
Functions, Oracles, and 
Reductions



Agenda for Today

Today, we’ll be talking about functions as they relate to computability

• Computable functions

• Reductions
• Oracle Reductions (also known as Turing Reductions)

• Computable Many-one Reductions



Review UTM, ATM, and ATM ∉ R

• UTM is a universal Turing machine. It takes the description of another 
Turing machine M and an input x to that Turing machine and 
simulates M on x. 

• ATM is the language of UTM. Remember, the language of a TM is the set 
of strings that TM accepts, so 

ATM={⟨𝑀, 𝑥⟩|𝑀 𝑖𝑠 𝑎 𝑇𝑀 which accepts input 𝑥}



Theorem: ATM ∉ R
Proof: Suppose ATM ∈ R. Then there is some Turing machine A which decides 
ATM. Consider the following TM D, which must exist if A exists: 
On input ⟨𝑀⟩, D uses A as a subroutine to decide if ⟨𝑀, ⟨𝑀⟩⟩ ∈ ATM, that is, if 
𝑀 accepts the input which is 𝑀’s description. 

If 𝑀, 𝑀 ∈ ATM, that is, if the subroutine A accepts, then D rejects.
Otherwise, when the subroutine A rejects, D accepts.
Observe that since A halts on all inputs, D halts on all inputs – it only takes 
one more step after running A. In particular, D halts on input ⟨𝐷⟩.
Since D halts on ⟨𝐷⟩, it either accepts or rejects.

Suppose D accepts ⟨𝐷⟩. Then 𝐷, 𝐷 ∈ ATM. However, by our design of D, 
this implies that D rejects. This is a contradiction.

Suppose D instead rejects ⟨𝐷⟩. Then 𝐷, 𝐷 ∉ ATM. However, by our design 
of D, this implies that D accepts. This is again a contradiction.
Since in each case our assumption that A exists has lead to a contradiction, 
we must conclude that our assumption is false and that ATM ∉ R. □



What is a computable function?

• There are many equivalent definitions!

• Call the output of a TM M on input x whatever is written on M’s tape 
when it halts. We will denote this as M(x).

• We say 𝑓: Σ∗ → Σ∗ is computed by a TM M if whenever given the 
input x,  M halts with f(x) written on its tape.

• Basically, f is computable if there is an algorithm which, given the 
input to f, finds the corresponding output.



Examples of Computable Functions

• 𝑓 𝑛 = 2𝑛

• 𝑔 𝑛 = log 𝑛

• ℎ 𝑀, 𝑘 = 𝑥 where x is the content of TM M’s tape after computing 
for k steps.

• 𝑖 𝐷, 𝑥 = 1 if D is a DFA and x in L(D) or 0 otherwise.

For shorthand, we will say a function 𝑓:ℕ → ℕ is computable if 𝑔: Σ∗ →
Σ∗ is computable and 𝑔 𝑛 = 𝑓(𝑛) . For example, the function n2 is 
computable.



Relationship between functions and 
languages
• For each language L, we say f is an indicator function for L if

𝑓 𝑥 = 1 if 𝑥 ∈ 𝐿 and 𝑓 𝑥 = 0 otherwise

Note this gives us some examples of functions which are not 
computable!



Busy Beaver Function

• The Busy Beaver function 𝐵𝐵:ℕ → ℕ is defined as the largest number a TM 
with n states can output on input 𝜀 (remember the TM has to halt).

• Exercise: Why isn’t this function Computable?

• Note from when we tried to prove this at the end of class – if you change 
the definition to be:

The Busy Beaver function 𝐵𝐵:ℕ → ℕ is defined as the largest 
number a TM with n states can output on input 𝑛 (remember 
the TM has to halt).

Then the proof we showed would work very elegantly! As an exercise, you 
should show that we can still use the same proof technique modify it a bit to 
account for this.



Oracles

• An oracle Turing machine is like a Turing machine which has a special 
subroutine called an oracle which decides some language for the TM. 
Oracles don’t have to be Turing machines – they can decide any 
language!

• Think about oracle Turing machines as algorithms which get a special 
subroutine which tells you things you couldn’t normally ever compute 
with a Turing machine.

• For example, with an oracle for ATM, I can decide ATM.



A trivial oracle machine:

Oracle machine MO with oracle for language O does the following:

On input x,

ask O if 𝑥 ∈ 𝑂

if yes, accept

otherwise, reject



A slightly less trivial Oracle machine

Let HALTTM={⟨𝑀, 𝑥⟩|𝑀 𝑖𝑠 𝑎 𝑇𝑀 which halts on input 𝑥}

We will construct an oracle machine MHALTTM with an oracle for HALTTM
which decides ATM.

Let MHALTTM on input ⟨𝑀, 𝑥⟩ do the following:

Ask if 𝑀, 𝑥 ∈ HALTTM.

if yes, simulate M on x. 

If M accepts, accept.

Otherwise, reject

otherwise, reject.

Why does this decide 
ATM?



What did we just show?

Did we show that ATM is computable?

We showed that, if HALTTM were computable, then ATM would be 
computable! What can we conclude from this?

In general, if we can compute L with an oracle Turing machine with 
oracle O, we say 𝐿 ∈ 𝑅𝑂. So we showed that ATM ∈ RHALTTM.



This gives us a technique for proving things to 
be undecidable
In general, if I know that A is an undecidable language, and I show that 
an oracle TM with with an oracle for language B can decide A, then I 
can conclude A is undecidable. (Why?)

We call this an oracle reduction or Turing reduction from A to B. That is, 
we say A has an oracle reduction to B if 𝐴 ∈ 𝑅𝐵.

Symbolically, we denote the relation “A has an oracle reduction to B” as 

A ≤T B.



What we just did in reduction terms

• So what we just showed was that ATM ≤T HALTTM

• Let’s show that HALTTM ≤T ATM

• How do we do that?



Theorem: HALTTM ≤T ATM

Proof: We will construct an oracle TM MATM which decides HALTTM. 
On input ⟨𝑀, 𝑥⟩, do the following:

Change all of M’s transitions to its reject state to transition to its 
accept state. Call this new machine M’.
Ask if 𝑀′, 𝑥 ∈ ATM

if yes, accept
if no, reject

Observe that MATM decides HALTTM. Suppose 𝑀, 𝑥 ∈ HALTTM. Then, on input 
x, M either accepts or rejects. This implies that M’ accepts x by our design of 
M’, and therefore that 𝑀′, 𝑥 ∈ ATM. Therefore, MATM accepts x.
Suppose 𝑀, 𝑥 ∉ HALTTM. Then M never reaches the accept or reject state 
on input x. By our construction of M’, M’ only reaches the accept state when 
M would have reached its accept or reject state. So M’ must not accept x, 
ergo 𝑀′, 𝑥 ∉ ATM, and therefore MATM rejects x.
Since MATM accepts all 𝑀, 𝑥 ∈ HALTTM and rejects all 𝑀, 𝑥 ∉ HALTTM, MATM

decides HALTTM and therefore HALTTM ≤T ATM. □



Exercise: Show ATM oracle reduces to ETM

ETM = {⟨𝑀⟩|𝐿 𝑀 = ∅}

That is, ETM is the set of (descriptions of) Turing machines which don’t 
accept anything.

What does it mean to show ATM ≤T ETM?

What’s an idea we could use for our oracle Turing machine?



Another kind of reduction

Let 𝐴 ⊆ Σ∗ and 𝐵 ⊆ Σ∗ (let A and B be languages). We say a function 
𝑓: Σ∗ → Σ∗ is a many-one reduction or a map reduction from A to B if 

𝑥 ∈ 𝐴 iff 𝑓 𝑥 ∈ 𝐵

That is, f assigns elements of A to elements of B, and assigns elements 
outside A to elements outside B.

IMPORTANT TO NOTICE: Different elements of A can go to the same 
element of B, and we don’t have to hit every element of B!

Lastly, we say such a function is a computable many-one reduction or a 
computable map reduction if f is also computable. If there is such an f, 
we say A ≤m B.



An example

• Let’s show that ATM has a computable many-one reduction to HALTTM

What does f look like?

How do we show f is a computable many-one reduction?



ATM ≤m HALTTM

We’ll define f by an algorithm.

On input 𝑀, 𝑥 :

Create a new machine M’ by changing all of M’s transitions to its 
reject state into transitions to a new loop state, in which M’ will s
simply loop.

Output 𝑀′, 𝑥

f is clearly computable since we gave an algorithm for it, so we just 
need to show that it’s a many-one reduction.



ATM ≤m HALTTM

We’ll define f by an algorithm.

On input 𝑀, 𝑥 :

Create a new machine M’ by changing all of M’s transitions to its 
reject state into transitions to a new loop state, in which M’ will s
simply loop.

Output 𝑀′, 𝑥

What does it mean for f to be a many-one reduction?



ATM ≤m HALTTM

We’ll define f by an algorithm.

On input 𝑀, 𝑥 :

Create a new machine M’ by changing all of M’s transitions to its 
reject state into transitions to a new loop state, in which M’ will s
simply loop.

Output 𝑀′, 𝑥

Show that if 𝑀, 𝑥 ∈ ATM, then f( 𝑀, 𝑥 ) ∈ HALTTM and

Show that if 𝑀, 𝑥 ∉ ATM, then f( 𝑀, 𝑥 )∉ HALTTM


