
  

Mathematical Logic
Part Three



  

Recap from Last Time



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about 

multiple objects simultaneously.



  

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”



  

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it 
must have property P but 
not have property Q.

If x is a counterexample, it 
must have property P but 
not have property Q.



  

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition:

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of 

property Q.

If x is an example, it must 
have property P on top of 

property Q.



  

Good Pairings

● The ∀ quantifier usually is paired with →.
● The ∃ quantifier usually is paired with ∧.
● In the case of ∀, the → connective prevents 

the statement from being false when speaking 
about some object you don't care about.

● In the case of ∃, the ∧ connective prevents the 
statement from being true when speaking 
about some object you don't care about.



  

The Art of Translation



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “everybody 
loves someone else.”



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is a 
person that everyone else loves.”



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.



  

For Comparison

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.



  

Everyone Loves Someone Else

No one here 
is universally 

loved.

No one here 
is universally 

loved.



  

There is Someone Everyone Else Loves

This person 
does not 

love anyone 
else.

This person 
does not 

love anyone 
else.



  

Everyone Loves Someone Else and
There is Someone Everyone Else Loves



  

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

∧



  

Quantifier Ordering

● The statement

 ∀x. ∃y. P(x, y)  

means “for any choice x, there's some y 
where P(x, y) is true.”

● The choice of y can be different every 
time and can depend on x.



  

Quantifier Ordering

● The statement

 ∃x. ∀y. P(x, y)  

means “there is some x where for any 
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any 
choice of y, this places a lot of 
constraints on what x can be.



  

Order matters when mixing existential 
and universal quantifiers!



  

Time-Out for Announcements!



  

Problem Set Two

● Problem Set One was due at 3:00PM today. You 
can submit late up until Monday at 3:00PM.

● Problem Set Two goes out now.
● Checkpoint due Tuesday at 3:00PM (there's no class 

on Monday).
● Remaining problems due Friday.

● Play around with propositional logic, first-order 
logic, and their applications!

● As always, feel free to ask us questions!



  

Your Questions



  

“Hi Keith, how logical are you in real life, 
and has there ever been a time that it 

didn't serve you too well?”

I am not a very logical person. ☺
 

I see logic as a great tool for reasoning about 
mathematics and thinking about argumentative 

structure, but I don't see it as a guiding principle 
of how to live one's life. Since I think logic is 
something we invented, I wouldn't put too much 
faith in it as the absolute truth about the world.

I am not a very logical person. ☺
 

I see logic as a great tool for reasoning about 
mathematics and thinking about argumentative 

structure, but I don't see it as a guiding principle 
of how to live one's life. Since I think logic is 
something we invented, I wouldn't put too much 
faith in it as the absolute truth about the world.



  

“If you can prove something with one 
method of proof, is it always possible to 

prove it with the other methods of proof?”

Not necessarily! There are some proofs that 
cannot be done without using contradiction, and 
there are some proofs that only work with a 
specific set of starting assumptions. Look up 

“intuitionistic logic” or “reverse mathematics” for 
how we know this!

Not necessarily! There are some proofs that 
cannot be done without using contradiction, and 
there are some proofs that only work with a 
specific set of starting assumptions. Look up 

“intuitionistic logic” or “reverse mathematics” for 
how we know this!



  

“What software do you use to create the 
slides and handouts? I'm working on my p-
set in latex, but my equations look different 

from those in the CS 103 documents.”

Um... LibreOffice. I should 
switch to LaTeX. ☺

Um... LibreOffice. I should 
switch to LaTeX. ☺



  

“Did you say in lecture that an existential 
statement is considered not true until proof 
is found? Wouldn't there be an "unproven" 
state rather than a "not true/false" state?”

I may have misspoken on this one. In classical logic, there's 
an “objective truth” to every statement (it's either true or 
false). For an existential statement, if there truly are no 
positive examples where it holds, the statement is false.

 

Independently, there's the question of whether we know 
whether the statement is true. Just because we can't find a 

positive example doesn't mean none exists!

I may have misspoken on this one. In classical logic, there's 
an “objective truth” to every statement (it's either true or 
false). For an existential statement, if there truly are no 
positive examples where it holds, the statement is false.

 

Independently, there's the question of whether we know 
whether the statement is true. Just because we can't find a 

positive example doesn't mean none exists!



  

“I want to work at a company this summer, 
but I also want to do research. How should 

I decide between the two?”

This is a good question, 
but I don't have time for 
it today. Can someone ask 
this again for next time?

This is a good question, 
but I don't have time for 
it today. Can someone ask 
this again for next time?



  

Back to CS103!



  

Set Translations



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty 
set exists.”

First-order logic doesn't have set 
operators or symbols “built in.” If we 
only have the predicates given above, 

how might we describe this?

First-order logic doesn't have set 
operators or symbols “built in.” If we 
only have the predicates given above, 

how might we describe this?



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))

Both of these translations are correct. 
Just like in propositional logic, there are 

many different equivalent ways of 
expressing the same statement in first-

order logic.

Both of these translations are correct. 
Just like in propositional logic, there are 

many different equivalent ways of 
expressing the same statement in first-

order logic.



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “two sets are 
equal if and only if they contain the same elements.”



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)

You sometimes see the universal quantifier pair with 
the  connective. This is especially common when ↔

talking about sets because two sets are equal when 
they have precisely the same elements.

You sometimes see the universal quantifier pair with 
the  connective. This is especially common when ↔

talking about sets because two sets are equal when 
they have precisely the same elements.



  

Mechanics: Negating Statements



  

Negating Quantifiers

● We spent much of Monday's lecture 
discussing how to negate propositional 
constructs.

● How do we negate statements with 
quantifiers in them?



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

Negating First-Order Statements

● Use the equivalences

¬∀x. φ   ≡   ∃x. ¬φ

¬∃x. φ   ≡   ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)



  

Two Useful Equivalences

● The following equivalences are useful when 
negating statements in first-order logic:

¬(p ∧ q)     ≡     p → ¬q

¬(p → q)     ≡     p ∧ ¬q
● These identities are useful when negating 

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

● When pushing negations across quantifiers, we 
strongly recommend using the above equivalences 
to keep → with ∀ and ∧ with ∃.



  

Negating Quantifiers

● What is the negation of the following statement, which 
says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● This says “every puppy is not cute.”
● Do you see why this is the negation of the original 

statement from both an intuitive and formal 
perspective?



  

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)
(“Every set contains at least one element”)



  

These two statements are not negations of 
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)

Remember:  usually ∀

goes with , not → ∧

Remember:  usually ∀

goes with , not → ∧



  

Restricted Quantifiers



  

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x) holds.”
● This is not technically a part of first-order 

logic; it is a shorthand for

∀x. (x ∈ S → P(x))
● How might we encode this concept?

∃x ∈ S. P(x)

Answer: ∃x. (x ∈ S ∧ P(x)). Note the use of 
 instead of  ∧ →

here.

Note the use of 
 instead of  ∧ →

here.



  

Quantifying Over Sets

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.
● In CS103, feel free to use these restricted quantifiers, but 

please do not use variants of this syntax.
● For example, don't do things like this:

⚠                  ∀x with P(x). Q(x)                     ⚠

⚠        ∀y such that P(y) ∧ Q(y). R(y).           ⚠

⚠                       ∃P(x). Q(x)                           ⚠

   



  

Expressing Uniqueness



  

Using the predicate

   - Level(l), which states that l is a level,

write a sentence in first-order logic that means “there is only 
one level.”

A fun diversion:

http://www.onemorelevel.com/game/there_is_only_one_level

A fun diversion:

http://www.onemorelevel.com/game/there_is_only_one_level

http://www.onemorelevel.com/game/there_is_only_one_level
http://www.onemorelevel.com/game/there_is_only_one_level


  

∃l. (Level(l) ∧
∀x. (x ≠ l → ¬Level(x))

)



  

∃l. (Level(l) ∧
∀x. (Level(x) → x = l)

)



  

Expressing Uniqueness

● To express the idea that there is exactly one object 
with some property, we write that
● there exists at least one object with that property, and that
● there are no other objects with that property.

● You sometimes see a special “uniqueness quantifier” 
used to express this:

∃!x. φ  
● For the purposes of CS103, please do not use this 

quantifier. We want to give you more practice using 
the regular ∀ and ∃ quantifiers.



  

Next Time

● A Long Weekend!
● Functions
● Classes of Functions
● First-Order Definitions
● Formalizing Cardinality
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