
  

Finite Automata
Part Three
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NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Can have zero or more transitions 
defined for each state/symbol pair.

● An NFA N accepts a string w iff there is 
some possible series of transitions N can 
follow that ends in an accepting state.
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ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.
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Designing NFAs

● When designing NFAs, embrace the 
nondeterminism!

● Good model: Guess-and-check:
● Have the machine nondeterministically 

guess what the right choice is.
● Have the machine deterministically check 

that the choice was correct.



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }
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Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b
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New Stuff!



  

NFAs and DFAs

● Any language that can be accepted by a 
DFA can be accepted by an NFA.

● Why?
● Just use the same set of transitions as 

before.

● Question: Can any language accepted by 
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!



  

Finite Automata

● NFAs and DFAs are finite automata; there 
can only be finitely many states in an NFA 
or DFA.

● An NFA can be in any combination of its 
states, but there are only finitely many 
possible combations.

● Idea: Build a DFA where each state of the 
DFA corresponds to a set of states in the 
NFA.



  

Simulating an NFA with a DFA
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The Subset Construction

● This construction for transforming an NFA into a 
DFA is called the subset construction (or 
sometimes the powerset construction).
● States of the new DFA correspond to sets of states of the 

NFA.
● The initial state is the start state, plus all states 

reachable from the start state via ε-transitions.
● Transition on state S on character a is found by following 

all possible transitions on a for each state in S, then 
taking the set of states reachable from there by 
ε-transitions.

● Accepting states are any set of states where some state 
in the set is an accepting state.

● Read Sipser for a formal account.



  

The Subset Construction

● In converting an NFA to a DFA, the DFA's 
states correspond to sets of NFA states.

● Fact: |℘(S)| = 2|S| for any finite set S.
● In the worst-case, the construction can 

result in a DFA that is exponentially 
larger than the original NFA.

● Interesting challenge: Find a language 
for which this worst-case behavior occurs 
(there are infinitely many of them!)



  

A language L is called a regular language 
iff there exists a DFA D such that (ℒ D) = L.



  

An Important Result

Theorem: A language L is regular iff there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily 
convert into an NFA.  If L is accepted by
some NFA, we can use the subset
construction to convert it into a DFA that
accepts the same language, so L is
regular. ■



  

Announcements!



  



  

Problem Set Five

● Problem Set Five released, due on Monday, 
November 4.
● Note the due date is Monday rather than 

Friday.
● Late periods now carry over to Wednesday 

rather than Monday.
● No checkpoint problem.

● Explore finite automata, regular languages, 
and their properties!



  

Midterm Logistics

● Midterm is next Tuesday, October 29 from
7PM – 10PM.

● Covers material up through and including DFAs.
● Review handout on exam policies and procedures 

for open-note and limited-computer policies.

● Alternate exams: Contact Keith ASAP if you 
haven't heard back about alternate exams.

● Review session: 2:15PM – 4:15PM on Saturday in 
room 370-370.

● Have questions for the review session: ask them on 
Google Moderator!



  

Your Questions



  

“I am having trouble being confident in my 
first order logic translations. Are there 

ways to self check the translation?

Also, is it possible to release some more 
English-to-first-order-logic translation 

problems as practice‽”



  

“Diagonalization is a really cool and 
powerful proof technique, but are there 
other ways to show that that infinite sets 

have different cardinalities? What happens 
if the problem does not easily lend itself to 

diagonal arguments?”



  

Back to Automata...



  

Why This Matters

● We now have two perspectives on regular 
languages:
● Regular languages are languages accepted 

by DFAs.
● Regular languages are languages accepted 

by NFAs.

● We can now reason about the regular 
languages in two different ways.



  

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the 
language L1 ∪ L2 is the language of all strings in at 
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?
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  L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is 
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2 
regular as well?

Hey, it's De 
Morgan's laws!
Hey, it's De 
Morgan's laws!



  

Concatenation

● The concatenation of two languages L1 
and L2 over the alphabet Σ is the 
language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● The set of strings that can be split into 

two pieces: a piece from L₁ and a piece 
from L₂.

● Conceptually similar to the Cartesian 
product of two sets, only with strings.



  

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider 
these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is

{ ThePuppyHugsTheWhale,
   TheWhaleLovesTheRainbow,
   TheRainbowJugglesTheRainbow, … }



  

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings 
xy such that x ∈ L1 and y ∈ L2?

● Idea: Run the automaton for L1 on w, and 
whenever L1 reaches an accepting state, 
optionally hand the rest off w to L2.

● If L2 accepts the remainder, then L1 accepted the first 
part and the string is in L1L2.

● If L2 rejects the remainder, then the split was 
incorrect.
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Concatenating Regular Languages
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Lots and Lots of Concatenation

● Consider the language L = { aa, b }

● LL is the set of strings formed by concatenating pairs of 
strings in L.

{ aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating triples of 
strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

● LLLL is the set of strings formed by concatenating 
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can define what it means to 
“exponentiate” a language as follows:

● L0 = { ε }
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero 

strings together is the empty string.

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together 
works by concatenating n strings, then 
concatenating one more.



  

The Kleene Closure

● An important operation on languages is 
the Kleene Closure, which is defined as

● Mathematically:

w ∈ L*     iff     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of 
concatenating any number of copies of 
strings in L together.

∪∞ Li L* =
i = 0



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}



  

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● A Bad Line of Reasoning:

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is 

regular.



  

Reasoning about Infinity
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Reasoning About the Infinite

● If a series of finite objects all have some 
property, their infinite union does not 
necessarily have that property!
● No matter how many times we zigzag that line, it's 

never straight.
● Concluding that it must be equal “in the limit” is 

not mathematically valid (nor is it correct!)
● (This is why calculus is interesting).

● Better idea: Can we convert an NFA for the 
language L to an NFA for the language L*?



  

The Kleene Star
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state out front?  Why not 
just make the old start 

state accepting?

Question: Why add the new 
state out front?  Why not 
just make the old start 

state accepting?



  

Summary

● NFAs are a powerful type of automaton that allows 
for nondeterministic choices.

● NFAs can also have ε-transitions that move from 
state to state without consuming any input.

● The subset construction shows that NFAs are 
not more powerful than DFAs, because any NFA 
can be converted into a DFA that accepts the same 
language.

● The union, intersection, complement, 
concatenation, and Kleene closure of regular 
languages are all regular languages.



  

Next Time

● Regular Expressions
● Building up the regular languages, one piece 

at a time.

● Intuiting Regular Languages
● What exactly is a regular language?
● When would you use them?
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