

Context-Free Grammars

Describing Languages

● We've seen two models for the regular languages:

● Finite automata accept precisely the strings in the
language.

● Regular expressions describe precisely the strings
in the language.

● Finite automata recognize strings in the language.
● Perform a computation to determine whether a

specific string is in the language.

● Regular expressions match strings in the language.
● Describe the general shape of all strings in the

language.

Context-Free Grammars

● A context-free grammar (or CFG) is an
entirely different formalism for defining a
class of languages.

● Goal: Give a procedure for listing off all
strings in the language.

● CFGs are best explained by example...

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic
expressions using addition, subtraction,
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op (E)
⇒ E Op (E Op E)
⇒ E * (E Op E)
⇒ int * (E Op E)
⇒ int * (int Op E)
⇒ int * (int Op int)
⇒ int * (int + int)

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic
expressions using addition, subtraction,
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op int
⇒ int Op int
⇒ int / int

Context-Free Grammars

● Formally, a context-free grammar
is a collection of four objects:

● A set of nonterminal symbols
(also called variables),

● A set of terminal symbols (the
alphabet of the CFG)

● A set of production rules saying
how each nonterminal can be
replaced by a string of terminals
and nonterminals, and

● A start symbol (which must be a
nonterminal) that begins the
derivation.

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

Some CFG Notation

● Capital letters in Bold Red Uppercase
will represent nonterminals.
● i.e. A, B, C, D

● Lowercase letters in blue monospace will
represent terminals.
● i.e. t, u, v, w

● Lowercase Greek letters in gray italics
will represent arbitrary strings of
terminals and nonterminals.
● i.e. α, γ, ω

A Notational Shorthand

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

A Notational Shorthand

E → int | E Op E | (E)

Op → + | - | * | /

Derivations

⇒ E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E * (E Op E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int Op int)

⇒ int * (int + int)

● A sequence of steps where
nonterminals are replaced by
the right-hand side of a
production is called a
derivation.

● If string α derives string ω, we
write α ⇒* ω.

● In the example on the left, we
see E ⇒* int * (int + int).

E → E Op E | int | (E)
Op → + | * | - | /

The Language of a Grammar

● If G is a CFG with alphabet Σ and start
symbol S, then the language of G is the
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }
● That is, (ℒ G) is the set of strings

derivable from the start symbol.
● Note: ω must be in Σ*, the set of strings

made from terminals. Strings involving
nonterminals aren't in the language.

Context-Free Languages

● A language L is called a context-free
language (or CFL) if there is a CFG G
such that L = (ℒ G).

● Questions:
● What languages are context-free?
● How are context-free and regular languages

related?

From Regexes to CFGs

● CFGs consist purely of production rules
of the form A → ω. They do not have the
regular expression operators * or ∪.

● However, we can convert regular
expressions to CFGs as follows:

S → a*b

From Regexes to CFGs

● CFGs consist purely of production rules
of the form A → ω. They do not have the
regular expression operators * or ∪.

● However, we can convert regular
expressions to CFGs as follows:

S → Ab
A → Aa | ε

From Regexes to CFGs

● CFGs consist purely of production rules
of the form A → ω. They do not have the
regular expression operators * or ∪.

● However, we can convert regular
expressions to CFGs as follows:

S → a(b ∪ c*)

From Regexes to CFGs

● CFGs consist purely of production rules
of the form A → ω. They do not have the
regular expression operators * or ∪.

● However, we can convert regular
expressions to CFGs as follows:

S → aX
X → b | C
C → Cc | ε

Regular Languages and CFLs

● Theorem: Every regular language is
context-free.

● Proof Idea: Use the construction from
the previous slides to convert a regular
expression for L into a CFG for L. ■

● Problem Set Exercise: Instead, show
how to convert a DFA/NFA into a CFG.

The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε

● What strings can this generate?

 ℒ(G) = { anbn | n ∈ ℕ }

a ba ba ba b

Regular
Languages CFLs

All Languages

Why the Extra Power?

● Why do CFGs have more power than
regular expressions?

● Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

a ba ba ba b

Time-Out for Announcements!

Problem Set Seven

● Problem Set Six was due at the start of
today's lecture.
● Want to use late days? Submit up to Monday at

3:00PM.

● Problem Set Seven goes out now. It's due
next Friday.
● Play around with the Myhill-Nerode theorem

and the limits of regular languages!
● Play around with your very own CFGs!

Midterms Graded

● Midterms have been graded. They're
available for pickup in the Gates building.
● SCPD students: we've sent the exams back to

the SCPD office. You should hear back from
them soon.

● Solutions and stats are available in the
Gates building in the normal handout
filing cabinet.

Midterm Regrades

● If you believe that we made a grading error on the
exam, you can submit it for a regrade. To do so, fill out
the form online, staple it to your exam, and hand it to
Keith by next Friday.

● Please only submit regrades if you
● believe that we actually graded your exam incorrectly, and
● you've talked about the exam with the course staff and they

agree with you.

● Your score can go down if you ask for a regrade.
Please be sure you really want to ask for it before you
submit a regrade request.

Back to CS103!

Designing CFGs

● Like designing DFAs, NFAs, and regular
expressions, designing CFGs is a craft.

● When thinking about CFGs:
● Think recursively: Build up bigger

structures from smaller ones.
● Have a construction plan: Know in what

order you will build up the string.
● Store information in nonterminals: Have

each nonterminal correspond to some useful
piece of information.

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w is
a palindrome }

● We can design a CFG for L by thinking
inductively:
● Base case: ε, a, and b are palindromes.

● If ω is a palindrome, then aωa and bωb are
palindromes.

S → ε | a | b | aSa | bSb

Designing CFGs

● Let Σ = {(,)} and let L = {w ∈ Σ* | w is a
string of balanced parentheses }

● Some sample strings in L:

((()))

(())()

(()())(()())

((((()))(())))

ε

()()

Designing CFGs

● Let Σ = {(,)} and let L = {w ∈ Σ* | w is a
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced parentheses.
● Recursive step: Look at the closing parenthesis

that matches the first open parenthesis.

((((((((((((())))))))))))

Designing CFGs

● Let Σ = {(,)} and let L = {w ∈ Σ* | w is a
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced parentheses.
● Recursive step: Look at the closing parenthesis

that matches the first open parenthesis.

((((((((((((())))))))))))

Designing CFGs

● Let Σ = {(,)} and let L = {w ∈ Σ* | w is a
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced parentheses.
● Recursive step: Look at the closing parenthesis

that matches the first open parenthesis.

(((((((((((()))))))))))

Designing CFGs

● Let Σ = {(,)} and let L = {w ∈ Σ* | w is a
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced parentheses.
● Recursive step: Look at the closing parenthesis

that matches the first open parenthesis.
Removing the first parenthesis and the
matching parenthesis forms two new strings of
balanced parentheses.

S → (S)S | ε

Designing CFGs: A Caveat

● Let Σ = {a, b} and let L = {w ∈ Σ* | w
has the same number of a's and b's }

● Is this a CFG for L?

S → aSb | bSa | ε

● Can you derive the string abba?

Designing CFGs: A Caveat

● When designing a CFG for a language,
make sure that it
● generates all the strings in the language and
● never generates a string outside the

language.

● The first of these can be tricky – make
sure to test your grammars!

● You'll design your own CFG for this
language on the next problem set.

CFG Caveats II

● Is the following grammar a CFG for the
language { anbn | n ∈ ℕ }?

S → aSb

● What strings can you derive?
● Answer: None!

● What is the language of the grammar?
● Answer: Ø

● When designing CFGs, make sure your
recursion actually terminates!

CFG Caveats III

● When designing CFGs, remember that each
nonterminal can be expanded out
independently of the others.

● Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }.

● Is the following a CFG for L?

S → X≟X

X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟

Finding a Build Order

● Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }.

● To build a CFG for L, we need to be more clever with how we
construct the string.

● If we build the strings of a's independently of one another,
then we can't enforce that they have the same length.

● Idea: Build both strings of a's at the same time.

● Here's one possible grammar based on that idea:

S → ≟ | aSa

S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟

Function Prototypes

● Let Σ = {void, int, double, name, (,), ,, ;}.

● Let's write a CFG for C-style function
prototypes!

● Examples:
● void name(int name, double name);
● int name();
● int name(double name);
● int name(int, int name, int);
● void name(void);

Function Prototypes

● Here's one possible grammar:
● S → Ret name (Args);
● Ret → Type | void

● Type → int | double

● Args → ε | void | ArgList
● ArgList → OneArg | ArgList, OneArg
● OneArg → Type | Type name

● Fun question to think about: what changes
would you need to make to support pointer
types?

Summary of CFG Design Tips

● Look for recursive structures where they exist:
they can help guide you toward a solution.

● Keep the build order in mind – often, you'll
build two totally different parts of the string
concurrently.
● Usually, those parts are built in opposite directions:

one's built left-to-right, the other right-to-left.

● Use different nonterminals to represent
different structures.

Applications of Context-Free Grammars

CFGs for Programming Languages
BLOCK → STMT

 | { STMTS }

STMTS → ε
 | STMT STMTS

STMT → EXPR;
 | if (EXPR) BLOCK

 | while (EXPR) BLOCK
 | do BLOCK while (EXPR);
 | BLOCK
 | …

EXPR → identifier
 | constant

 | EXPR + EXPR
 | EXPR – EXPR
 | EXPR * EXPR
 | ...

Grammars in Compilers

● One of the key steps in a compiler is figuring out what a
program “means.”

● This is usually done by defining a grammar showing the
high-level structure of a programming language.

● There are certain classes of grammars (LL(1) grammars,
LR(1) grammars, LALR(1) grammars, etc.) for which it's
easy to figure out how a particular string was derived.

● Tools like yacc or bison automatically generate parsers
from these grammars.

● Curious to learn more? Take CS143!

Natural Language Processing

● By building context-free grammars for actual
languages and applying statistical inference, it's
possible for a computer to recover the likely meaning
of a sentence.
● In fact, CFGs were first called phrase-structure

grammars and were introduced by Noam Chomsky in his
seminal work Syntactic Structures.

● They were then adapted for use in the context of
programming languages, where they were called Backus-
Naur forms.

● Stanford's CoreNLP project is one place to look for
an example of this.

● Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml

Next Time

● Turing Machines
● What does a computer with unbounded

memory look like?
● How do you program them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

