

Finite Automata
Part One

Computability Theory

What problems can we solve with a computer?

What kind of
computer?

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm

We need a simpler way of
discussing computing machines.

An automaton (plural: automata) is a
mathematical model of a computing device.

Why Build Models?

● Mathematical simplicity.
● It is significantly easier to manipulate our

abstract models of computers than it is to
manipulate actual computers.

● Intellectual robustness.
● If we pick our models correctly, we can make

broad, sweeping claims about huge classes of
real computers by arguing that they're just
special cases of our more general models.

Why Build Models?

● The models of computation we will explore in
this class correspond to different conceptions of
what a computer could do.

● Finite automata (next two weeks) are an
abstraction of computers with finite resource
constraints.
● Provide upper bounds for the computing machines

that we can actually build.

● Turing machines (later) are an abstraction of
computers with unbounded resources.
● Provide upper bounds for what we could ever hope to

accomplish.

What problems can we solve with a computer?

What is a
“problem?”

Problems with Problems

● Before we can talk about what problems
we can solve, we need a formal definition
of a “problem.”

● We want a definition that
● corresponds to the problems we want to solve,
● captures a large class of problems, and
● is mathematically simple to reason about.

● No one definition has all three properties.

Formal Language Theory

Strings

● An alphabet is a finite set of symbols called
characters.

● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

● Example: If Σ = {a, b}, some valid strings over Σ include

a

aabaaabbabaaabaaaabbb

abbababba

● The empty string contains no characters and is
denoted ε.

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is a

set of strings over Σ.
● Example: The language of palindromes over

Σ = {a, b, c} is the set

{ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in
Σ is denoted Σ*.

● Formally, we say that L is a language over Σ if
L ⊆ Σ*.

The Model

● Fundamental Question: Given an
alphabet Σ and a language L over Σ, in
what cases can we build an automaton
that determines which strings are in L?

● The answer depends on both the choice
of L and the choice of automaton.

● The entire rest of the quarter will be
dedicated to answering these questions.

To Summarize

● An automaton is an idealized
mathematical computing machine.

● A language is a set of strings.
● The automata we will study will accept as

input a string and (attempt to) determine
whether that string is contained in a
particular language.

What problems can we solve with a computer?

Finite Automata

A finite automaton is a simple type of
mathematical machine for determining

whether a string is contained within some
language.

Each finite automaton consists of a set
of states connected by transitions.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

Each circle
represents a state
of the automaton.

Each circle
represents a state
of the automaton.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

One special state is
designated as the

start state.

One special state is
designated as the

start state.

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

The automaton is
run on an input

string and answers
“yes” or “no.”

The automaton is
run on an input

string and answers
“yes” or “no.”

0 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

The automaton can
be in one state at a
time. It begins in
the start state.

The automaton can
be in one state at a
time. It begins in
the start state.

0 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

The automaton now
begins processing
characters in the

order in which they
appear.

The automaton now
begins processing
characters in the

order in which they
appear.

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

Each arrow in this
diagram represents a
transition. The
automaton always

follows the transition
corresponding to the
current symbol being

read.

Each arrow in this
diagram represents a
transition. The
automaton always

follows the transition
corresponding to the
current symbol being

read.

q1

q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

After transitioning,
the automaton

considers the next
symbol in the

input.

After transitioning,
the automaton

considers the next
symbol in the

input.

0 1 0 1 1 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

0 1 0 1 1 0

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

This state is not
an accepting state,
so the automaton

says “no.”

This state is not
an accepting state,
so the automaton

says “no.”

q1

q3 q2

A Simple Finite Automaton

q0 q1

q3

0

 1

0

1

0

1 1

0

start

q2

1 1 0 1 1 1 0 0

Try it yourself!
Does the

automaton accept
(say yes) or

reject (say no)?

Try it yourself!
Does the

automaton accept
(say yes) or

reject (say no)?

The Story So Far

● A finite automaton is a collection of states joined
by transitions.

● Some state is designated as the start state.

● Some states are designated as accepting states.

● The automaton processes a string by beginning in
the start state and following the indicated
transitions.

● If the automaton ends in an accepting state, it
accepts the input.

● Otherwise, the automaton rejects the input.

Time-Out For Announcements!

Problem Set Logistics

● Problem Set Four checkpoint was due at
12:50PM today.

● We'll return graded PS3's and graded
PS4 checkpoints by Wednesday at
12:50PM.

● Remainder of PS4 is due a week from
today at the start of class.

Midterm Logistics

● Midterm is this Thursday from 7PM – 10PM.
Locations divvied up by last (family) name:
● Aba – Mes: Go to Annenberg Auditorium.
● Mex – Zoc: Go to Cubberly Auditorium.

● Closed-book, closed-computer, open one
double-sided 8.5” × 11” sheet of notes.

● Covers material up through and including
graphs (Lectures 00 – 08) and material from
PS1 – PS3.

Practice Midterm Exam

● Practice midterm exam is tonight from
7PM – 10PM in Annenberg Auditorium.

● Highly recommended!
● Can't make it? No worries! We'll post the

practice exam on the course website.
● Solutions will be available at the practice

exam and in hardcopy in the solutions
filing cabinet.

Even More Practice Problems

● We've released a new set of practice
problems (based on the popular topics
from Google Moderator) on the course
website.

● Solutions will be released on Wednesday.
● Solutions to the practice problems from

Friday are now available in hardcopy.

Your Questions

“What would be the most useful study
strategy for our midterm? Crank through a
ton of practice problems? Read the course
reader? Review the lecture slides? I know
"all of the above" is best, but if we had to

prioritize?”

My recommendation is to quickly figure out what your strengths and
weaknesses are and focus your studying efforts on the areas in which
you need improvement. Take the practice exam to identify where you
could use some extra practice. Review the slides to make sure you get
the definitions, then do lots of practice problems. If you need more

practice, read the course notes.

My recommendation is to quickly figure out what your strengths and
weaknesses are and focus your studying efforts on the areas in which
you need improvement. Take the practice exam to identify where you
could use some extra practice. Review the slides to make sure you get
the definitions, then do lots of practice problems. If you need more

practice, read the course notes.

“What sorts of proof-formatting, formulas,
definitions, etc. would you suggest we put

on our cheat-sheet for the midterm
Thursday?”

Everyone's different. Again, figure out what
your own strengths and weaknesses are. Is
there something you keep forgetting? Are
there terms that you get confused? Are

there particular proofs you like that you're
worried you're going to forget? Put that
kind of information on your notes sheet.

Everyone's different. Again, figure out what
your own strengths and weaknesses are. Is
there something you keep forgetting? Are
there terms that you get confused? Are

there particular proofs you like that you're
worried you're going to forget? Put that
kind of information on your notes sheet.

“Why are the answers to problem sets and
checkpoint problems only available in hard
copy? There have been many times when I
know I and many others could have found
the answers useful but didn't get a copy in

lecture and couldn't make it to Gates.”

This one has a
long answer.

This one has a
long answer.

“why”

why notwhy not

Back to CS103!

A finite automaton does not accept as
soon as it enters an accepting state.

A finite automaton accepts if it ends in
an accepting state.

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

No matter where we
start in the automaton,
after seeing two 1's, we

end up in accepting
state q3.

No matter where we
start in the automaton,
after seeing two 1's, we

end up in accepting
state q3.

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

No matter where we
start in the automaton,
after seeing two 0's,
we end up in accepting

state q5.

No matter where we
start in the automaton,
after seeing two 0's,
we end up in accepting

state q5.

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

This automaton
accepts a string iff
the string ends in 00

or 11.

This automaton
accepts a string iff
the string ends in 00

or 11.

The language of an automaton is the
set of strings that it accepts.

If D is an automaton, we denote the
language of D as ℒ(D).

ℒ(D) = { w ∈ Σ* | D accepts w }

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

The Need for Formalism

● In order to reason about the limits of
what finite automata can and cannot do,
we need to formally specify their
behavior in all cases.

● All of the following need to be defined or
disallowed:
● What happens if there is no transition out of

a state on some input?
● What happens if there are multiple

transitions out of a state on some input?

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs, Informally

● A DFA is defined relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Is this a DFA over {0, 1}?

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Is this a DFA over {0, 1}?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

Is this a DFA over {0, 1}?

q0

q1

 0

start

q2 1

0

Is this a DFA over {0, 1}?

q0 q1
0, 1start

q3

 0, 10, 1

q2
0, 1

Is this a DFA over {0, 1}?

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Designing DFAs

● At each point in its execution, the DFA
can only remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.
● Each state acts as a “memento” of what

you're supposed to do next.
● Only finitely many different states ≈ only

finitely many different things the machine
can remember.

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| every other character of w, starting
 with the first character, is 0 }

q0

start
q1

q2

0

1
Σ

 Σ

q0 q1

More Elaborate DFAs
L = { w | w is a C-style comment }

Suppose the alphabet is

Σ = { a, *, / }

Try designing a DFA for comments!

Some test cases:

 ACCEPTED REJECTED
 /*a*/ /**

 /**/ /**/a/*aa*/
 /***/ aaa/**/
/*aaa*aaa*/ /*/

More Elaborate DFAs
L = { w | w is a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Next Time

● Regular Languages
● What is the expressive power of DFAs?

● NFAs
● Automata with Magic Superpowers!

● Nondeterminism
● Nondeterminisic computation.
● Intuitions for nondeterminism.
● Programming with nondeterminism.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

