
  

Mathematical Logic
Part Two



  

Recap from Last Time



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are as follows:
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Take out a sheet of paper!



  

What's the truth table for the → connective?



  

What's the negation of p → q?



  

New Stuff!



  

First-Order Logic



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifiers that allow us to reason about 

multiple objects.



  

Some Examples



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)
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These blue terms are called 
constant symbols. Unlike 
propositional variables, they 

refer to objects, not 
propositions.
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What remains are traditional propositional 
connectives. Because each predicate 
evaluates to true or false, we can 

connect the truth values of predicates 
using normal propositional connectives.

What remains are traditional propositional 
connectives. Because each predicate 
evaluates to true or false, we can 

connect the truth values of predicates 
using normal propositional connectives.



  

Reasoning about Objects

● To reason about objects, first-order logic 
uses predicates.

● Examples:
● IsCute(Quokka)
● ArgueIncessantly(Democrats, Republicans)

● Applying a predicate to arguments 
produces a proposition, which is either 
true or false.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is 
just another predicate. 
Binary predicates are 
sometimes written in 

infix notation this way.

The less-than sign is 
just another predicate. 
Binary predicates are 
sometimes written in 

infix notation this way.

Numbers are not “built 
in” to first-order 

logic. They’re constant 
symbols just like “You” 

and “a” above.

Numbers are not “built 
in” to first-order 

logic. They’re constant 
symbols just like “You” 

and “a” above.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to 

state that two propositions are equal, use ↔.



  

Let's see some more examples.



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Her) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Her))
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Functions

● First-order logic allows functions that return 
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any 

number of arguments, but always return a single 
value.

● Functions evaluate to objects, not propositions.



  

Objects and Predicates

● When working in first-order logic, be 
careful to keep objects (actual things) 
and predicates (true or false) separate.

● You cannot apply connectives to objects:

        ⚠          Venus → TheSun                  ⚠
● You cannot apply functions to 

propositions:

 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠
● Ever get confused? Just ask! 



  

One last (and major) change



  

“For any natural number n,
n is even iff n2 is even”

  



  

“For any natural number n,
n is even iff n2 is even”
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The Universal Quantifier

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement 
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀m. (IsMillennial(m) → IsSpecial(m))

Tallest(SK) →
∀x. (SK ≠ x → ShorterThan(x, SK))



  

The Universal Quantifier

∀x. Smiling(x)
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Since Smiling(x) 
is true for every 
choice of x, this 

statement 
evaluates to true.
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The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is 
true for this choice 
x, this statement 

evaluates to false.
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The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))
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The Universal Quantifier
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The Universal Quantifier
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Some muggles are intelligent.
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∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”
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The Existential Quantifier

● A statement of the form

∃x. some-formula

is true if, for some choice of x, the 
statement some-formula is true when that 
x is plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)



  

The Existential Quantifier
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Some Technical Details



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∀x. Loves(You, x)) → (∀y. Loves(y, You))
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● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∀x. Loves(You, x)) → (∀x. Loves(x, You))



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∀x. Loves(You, x)) → (∀x. Loves(x, You))

The variable x 
just lives here.

The variable x 
just lives here.

A different variable, 
also named x, just 

lives here.

A different variable, 
also named x, just 

lives here.



  

Operator Precedence (Again)

● When writing out a formula in first-order logic, the 
quantifiers ∀ and ∃ have precedence just below ¬.

● The statement

∀x. P(x) ∨ R(x) → Q(x)

is parsed like this:

● This is syntactically invalid because the variable x is 
out of scope in the back half of the formula.

● To ensure that x is properly quantified, explicitly put 
parentheses around the region you want to quantify:

∀x. (P(x) ∨ R(x) → Q(x))

( ( ∀ x. P(x) ) ∨ R (x) ) → Q ( )x



  

Time-Out for Announcements!



  

Checkpoints Graded

● The PS1 checkpoint assignment has been graded.
● Review your feedback on GradeScope. Contact the staff 

(via Piazza or by stopping by office hours) if you have any 
questions.

● Some notes:
● Make sure to list your partner through GradeScope. 

There's a space to list your partner when you submit the 
assignment. If you forget to do this, they won't get credit for the 
assignment!

● Make sure to check your grade ASAP. For the reason listed 
above, make sure you have a grade recorded. If not, contact the 
course staff. Plus, that way, you can take our feedback into 
account when writing up your answers to the rest of the problem 
set questions.

● Best of luck on the rest of the problem set!



  

Proofwriting Checklist

● We’ve just released Handout 11, which contains 
a checklist of five good proofwriting tips.

● We’ll be looking at these five specific points 
when grading your problem sets.

● Good idea: Before submitting, reread all of 
your proofs and make sure that you adhere to 
the conventions.
● Already submitted? No worries! You can resubmit 

and we’ll grade the second version.



  

Your Questions



  

“Industry or research? PhD or not to PhD?”

These are both really good options – it’s more a matter of what 
you’re interested in working on and what’s a better fit for you.
 

Working on a Ph.D gives you a chance to work on a lot of problems 
you can’t typically work on in industry. You’ll get a thorough 
understanding of a particular problem domain and will learn how to 
work on new problems independently. Post-graduation, you can go 
into academia (there are a ton of openings!) or industry, and you’ll 
have a lot of flexibility.
 

If you’re thinking that you want to do a PhD, I’d strongly 
recommend trying to get involved in research in the CS department. 
Keep an eye open for CURIS for next year, and feel free to stop 
by professors’ office hours to ask them about their work and how to 
get involved. Take classes outside the CS core, if you can, since 
that’s another great way to meet professors.

These are both really good options – it’s more a matter of what 
you’re interested in working on and what’s a better fit for you.
 

Working on a Ph.D gives you a chance to work on a lot of problems 
you can’t typically work on in industry. You’ll get a thorough 
understanding of a particular problem domain and will learn how to 
work on new problems independently. Post-graduation, you can go 
into academia (there are a ton of openings!) or industry, and you’ll 
have a lot of flexibility.
 

If you’re thinking that you want to do a PhD, I’d strongly 
recommend trying to get involved in research in the CS department. 
Keep an eye open for CURIS for next year, and feel free to stop 
by professors’ office hours to ask them about their work and how to 
get involved. Take classes outside the CS core, if you can, since 
that’s another great way to meet professors.



  

“When have you felt inadequate?”

I’ll take this one in class rather than writing things down for 
posterity’s sake, but the short answer is “all the time.”

As for “what should you do about it?,” I don’t think there’s 
a one-size-fits all answer, and again I’ll take this one in 
class.

I’ll take this one in class rather than writing things down for 
posterity’s sake, but the short answer is “all the time.”

As for “what should you do about it?,” I don’t think there’s 
a one-size-fits all answer, and again I’ll take this one in 
class.



  

“What's your favorite game?”

A tie between Codenames, Bananagrams, Wise 
and Otherwise, and One Night Werewolf. I love 
games you can play in a group where you can 
lose terribly and still have a really good time.

A tie between Codenames, Bananagrams, Wise 
and Otherwise, and One Night Werewolf. I love 
games you can play in a group where you can 
lose terribly and still have a really good time.



  

Back to CS103!



  

Translating into First-Order Logic



  

Translating Into Logic

● First-order logic is an excellent tool for 
manipulating definitions and theorems to 
learn more about them.

● Applications:
● Determining the negation of a complex 

statement.
● Figuring out the contrapositive of a tricky 

implication.



  

Translating Into Logic

● Translating statements into first-order 
logic is a lot more difficult than it looks.

● There are a lot of nuances that come up 
when translating into first-order logic.

● We'll cover examples of both good and bad 
translations into logic so that you can learn 
what to watch for.

● We'll also show lots of examples of 
translations so that you can see the process 
that goes into it.



  

Using the predicates

   - Puppy(p), which states that p is a puppy, and
   - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “all puppies 
are cute.”



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))
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An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

A statement of the form
 

∀x. something
 

is true only when 
something is true for 
every choice of x.
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is true only when 
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every choice of x.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

A statement of the form
 

∀x. something
 

is true only when 
something is true for 
every choice of x.

A statement of the form
 

∀x. something
 

is true only when 
something is true for 
every choice of x.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This first-order statement 
is false even though the 
English statement is true. 
Therefore, it can't be a 

correct translation.

This first-order statement 
is false even though the 
English statement is true. 
Therefore, it can't be a 

correct translation.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

The issue here is that this 
statement asserts that 
everything is a puppy. 
That's too strong of a 

claim to make.

The issue here is that this 
statement asserts that 
everything is a puppy. 
That's too strong of a 

claim to make.



  

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))
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“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it 
must have property P but 
not have property Q.

If x is a counterexample, it 
must have property P but 
not have property Q.



  

Using the predicates

   - Blobfish(b), which states that b is a blobfish, and
   - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some 
blobfish is cute.”



  

Using the predicates

   - Blobfish(b), which states that b is a blobfish, and
   - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some 
blobfish is cute.”



  

Using the predicates

   - Blobfish(b), which states that b is a blobfish, and
   - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some 
blobfish is cute.”



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

This first-order statement 
is true even though the 

English statement is false. 
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The issue here is that 
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x isn't a blobfish.



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.



  

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition:

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of 

property Q.

If x is an example, it must 
have property P on top of 

property Q.



  

Good Pairings

● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the 

statement from being false when speaking about some 
object you don't care about.

● In the case of ∃, the ∧ connective prevents the 
statement from being true when speaking about some 
object you don't care about.



  

Next Time

● First-Order Translations
● How do we translate from English into first-order logic?

● Quantifier Orderings
● How do you select the order of quantifiers in first-order 

logic formulas?
● Negating Formulas

● How do you mechanically determine the negation of a first-
order formula?

● Expressing Uniqueness
● How do we say there’s just one object of a certain type?
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