
  

Context-Free Grammars



  

Describing Languages

● We've seen two models for the regular languages:

● Finite automata accept precisely the strings in the 
language.

● Regular expressions describe precisely the strings 
in the language.

● Finite automata recognize strings in the language.
● Perform a computation to determine whether a 

specific string is in the language.

● Regular expressions match strings in the language.
● Describe the general shape of all strings in the 

language.



  

Context-Free Grammars

● A context-free grammar (or CFG) is an 
entirely different formalism for defining a 
class of languages.

● Goal: Give a procedure for listing off all 
strings in the language.

● CFGs are best explained by example...



  

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic 
expressions using addition, subtraction, 
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op (E)
⇒ E Op (E Op E)
⇒ E * (E Op E)
⇒ int * (E Op E)
⇒ int * (int Op E)
⇒ int * (int Op int)
⇒ int * (int + int)



  

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic 
expressions using addition, subtraction, 
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op int
⇒ int Op int
⇒ int / int



  

Context-Free Grammars

● Formally, a context-free grammar 
is a collection of four objects:

● A set of nonterminal symbols
(also called variables),

● A set of terminal symbols (the 
alphabet of the CFG)

● A set of production rules saying 
how each nonterminal can be 
replaced by a string of terminals 
and nonterminals, and

● A start symbol (which must be a 
nonterminal) that begins the 
derivation.

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /



  

Some CFG Notation

● Capital letters in Bold Red Uppercase 
will represent nonterminals.
● i.e. A, B, C, D

● Lowercase letters in blue monospace will 
represent terminals.
● i.e. t, u, v, w

● Lowercase Greek letters in gray italics 
will represent arbitrary strings of 
terminals and nonterminals.
● i.e. α, γ, ω



  

A Notational Shorthand

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /



  

A Notational Shorthand

E → int | E Op E | (E)

Op → + | - | * | /



  

Derivations

⇒ E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E * (E Op E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int Op int)

⇒ int * (int + int)

● A sequence of steps where 
nonterminals are replaced by 
the right-hand side of a 
production is called a 
derivation.

● If string α derives string ω, we 
write α ⇒* ω.

● In the example on the left, we 
see E ⇒* int * (int + int).

E → E Op E | int | (E)
Op → + | * | - | /



  

The Language of a Grammar

● If G is a CFG with alphabet Σ and start 
symbol S, then the language of G is the 
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }   
● That is, (ℒ G) is the set of strings 

derivable from the start symbol.
● Note: ω must be in Σ*, the set of strings 

made from terminals. Strings involving 
nonterminals aren't in the language.



  

Context-Free Languages

● A language L is called a context-free 
language (or CFL) if there is a CFG G 
such that L = (ℒ G).

● Questions:
● What languages are context-free?
● How are context-free and regular languages 

related?



  

From Regexes to CFGs

● CFGs consist purely of production rules 
of the form A → ω. They do not have the 
regular expression operators * or ∪.

● However, we can convert regular 
expressions to CFGs as follows:

S → a*b



  

From Regexes to CFGs

● CFGs consist purely of production rules 
of the form A → ω. They do not have the 
regular expression operators * or ∪.

● However, we can convert regular 
expressions to CFGs as follows:

S → Ab
A → Aa | ε



  

From Regexes to CFGs

● CFGs consist purely of production rules 
of the form A → ω. They do not have the 
regular expression operators * or ∪.

● However, we can convert regular 
expressions to CFGs as follows:

S → a(b ∪ c*)



  

From Regexes to CFGs

● CFGs consist purely of production rules 
of the form A → ω. They do not have the 
regular expression operators * or ∪.

● However, we can convert regular 
expressions to CFGs as follows:

S → aX
X → b | C
C → Cc | ε



  

Regular Languages and CFLs

● Theorem: Every regular language is 
context-free.

● Proof Idea: Use the construction from 
the previous slides to convert a regular 
expression for L into a CFG for L. ■

● Problem Set Exercise: Instead, show 
how to convert a DFA/NFA into a CFG.



  

The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε

● What strings can this generate?

 ℒ(G) = { anbn | n ∈ ℕ }   

a ba ba ba b



  

Regular
Languages CFLs

All Languages



  

Why the Extra Power?

● Why do CFGs have more power than 
regular expressions?

● Intuition: Derivations of strings have 
unbounded “memory.”

S → aSb | ε

a ba ba ba b



  

Time-Out for Announcements!



  

Problem Set Seven

● Problem Set Six was due at the start of 
today's lecture.
● Want to use late days? Submit up to Monday at 

3:00PM.

● Problem Set Seven goes out now. It's due 
next Friday.
● Play around with the Myhill-Nerode theorem 

and the limits of regular languages!
● Play around with your very own CFGs!



  

Midterms Graded

● Midterms have been graded. They're 
available for pickup in the Gates building.
● SCPD students: we've sent the exams back to 

the SCPD office. You should hear back from 
them soon.

● Solutions and stats are available in the 
Gates building in the normal handout 
filing cabinet.



  

Midterm Regrades

● If you believe that we made a grading error on the 
exam, you can submit it for a regrade. To do so, fill out 
the form online, staple it to your exam, and hand it to 
Keith by next Friday.

● Please only submit regrades if you
● believe that we actually graded your exam incorrectly, and
● you've talked about the exam with the course staff and they 

agree with you.

● Your score can go down if you ask for a regrade. 
Please be sure you really want to ask for it before you 
submit a regrade request.



  

Back to CS103!



  

Designing CFGs

● Like designing DFAs, NFAs, and regular 
expressions, designing CFGs is a craft.

● When thinking about CFGs:
● Think recursively: Build up bigger 

structures from smaller ones.
● Have a construction plan: Know in what 

order you will build up the string.
● Store information in nonterminals: Have 

each nonterminal correspond to some useful 
piece of information.



  

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w is 
a palindrome }

● We can design a CFG for L by thinking 
inductively:
● Base case: ε, a, and b are palindromes.

● If ω is a palindrome, then aωa and bωb are 
palindromes.

S → ε | a | b | aSa | bSb



  

Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● Some sample strings in L:

((()))  

(())()  

(()())(()())  

((((()))(())))  

ε  

()()  



  

Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of 

balanced parentheses.
● Recursive step: Look at the closing parenthesis 

that matches the first open parenthesis.

((( (( (( (( (((() ))) ))) )))))



  

Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of 

balanced parentheses.
● Recursive step: Look at the closing parenthesis 

that matches the first open parenthesis.

(( ( ( ( ( ( (( ((( () ) ) ) ) )) ) ))))



  

Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of 

balanced parentheses.
● Recursive step: Look at the closing parenthesis 

that matches the first open parenthesis.

( ( ( ( ( ( (( ((( () ) ) ) ) ) ) ))))



  

Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of 

balanced parentheses.
● Recursive step: Look at the closing parenthesis 

that matches the first open parenthesis. 
Removing the first parenthesis and the 
matching parenthesis forms two new strings of 
balanced parentheses. 

S → (S)S | ε



  

Designing CFGs: A Caveat

● Let Σ = {a, b} and let L = {w ∈ Σ* | w 
has the same number of a's and b's }

● Is this a CFG for L?

S → aSb | bSa | ε 

● Can you derive the string abba?



  

Designing CFGs: A Caveat

● When designing a CFG for a language, 
make sure that it
● generates all the strings in the language and
● never generates a string outside the 

language.

● The first of these can be tricky – make 
sure to test your grammars!

● You'll design your own CFG for this 
language on the next problem set.



  

CFG Caveats II

● Is the following grammar a CFG for the 
language { anbn | n ∈ ℕ }?

S → aSb  

● What strings can you derive?
● Answer: None!

● What is the language of the grammar?
● Answer: Ø

● When designing CFGs, make sure your 
recursion actually terminates!



  

CFG Caveats III

● When designing CFGs, remember that each 
nonterminal can be expanded out 
independently of the others.

● Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }.

● Is the following a CFG for L?

S → X≟X

X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟



  

Finding a Build Order

● Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }.

● To build a CFG for L, we need to be more clever with how we 
construct the string.

● If we build the strings of a's independently of one another, 
then we can't enforce that they have the same length.

● Idea: Build both strings of a's at the same time.

● Here's one possible grammar based on that idea:

S → ≟ | aSa  

S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟



  

Function Prototypes

● Let Σ = {void, int, double, name, (, ), ,, ;}. 

● Let's write a CFG for C-style function 
prototypes!

● Examples:
● void name(int name, double name);
● int name();
● int name(double name);
● int name(int, int name, int);
● void name(void);



  

Function Prototypes

● Here's one possible grammar:
● S → Ret name (Args);
● Ret → Type | void

● Type → int | double

● Args → ε | void | ArgList
● ArgList → OneArg | ArgList, OneArg
● OneArg → Type | Type name

● Fun question to think about: what changes 
would you need to make to support pointer 
types?



  

Summary of CFG Design Tips

● Look for recursive structures where they exist: 
they can help guide you toward a solution.

● Keep the build order in mind – often, you'll 
build two totally different parts of the string 
concurrently.
● Usually, those parts are built in opposite directions: 

one's built left-to-right, the other right-to-left.

● Use different nonterminals to represent 
different structures.



  

Applications of Context-Free Grammars



  

CFGs for Programming Languages
BLOCK → STMT

  | { STMTS }

STMTS → ε
 | STMT STMTS

STMT → EXPR;
  | if (EXPR) BLOCK

   | while (EXPR) BLOCK
   | do BLOCK while (EXPR);
   | BLOCK
   | …

EXPR → identifier
  | constant

    | EXPR + EXPR
    | EXPR – EXPR
    | EXPR * EXPR
    | ...



  

Grammars in Compilers

● One of the key steps in a compiler is figuring out what a 
program “means.”

● This is usually done by defining a grammar showing the 
high-level structure of a programming language.

● There are certain classes of grammars (LL(1) grammars, 
LR(1) grammars, LALR(1) grammars, etc.) for which it's 
easy to figure out how a particular string was derived.

● Tools like yacc or bison automatically generate parsers 
from these grammars.

● Curious to learn more? Take CS143!



  

Natural Language Processing

● By building context-free grammars for actual 
languages and applying statistical inference, it's 
possible for a computer to recover the likely meaning 
of a sentence.
● In fact, CFGs were first called phrase-structure 

grammars and were introduced by Noam Chomsky in his 
seminal work Syntactic Structures.

● They were then adapted for use in the context of 
programming languages, where they were called Backus-
Naur forms.

● Stanford's CoreNLP project is one place to look for 
an example of this.

● Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml


  

Next Time

● Turing Machines
● What does a computer with unbounded 

memory look like?
● How do you program them?
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