
  

Reducibility
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Deciders

● Some Turing machines always halt; they never 
go into an infinite loop.

● Turing machines of this sort are called 
deciders.

● For deciders, accepting is the same as not 
rejecting and rejecting is the same as not 
accepting.

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Decidable Languages

● A language L is called decidable iff there is a 
decider M such that (ℒ M) = L.

● Given a decider M, you can learn whether or not a 
string w ∈ (ℒ M).

● Run M on w.
● Although it might take a staggeringly long time, M 

will eventually accept or reject w.

● The set R is the set of all decidable languages.

L ∈ R   iff   L is decidable
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ATM and HALT

● Both ATM and HALT are undecidable.

● There is no way to decide whether a TM will 
accept or eventually terminate.

● However, both ATM and HALT are recognizable.

● We can always run a TM on a string w and 
accept if that TM accepts or halts.

● Intuition: The only general way to learn what 
a TM will do on a given string is to run it and 
see what happens.



  

Resolving an Asymmetry
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A New Complexity Class

● A language L is in RE iff there is a TM M such that
● if w ∈ L, then M accepts w.
● if w ∉ L, then M does not accept w.

● A TM M of this sort is called a recognizer, and L is 
called recognizable.

● A language L is in co-RE iff there is a TM M such 
that

● if w ∈ L, then M does not reject w.
● if w ∉ L, then M rejects w.

● A TM M of this sort is called a co-recognizer, and 
L is called co-recognizable.



  

RE and co-RE

● Intuitively, RE consists of all problems where a 
TM can exhaustively search for proof that 
w ∈ L.
● If w ∈ L, the TM will find the proof.
● If w ∉ L, the TM cannot find a proof.

● Intuitively, co-RE consists of all problems 
where a TM can exhaustively search for a 
disproof that w ∈ L.
● If w ∈ L, the TM cannot find the disproof.
● If w ∉ L, the TM will find the disproof.



  

RE and co-RE Languages

● ATM is an RE language:

● Simulate the TM M on the string w.
● If you find that M accepts w, accept.
● If you find that M rejects w, reject.
● (If M loops, we implicitly loop forever)

● ATM is a co-RE language:

● Simulate the TM M on the string w.
● If you find that M accepts w, reject.
● If you find that M rejects w, accept.
● (If M loops, we implicitly loop forever)



  

RE and co-RE Languages

● LD is an RE language.

● Simulate M on ⟨M⟩.
● If you find that M accepts ⟨M⟩, accept.
● If you find that M rejects ⟨M⟩, reject.
● (If M loops, we implicitly loop forever)

● LD is a co-RE language.

● Simulate M on ⟨M⟩.
● If you find that M accepts ⟨M⟩, reject.
● If you find that M rejects ⟨M⟩, accept.
● (If M loops, we implicitly loop forever)
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RE and co-RE

Theorem: L ∈ RE iff L ∈ co-RE.

Proof Sketch: Start with a recognizer M for L.
Then, flip its accepting and rejecting states to 
make machine M'.  Then

 The same approach works if we flip the accept
and reject states of a co-recognizer for L. ■

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' rejects w
iff M accepts w

iff w ∈ L
iff w ∉ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w 

iff w ∉ L
iff w ∈ L.

M' does not reject w
iff M' accepts w or M' loops on w
iff M rejects w or M loops on w 

iff w ∉ L
iff w ∈ L.



  

The Limits of Computability
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R, RE, and co-RE

● Every language in R is in both RE and 
co-RE.

● Why?
● A decider for L accepts all w ∈ L and rejects 

all w ∉ L.

● In other words, R ⊆ RE ∩ co-RE.
● Question: Does R = RE ∩ co-RE?
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R, RE, and co-RE

● Theorem: If L ∈ RE and L ∈ co-RE, then
    L ∈ R.

● Proof sketch: Since L ∈ RE, there is a 
recognizer M for it.  Since L ∈ co-RE, 
there is a co-recognizer M for it.

This TM D is a decider for L:
 

 D = “On input w:
Run M on w and M on w in parallel.
If M accepts w, accept.
If M rejects w, reject.

 

 

 D = “On input w:
Run M on w and M on w in parallel.
If M accepts w, accept.
If M rejects w, reject.

 



  

The Limits of Computability

RE

There is a TM M
where M accepts w

iff w ∈ L

There is a TM M
where M rejects w

iff w ∉ L

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TMHALT

L
D

What's out here?



  

Time-Out For Announcements!



  

Friday Four Square!
Today at 4:15PM outside Gates



  

Two Handouts Online

● 24: Additional Proofs on TMs
● See alternate proofs of why various 

languages are or are not R, RE, or co-RE.

● 25: Extra Practice Problems
● By popular demand, extra questions on 

topics you'd like some more practice with!
● Solutions released Monday.



  

Picking up Problem Sets

● If you pick up problem sets from the 
filing cabinet,

please put all other papers back into 
the filing cabinet when you're done! 

● If you don't:
● they get mixed with problem sets from other 

classes and lost,
● it causes a fire hazard, and
● I get flak from the building managers about 

making a mess.



  

Your Questions



  

“Can you recommend software for 
designing and / or simulating Turing 

machines?”

http://www.jflap.org/http://www.jflap.org/

http://www.jflap.org/
http://www.jflap.org/


  

“Is there a difference between when a TM 
“runs” another TM as a subroutine vs. 

when it “simulates running” another TM?”



  

“Sometime my brain is stuck and I make 
silly and stupid mistakes [...]. What [do] 

you do when you are stuck on a problem?”



  

Back to CS103!



  

A Repeating Pattern
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H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ε⟩.
 

· Run R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.
 

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ε⟩.
 

· Run R on ⟨M, ε⟩.
 

· If R accepts ⟨M, ε⟩, then H accepts ⟨M, ε⟩.
 

· If R rejects ⟨M, ε⟩, then H rejects ⟨M, ε⟩.”

Construct ⟨M, ε⟩ ⟨M⟩      

H

L = { ⟨M⟩ | M is a TM that accepts ε }



  

Recognizer
for ATM

Yes

No

⟨M⟩ 

⟨M⟩

Machine R

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ⟨M⟩⟩.
 

· Run R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.
 

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

 

H = “On input ⟨M⟩:
 

· Construct the string ⟨M, ⟨M⟩⟩.
 

· Run R on ⟨M, ⟨M⟩⟩.
 

· If R accepts ⟨M, ⟨M⟩⟩, then H accepts ⟨M, ⟨M⟩⟩.
 

· If R rejects ⟨M, ⟨M⟩⟩, then H rejects ⟨M, ⟨M⟩⟩.”

Construct ⟨M, ⟨M⟩⟩ ⟨M⟩      

H

From ATM to LD



  

Decider for
HALT

Yes

No

⟨M'⟩ 

w  

Machine D

 

H = “On input ⟨M, w⟩:
 

· Build M into M' so M' loops when M rejects.
 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
 

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

 

H = “On input ⟨M, w⟩:
 

· Build M into M' so M' loops when M rejects.
 

· Run D on ⟨M', w⟩.
 

· If D accepts ⟨M', w⟩, then H accepts ⟨M, w⟩.
 

· If D rejects ⟨M', w⟩, then H rejects ⟨M, w⟩.”

Change M so M
loops whenever M

it would reject.

w                                         

⟨M⟩      

H

From HALT to ATM



  

Subroutine
TM

Machine R

YES

NO

Compute f
f(w)w        

Machine H

The General Pattern

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

Is (ℒ D) = Σ*? Is (ℒ D₁) equal
to Σ* - (ℒ D₂)?

Can be converted to

Can be used to solve

Problem A Problem B



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

Is (ℒ G) = Ø? Is (ℒ G₁) ⊆ (ℒ G₂)?

Can be converted to

Can be used to solve

Problem A Problem B



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

LD ATM

Can be converted to

Can be used to solve

Problem A Problem B



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

ATM HALT

Can be converted to

Can be used to solve

Problem A Problem B



  

Reductions

● Intuitively, problem A reduces to 
problem B iff a solver for B can be used 
to solve problem A.

● Reductions can be used to show certain 
problems are “solvable:”

If A reduces to B and B is “solvable,”    
then A is “solvable.”    



  

Formalizing Reductions

● In order to make the previous intuition 
more rigorous, we need to formally define 
reductions.

● There are many ways to do this; we'll 
explore two:
● Mapping reducibility (today / Monday), and
● Polynomial-time reducibility (next week).



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B      

NO
Σ
1
* Σ

2
*

YES YES

NO

f(w)   

f(w)   



  

Defining Reductions

● A reduction from A to B is a function
f : Σ1* → Σ2* such that

 For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B      

● Every w ∈ A maps to some f(w) ∈ B.
● Every w ∉ A maps to some f(w) ∉ B.
● f does not have to be injective or 

surjective.



  

Why Reductions Matter

● If language A reduces to language B, we 
can use a recognizer / co-recognizer / 
decider for B to recognize / 
co-recognize / decide problem A.
● (There's a slight catch – we'll talk about this 

in a second).

● How is this possible?



  

TM for
language B

Machine R

YES

NO

Compute f
f(w)w    

Machine H

w ∈ A    iff    f(w) ∈ B

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

 

H = “On input w:
 

· Transform the input w into f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then H accepts w.
 

· If R rejects f(w), then H rejects w.”

H accepts w
  

iff
  

R accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A

H accepts w
  

iff
  

R accepts f(w)
  

 iff 
  

f(w) ∈ B 

   

iff 

   

w ∈ A



  

A Problem

● Recall: f is a reduction from A to B iff

w ∈ A   iff   f(w) ∈ B
● Under this definition, any language A reduces to any 

language B unless B = Ø or Σ*.

● Since B ≠ Ø and B ≠ Σ*, there is some wyes ∈ B and 
some wno ∉ B.

● Define f : Σ1* → Σ2* as follows:

● Then f is a reduction from A to B.

f (w)={wyes if w∈A
wno if w∉A



  

A Problem

● Example: let's reduce LD to 0*1*.

● Take wyes = 01, wno = 10.

● Then f(w) is defined as

● There is no TM that can actually evaluate 
the function f(w) on all inputs, since no 
TM can decide whether or not w ∈ LD.

f (w)={01 if w∈LD

10 if w∉LD



  

Computable Functions

● This general reduction is mathematically well-defined, 
but might be impossible to actually compute!

● To fix our definition, we need to introduce the idea of a 
computable function.

● A function f : Σ1* → Σ2* is called a computable 
function if there is some TM M with the following 
behavior:

          “On input w:

                Compute f(w) and write it on the tape.

                Move the tape head to the start of f(w).

                Halt.”



  

Mapping Reductions

● A function f : Σ1* → Σ2* is called a 
mapping reduction from A to B iff
● For any w ∈ Σ1*, w ∈ A iff f(w) ∈ B.

● f is a computable function.

● Intuitively, a mapping reduction from A 
to B says that a computer can transform 
any instance of A into an instance of B 
such that the answer to B is the answer 
to A.



  

Mapping Reducibility

● If there is a mapping reduction from language 
A to language B, we say that language A is 
mapping reducible to language B.

● Notation: A ≤M B iff language A is mapping 
reducible to language B.

● Note that we reduce languages, not 
machines.



  

TM for
language B

Machine R

YES

NO

Compute f
f(w)w    

Machine H

A ≤M B

 

H = “On input w:
 

· Compute f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then
  H accepts w.

 

· If R rejects f(w), then
  H rejects w.”

 

H = “On input w:
 

· Compute f(w).
 

· Run machine R on f(w).
 

· If R accepts f(w), then
  H accepts w.

 

· If R rejects f(w), then
  H rejects w.”

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.

If R is a decider for B,
then H is a decider for A.

If R is a recognizer for B,
then H is a recognizer for A.

If R is a co-recognizer for B,
then H is a co-recognizer for A.



  

Why Mapping Reducibility Matters

● Theorem: If B ∈ R and A ≤M B, then
                  A ∈ R.

● Theorem: If B ∈ RE and A ≤M B, then
                  A ∈ RE.

● Theorem: If B ∈ co-RE and A ≤M B, then
                  A ∈ co-RE.

● Intuitively: A ≤M B means “A is not 
harder than B.”



  

Why Mapping Reducibility Matters

● Theorem: If A ∉ R and A ≤M B, then
                  B ∉ R.

● Theorem: If A ∉ RE and A ≤M B, then
                  B ∉ RE.

● Theorem: If A ∉ co-RE and A ≤M B, then
                  B ∉ co-RE.

● Intuitively: A ≤M B means “B is at at least 
as hard as A.”



  

Why Mapping Reducibility Matters

≤MA B

If this one is “easy” 
(R, RE, co-RE)…

If this one is “easy” 
(R, RE, co-RE)…

… then this one is 
“easy” (R, RE, 
co-RE) too. 

… then this one is 
“easy” (R, RE, 
co-RE) too. 



  

Why Mapping Reducibility Matters

≤MA B

If this one is “hard” 
(not R, not RE, or not 

co-RE)…

If this one is “hard” 
(not R, not RE, or not 

co-RE)…

… then this one is 
“hard” (not R, not 
RE, or not co-RE) 

too.

… then this one is 
“hard” (not R, not 
RE, or not co-RE) 

too.
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