the
language L to an NFA for the language L*?

The Kleene Star

εstart

ε

ε

Machine for L

Machine for L*

Question: Why add the new
state out front? Why not
just make the old start

state accepting?

Question: Why add the new
state out front? Why not
just make the old start

state accepting?

Summary

● NFAs are a powerful type of automaton that allows
for nondeterministic choices.

● NFAs can also have ε-transitions that move from
state to state without consuming any input.

● The subset construction shows that NFAs are
not more powerful than DFAs, because any NFA
can be converted into a DFA that accepts the same
language.

● The union, intersection, complement,
concatenation, and Kleene closure of regular
languages are all regular languages.

Next Time

● Regular Expressions
● Building up the regular languages, one piece

at a time.

● Intuiting Regular Languages
● What exactly is a regular language?
● When would you use them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

