

Mathematical Logic
Part Three

Recap from Last Time

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about

multiple objects simultaneously.

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it
must have property P but
not have property Q.

If x is a counterexample, it
must have property P but
not have property Q.

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must
have property P on top of

property Q.

If x is an example, it must
have property P on top of

property Q.

Good Pairings

● The ∀ quantifier usually is paired with →.
● The ∃ quantifier usually is paired with ∧.
● In the case of ∀, the → connective prevents

the statement from being false when speaking
about some object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking
about some object you don't care about.

The Art of Translation

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “everybody
loves someone else.”

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is a
person that everyone else loves.”

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

For Comparison

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Everyone Loves Someone Else

No one here
is universally

loved.

No one here
is universally

loved.

There is Someone Everyone Else Loves

This person
does not

love anyone
else.

This person
does not

love anyone
else.

Everyone Loves Someone Else and
There is Someone Everyone Else Loves

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

∧

Quantifier Ordering

● The statement

 ∀x. ∃y. P(x, y)

means “for any choice x, there's some y
where P(x, y) is true.”

● The choice of y can be different every
time and can depend on x.

Quantifier Ordering

● The statement

 ∃x. ∀y. P(x, y)

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any
choice of y, this places a lot of
constraints on what x can be.

Order matters when mixing existential
and universal quantifiers!

Time-Out for Announcements!

Problem Set Two

● Problem Set One was due at 3:00PM today. You
can submit late up until Monday at 3:00PM.

● Problem Set Two goes out now.
● Checkpoint due Tuesday at 3:00PM (there's no class

on Monday).
● Remaining problems due Friday.

● Play around with propositional logic, first-order
logic, and their applications!

● As always, feel free to ask us questions!

Your Questions

“Hi Keith, how logical are you in real life,
and has there ever been a time that it

didn't serve you too well?”

I am not a very logical person. ☺

I see logic as a great tool for reasoning about
mathematics and thinking about argumentative

structure, but I don't see it as a guiding principle
of how to live one's life. Since I think logic is
something we invented, I wouldn't put too much
faith in it as the absolute truth about the world.

I am not a very logical person. ☺

I see logic as a great tool for reasoning about
mathematics and thinking about argumentative

structure, but I don't see it as a guiding principle
of how to live one's life. Since I think logic is
something we invented, I wouldn't put too much
faith in it as the absolute truth about the world.

“If you can prove something with one
method of proof, is it always possible to

prove it with the other methods of proof?”

Not necessarily! There are some proofs that
cannot be done without using contradiction, and
there are some proofs that only work with a
specific set of starting assumptions. Look up

“intuitionistic logic” or “reverse mathematics” for
how we know this!

Not necessarily! There are some proofs that
cannot be done without using contradiction, and
there are some proofs that only work with a
specific set of starting assumptions. Look up

“intuitionistic logic” or “reverse mathematics” for
how we know this!

“What software do you use to create the
slides and handouts? I'm working on my p-
set in latex, but my equations look different

from those in the CS 103 documents.”

Um... LibreOffice. I should
switch to LaTeX. ☺

Um... LibreOffice. I should
switch to LaTeX. ☺

“Did you say in lecture that an existential
statement is considered not true until proof
is found? Wouldn't there be an "unproven"
state rather than a "not true/false" state?”

I may have misspoken on this one. In classical logic, there's
an “objective truth” to every statement (it's either true or
false). For an existential statement, if there truly are no
positive examples where it holds, the statement is false.

Independently, there's the question of whether we know
whether the statement is true. Just because we can't find a

positive example doesn't mean none exists!

I may have misspoken on this one. In classical logic, there's
an “objective truth” to every statement (it's either true or
false). For an existential statement, if there truly are no
positive examples where it holds, the statement is false.

Independently, there's the question of whether we know
whether the statement is true. Just because we can't find a

positive example doesn't mean none exists!

“I want to work at a company this summer,
but I also want to do research. How should

I decide between the two?”

This is a good question,
but I don't have time for
it today. Can someone ask
this again for next time?

This is a good question,
but I don't have time for
it today. Can someone ask
this again for next time?

Back to CS103!

Set Translations

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty
set exists.”

First-order logic doesn't have set
operators or symbols “built in.” If we
only have the predicates given above,

how might we describe this?

First-order logic doesn't have set
operators or symbols “built in.” If we
only have the predicates given above,

how might we describe this?

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))

Both of these translations are correct.
Just like in propositional logic, there are

many different equivalent ways of
expressing the same statement in first-

order logic.

Both of these translations are correct.
Just like in propositional logic, there are

many different equivalent ways of
expressing the same statement in first-

order logic.

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “two sets are
equal if and only if they contain the same elements.”

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)

You sometimes see the universal quantifier pair with
the connective. This is especially common when ↔

talking about sets because two sets are equal when
they have precisely the same elements.

You sometimes see the universal quantifier pair with
the connective. This is especially common when ↔

talking about sets because two sets are equal when
they have precisely the same elements.

Mechanics: Negating Statements

Negating Quantifiers

● We spent much of Monday's lecture
discussing how to negate propositional
constructs.

● How do we negate statements with
quantifiers in them?

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

Negating First-Order Statements

● Use the equivalences

¬∀x. φ ≡ ∃x. ¬φ

¬∃x. φ ≡ ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to
negate connectives.

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)

Two Useful Equivalences

● The following equivalences are useful when
negating statements in first-order logic:

¬(p ∧ q) ≡ p → ¬q

¬(p → q) ≡ p ∧ ¬q
● These identities are useful when negating

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

● When pushing negations across quantifiers, we
strongly recommend using the above equivalences
to keep → with ∀ and ∧ with ∃.

Negating Quantifiers

● What is the negation of the following statement, which
says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● This says “every puppy is not cute.”
● Do you see why this is the negation of the original

statement from both an intuitive and formal
perspective?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)
(“Every set contains at least one element”)

These two statements are not negations of
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)

Remember: usually ∀

goes with , not → ∧

Remember: usually ∀

goes with , not → ∧

Restricted Quantifiers

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x) holds.”
● This is not technically a part of first-order

logic; it is a shorthand for

∀x. (x ∈ S → P(x))
● How might we encode this concept?

∃x ∈ S. P(x)

Answer: ∃x. (x ∈ S ∧ P(x)). Note the use of
 instead of ∧ →

here.

Note the use of
 instead of ∧ →

here.

Quantifying Over Sets

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.
● In CS103, feel free to use these restricted quantifiers, but

please do not use variants of this syntax.
● For example, don't do things like this:

⚠ ∀x with P(x). Q(x) ⚠

⚠ ∀y such that P(y) ∧ Q(y). R(y). ⚠

⚠ ∃P(x). Q(x) ⚠

Expressing Uniqueness

Using the predicate

 - Level(l), which states that l is a level,

write a sentence in first-order logic that means “there is only
one level.”

A fun diversion:

http://www.onemorelevel.com/game/there_is_only_one_level

A fun diversion:

http://www.onemorelevel.com/game/there_is_only_one_level

http://www.onemorelevel.com/game/there_is_only_one_level
http://www.onemorelevel.com/game/there_is_only_one_level

∃l. (Level(l) ∧
∀x. (x ≠ l → ¬Level(x))

)

∃l. (Level(l) ∧
∀x. (Level(x) → x = l)

)

Expressing Uniqueness

● To express the idea that there is exactly one object
with some property, we write that
● there exists at least one object with that property, and that
● there are no other objects with that property.

● You sometimes see a special “uniqueness quantifier”
used to express this:

∃!x. φ
● For the purposes of CS103, please do not use this

quantifier. We want to give you more practice using
the regular ∀ and ∃ quantifiers.

Next Time

● A Long Weekend!
● Functions
● Classes of Functions
● First-Order Definitions
● Formalizing Cardinality

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

