Context-Free Grammars

Describing Languages

- We've seen two models for the regular languages:
 - Automata accept precisely the strings in the language.
 - **Regular expressions** describe precisely the strings in the language.
- Finite automata **recognize** strings in the language.
 - Perform a computation to determine whether a specific string is in the language.
- Regular expressions match strings in the language.
 - Describe the general shape of all strings in the language.

Context-Free Grammars

- A context-free grammar (or CFG) is an entirely different formalism for defining a class of languages.
- Goal: Give a procedure for listing off all strings in the language.
- CFGs are best explained by example...

Arithmetic Expressions

- Suppose we want to describe all legal arithmetic expressions using addition, subtraction, multiplication, and division.
- Here is one possible CFG:

```
\mathbf{E}
\mathbf{E} \rightarrow \mathtt{int}
                                                       \Rightarrow E Op E
\mathbf{E} \rightarrow \mathbf{E} \ \mathbf{Op} \ \mathbf{E}
                                                      \Rightarrow E Op (E)
\mathbf{E} \rightarrow (\mathbf{E})
                                                      \Rightarrow E Op (E Op E)
\mathbf{Op} \rightarrow \mathbf{+}
                                                       \Rightarrow E * (E Op E)
Op → -
                                                       \Rightarrow int * (E Op E)
Op → *
                                                       \Rightarrow int * (int Op E)
\mathbf{Op} \rightarrow \mathbf{/}
                                                       ⇒ int * (int Op int)
                                                       \Rightarrow int * (int + int)
```

Arithmetic Expressions

- Suppose we want to describe all legal arithmetic expressions using addition, subtraction, multiplication, and division.
- Here is one possible CFG:

```
E \rightarrow int
E \rightarrow E Op E
E \rightarrow (E)
Op \rightarrow +
Op \rightarrow -
Op \rightarrow *
Op \rightarrow /
```

Context-Free Grammars

- Formally, a context-free grammar is a collection of four objects:
 - A set of nonterminal symbols (also called variables),
 - A set of terminal symbols (the alphabet of the CFG)
 - A set of production rules saying how each nonterminal can be converted by a string of terminals and nonterminals, and
 - A **start symbol** (which must be a nonterminal) that begins the derivation.

```
\mathbf{E} \rightarrow \mathbf{int}
\mathbf{E} \rightarrow \mathbf{E} \ \mathbf{Op} \ \mathbf{E}
\mathbf{E} \rightarrow (\mathbf{E})
\mathbf{Op} \rightarrow +
\mathbf{Op} \rightarrow -
\mathbf{Op} \rightarrow \star
```

Some CFG Notation

- Capital letters in Bold Red Uppercase will represent nonterminals.
 - i.e. **A**, **B**, **C**, **D**
- Lowercase letters in blue monospace will represent terminals.
 - i.e. t, u, v, w
- Lowercase Greek letters in *gray italics* will represent arbitrary strings of terminals and nonterminals.
 - i.e. α, γ, ω

A Notational Shorthand

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E}$$

Derivations

```
\mathbf{E} \rightarrow \mathbf{E} \ \mathbf{Op} \ \mathbf{E} \ | \ \mathbf{int} \ | \ (\mathbf{E})
     \mathbf{Op} \to + \mid \star \mid - \mid /
    \mathbf{E}
\Rightarrow E Op E
\Rightarrow E Op (E)
\Rightarrow E Op (E Op E)
\Rightarrow E * (E Op E)
\Rightarrow int * (E Op E)
\Rightarrow int * (int Op E)
⇒ int * (int Op int)
⇒ int * (int + int)
```

- A sequence of steps where nonterminals are replaced by the right-hand side of a production is called a derivation.
- If string α derives string ω , we write $\alpha \Rightarrow^* \omega$.
- In the example on the left, we see E ⇒* int * (int + int).

The Language of a Grammar

• If G is a CFG with alphabet Σ and start symbol S, then the language of G is the set

$$\mathscr{L}(G) = \{ \omega \in \Sigma^* \mid \mathbf{S} \Rightarrow^* \omega \}$$

- That is, $\mathcal{L}(G)$ is the set of strings derivable from the start symbol.
- Note: ω must be in Σ^* , the set of strings made from terminals. Strings involving nonterminals aren't in the language.

More Context-Free Grammars

Chemicals!

```
Form \rightarrow Cmp | Cmp Ion

Cmp \rightarrow Term | Term Num | Cmp Cmp

Term \rightarrow Elem | (Cmp)

Elem \rightarrow H | He | Li | Be | B | C | ...

Ion \rightarrow + | - | IonNum + | IonNum -

IonNum \rightarrow 2 | 3 | 4 | ...

Num \rightarrow 1 | IonNum
```

CFGs for Chemistry

```
Form \rightarrow Cmp | Cmp Ion

Cmp \rightarrow Term | Term Num | Cmp Cmp

Term \rightarrow Elem | (Cmp)

Elem \rightarrow H | He | Li | Be | B | C | ...

Ion \rightarrow + | - | IonNum + | IonNum -

IonNum \rightarrow 2 | 3 | 4 | ...

Num \rightarrow 1 | IonNum
```

Form

- ⇒ Cmp Ion
- **⇒** Cmp Cmp Ion
- **→ Cmp Term Num Ion**
- **→ Term Term Num Ion**
- **⇒ Elem Term Num Ion**
- ⇒ Mn Term Num Ion
- ⇒ Mn Elem Num Ion
- ⇒ MnO Num Ion
- ⇒ MnO IonNum Ion
- ⇒ MnO, Ion
- \Rightarrow MnO₄

CFGs for Programming Languages

```
BLOCK \rightarrow STMT
         | { STMTS }
STMTS → E
         STMT STMTS
STMT \rightarrow EXPR;
         if (EXPR) BLOCK
         while (EXPR) BLOCK
                                      var = var * var;
          do BLOCK while (EXPR);
                                       if (var) var = const;
                                      while (var) {
          BLOCK
                                          var = var + const;
EXPR →
            var
            const
            EXPR + EXPR
            EXPR - EXPR
            EXPR = EXPR
```

Context-Free Languages

- A language L is called a **context-free** language (or CFL) iff there is a CFG G such that $L = \mathcal{L}(G)$.
- Questions:
 - What languages are context-free?
 - How are context-free and regular languages related?

- CFGs don't have the Kleene star, parenthesized expressions, or internal | operators.
- However, we can convert regular expressions to CFGs as follows:

$$S \rightarrow a*b$$

- CFGs don't have the Kleene star, parenthesized expressions, or internal | operators.
- However, we can convert regular expressions to CFGs as follows:

$$S \rightarrow Ab$$
 $A \rightarrow Aa \mid \epsilon$

- CFGs don't have the Kleene star, parenthesized expressions, or internal | operators.
- However, we can convert regular expressions to CFGs as follows:

$$S \rightarrow a(b|c^*)$$

- CFGs don't have the Kleene star, parenthesized expressions, or internal | operators.
- However, we can convert regular expressions to CFGs as follows:

$$S \rightarrow aX$$

$$X \rightarrow b \mid C$$

$$C \rightarrow Cc \mid \epsilon$$

Regular Languages and CFLs

- **Theorem:** Every regular language is context-free.
- **Proof Idea:** Use the construction from the previous slides to convert a regular expression for L into a CFG for L.

The Language of a Grammar

• Consider the following CFG *G*:

$$S \rightarrow aSb \mid \varepsilon$$

What strings can this generate?

http://xkcd.com/1090/

Designing CFGs

- Like designing DFAs, NFAs, and regular expressions, designing CFGs is a craft.
- When thinking about CFGs:
 - Think recursively: Build up bigger structures from smaller ones.
 - Have a construction plan: Know in what order you will build up the string.

Designing CFGs

- Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a palindrome }\}$
- We can design a CFG for *L* by thinking inductively:
 - Base case: ε, a, and b are palindromes.
 - If ω is a palindrome, then $a\omega a$ and $b\omega b$ are palindromes.

$$S \rightarrow \varepsilon \mid a \mid b \mid aSa \mid bSb$$

Designing CFGs

- Let $\Sigma = \{ (,) \}$ and let $L = \{ w \in \Sigma^* \mid w \text{ is a string of balanced parentheses } \}$
- We can think about how we will build strings in this language as follows:
 - The empty string is balanced.
 - Any two strings of balanced parentheses can be concatenated.
 - Any string of balanced parentheses can be parenthesized.

$$S \rightarrow SS \mid (S) \mid \epsilon$$

Designing CFGs: Watch Out!

- When designing CFGs, remember that each nonterminal can be expanded out independently of the others.
- Let $\Sigma = \{a, \stackrel{?}{=}\}$ and let $L = \{a^n \stackrel{?}{=} a^n \mid n \in \mathbb{N} \}$. Is the following a CFG for L?
 - $S \rightarrow X^{?}X$
 - $X \rightarrow aX \mid \epsilon$

$$\Rightarrow X \stackrel{?}{=} X$$

$$\Rightarrow aX \stackrel{?}{=} X$$

$$\Rightarrow$$
 aa $X\stackrel{?}{=}X$

$$\Rightarrow$$
 aa $\stackrel{?}{=}$ X

$$\Rightarrow$$
 aa $\stackrel{?}{=}$ aX

Finding a Build Order

- Let $\Sigma = \{a, \stackrel{?}{=}\}$ and let $L = \{a^n \stackrel{?}{=} a^n \mid n \in \mathbb{N} \}$.
- To build a CFG for *L*, we need to be more clever with how we construct the string.
- **Idea:** Build from the ends inward.
- Gives this grammar: $S \rightarrow aSa \mid \frac{?}{=}$

```
S
```

- \Rightarrow aSa
- ⇒ aaSaa
- ⇒ aaaSaaa
- ⇒ aaa²aaa

Designing CFGs: A Caveat

- Let $\Sigma = \{1, r\}$ and let $L = \{w \in \Sigma^* \mid w \text{ has the same number of 1's and } r's \}$
- Is this a grammar for *L*?

$$S \rightarrow 1Sr \mid rS1 \mid \epsilon$$

• Can you derive the string lrrl?

Designing CFGs: A Caveat

- When designing a CFG for a language, make sure that it
 - generates all the strings in the language and
 - never generates a string outside the language.
- The first of these can be tricky make sure to test your grammars!
- You'll design your own CFG for this language on the next problem set.

CFG Caveats II

• Is the following grammar a CFG for the language $\{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$?

 $S \rightarrow aSb$

- What strings can you derive?
 - Answer: None!
- What is the language of the grammar?
 - Answer: Ø
- When designing CFGs, make sure your recursion actually terminates!

Parse Trees

Parse Trees

```
E
\Rightarrow E Op E
\Rightarrow int Op E
\Rightarrow int * \mathbf{E}
\Rightarrow int * (E)
\Rightarrow int * (E Op E)
\Rightarrow int * (int Op E)
\Rightarrow int * (int + E)
\Rightarrow int * (int + int)
```


$$\mathbf{E} \rightarrow \mathbf{E} \ \mathbf{Op} \ \mathbf{E} \ | \ \mathbf{int} \ | \ (\mathbf{E})$$
 $\mathbf{Op} \rightarrow + \ | \ \star \ | \ - \ | \ /$

Parse Trees

- A **parse tree** is a tree encoding the steps in a derivation.
- Each internal node is labeled with a nonterminal.
- Each leaf node is labeled with a terminal.
- Reading the leaves from left to right gives the string that was produced.

Parsing

- Given a context-free grammar, the problem of parsing a string is to find a parse tree for that string.
- Applications to compilers:
 - Given a CFG describing the structure of a programming language and an input program (string), recover the parse tree.
 - The parse tree represents the structure of the program – what's declared where, how expressions nest, etc.

Challenges in Parsing

A Serious Problem

$$\mathbf{E} \rightarrow \mathbf{E} \ \mathbf{Op} \ \mathbf{E} \ | \ \mathbf{int} \ \mathbf{Op} \rightarrow + \ | \ \star \ | \ - \ | \ /$$

Ambiguity

- A CFG is said to be ambiguous if there is at least one string with two or more parse trees.
- Note that ambiguity is a property of grammars, not languages: there can be multiple grammars for the same language, where some are ambiguous and some aren't.
- Some languages are *inherently ambiguous*: there are no unambiguous grammars for those languages.

Resolving Ambiguity

- Designing unambiguous grammars is tricky and requires planning from the start.
- It's hard to start with an ambiguous grammar and to manually massage it into an unambiguous one.
- Often, have to throw the whole thing out and start over.

Resolving Ambiguity

 We have just seen that this grammar is ambiguous:

$$\mathbf{E} \rightarrow \mathbf{E} \ \mathbf{Op} \ \mathbf{E} \ | \ \mathbf{int}$$
 $\mathbf{Op} \rightarrow + \ | \ - \ | \ * \ | \ /$

- Goals:
 - Eliminate the ambiguity from the grammar.
 - Make the only parse trees for the grammar the ones corresponding to operator precedence.

Operator Precedence

- Can often eliminate ambiguity from grammars with operator precedence issues by building precedences into the grammar.
- Since * and / bind more tightly than + and -, think of an expression as a series of "blocks" of terms multiplied and divided together joined by +s and -s.

int	*	int	*	int	+	int	*	int	ı	int
-----	---	-----	---	-----	---	-----	---	-----	---	-----

Operator Precedence

- Can often eliminate ambiguity from grammars with operator precedence issues by building precedences into the grammar.
- Since * and / bind more tightly than + and -, think of an expression as a series of "blocks" of terms multiplied and divided together joined by +s and -s.

int	*	int	*	int	+	int	*	int	-	int
-----	---	-----	---	-----	---	-----	---	-----	---	-----

Rebuilding the Grammar

- Idea: Force a construction order where
 - First decide how many "blocks" there will be of terms joined by + and -.
 - Then, expand those blocks by filling in the integers multiplied and divided together.
- One possible grammar:

$$S \rightarrow T \mid T + S \mid T - S$$

$$T \rightarrow int \mid int * T \mid int / T$$

An Unambiguous Grammar

$$S \rightarrow T \mid T + S \mid T - S$$

$$T \rightarrow \text{int} \mid \text{int} * T \mid \text{int} / T$$

Summary

- Context-free grammars give a formalism for describing languages by generating all the strings in the language.
- Context-free languages are a strict superset of the regular languages.
- CFGs can be designed by finding a "build order" for a given string.
- Ambiguous grammars generate some strings with two different parse trees.

Next Time

Turing Machines

- What does a computer with unbounded memory look like?
- How do you program them?