

Mathematical Logic
Part Two

Recap from Last Time

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are as follows:
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Take out a sheet of paper!

What's the truth table for the → connective?

What's the negation of p → q?

New Stuff!

First-Order Logic

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects,
● functions that map objects to one another,

and
● quantifiers that allow us to reason about

multiple objects.

Some Examples

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.

These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

The red things that look
like function calls are called
predicates. Predicates take
objects as arguments and
evaluate to true or false.

The red things that look
like function calls are called
predicates. Predicates take
objects as arguments and
evaluate to true or false.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

What remains are traditional propositional
connectives. Because each predicate
evaluates to true or false, we can

connect the truth values of predicates
using normal propositional connectives.

What remains are traditional propositional
connectives. Because each predicate
evaluates to true or false, we can

connect the truth values of predicates
using normal propositional connectives.

Reasoning about Objects

● To reason about objects, first-order logic
uses predicates.

● Examples:
● IsCute(Quokka)
● ArgueIncessantly(Democrats, Republicans)

● Applying a predicate to arguments
produces a proposition, which is either
true or false.

First-Order Sentences

● Sentences in first-order logic can be
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in

infix notation this way.

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in

infix notation this way.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Equality

● First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:

TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to

state that two propositions are equal, use ↔.

Let's see some more examples.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Her) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Her))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Her) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Her))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Her) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Her))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Her) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Her))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Her) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Her))

These purple terms are
functions. Functions take

objects as input and
produce objects as output.

These purple terms are
functions. Functions take

objects as input and
produce objects as output.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Her) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Her))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Her) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Her))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Her) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Her))

Functions

● First-order logic allows functions that return
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any

number of arguments, but always return a single
value.

● Functions evaluate to objects, not propositions.

Objects and Predicates

● When working in first-order logic, be
careful to keep objects (actual things)
and predicates (true or false) separate.

● You cannot apply connectives to objects:

 ⚠ Venus → TheSun ⚠
● You cannot apply functions to

propositions:

 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠
● Ever get confused? Just ask!

One last (and major) change

“For any natural number n,
n is even iff n2 is even”

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

The Universal Quantifier

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀m. (IsMillennial(m) → IsSpecial(m))

Tallest(SK) →
∀x. (SK ≠ x → ShorterThan(x, SK))

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
true for this choice
x, this statement

evaluates to false.

Since Smiling(x) is
true for this choice
x, this statement

evaluates to false.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
true for this choice
x, this statement

evaluates to false.

Since Smiling(x) is
true for this choice
x, this statement

evaluates to false.

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

Is this overall
statement true or

false in this
scenario?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

Is this overall
statement true or

false in this
scenario?

Some muggles are intelligent.

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

The Existential Quantifier

● A statement of the form

∃x. some-formula

is true if, for some choice of x, the
statement some-formula is true when that
x is plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

Is this overall
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

Is this overall
statement true or

false?

Some Technical Details

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∀x. Loves(You, x)) → (∀y. Loves(y, You))

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∀x. Loves(You, x)) → (∀y. Loves(y, You))

The variable x
just lives here.

The variable x
just lives here.

The variable y
just lives here.

The variable y
just lives here.

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∀x. Loves(You, x)) → (∀y. Loves(y, You))

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∀x. Loves(You, x)) → (∀x. Loves(x, You))

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∀x. Loves(You, x)) → (∀x. Loves(x, You))

The variable x
just lives here.

The variable x
just lives here.

A different variable,
also named x, just

lives here.

A different variable,
also named x, just

lives here.

Operator Precedence (Again)

● When writing out a formula in first-order logic, the
quantifiers ∀ and ∃ have precedence just below ¬.

● The statement

∀x. P(x) ∨ R(x) → Q(x)

is parsed like this:

● This is syntactically invalid because the variable x is
out of scope in the back half of the formula.

● To ensure that x is properly quantified, explicitly put
parentheses around the region you want to quantify:

∀x. (P(x) ∨ R(x) → Q(x))

((∀ x. P(x)) ∨ R (x)) → Q ()x

Time-Out for Announcements!

Checkpoints Graded

● The PS1 checkpoint assignment has been graded.
● Review your feedback on GradeScope. Contact the staff

(via Piazza or by stopping by office hours) if you have any
questions.

● Some notes:
● Make sure to list your partner through GradeScope.

There's a space to list your partner when you submit the
assignment. If you forget to do this, they won't get credit for the
assignment!

● Make sure to check your grade ASAP. For the reason listed
above, make sure you have a grade recorded. If not, contact the
course staff. Plus, that way, you can take our feedback into
account when writing up your answers to the rest of the problem
set questions.

● Best of luck on the rest of the problem set!

Proofwriting Checklist

● We’ve just released Handout 11, which contains
a checklist of five good proofwriting tips.

● We’ll be looking at these five specific points
when grading your problem sets.

● Good idea: Before submitting, reread all of
your proofs and make sure that you adhere to
the conventions.
● Already submitted? No worries! You can resubmit

and we’ll grade the second version.

Your Questions

“Industry or research? PhD or not to PhD?”

These are both really good options – it’s more a matter of what
you’re interested in working on and what’s a better fit for you.

Working on a Ph.D gives you a chance to work on a lot of problems
you can’t typically work on in industry. You’ll get a thorough
understanding of a particular problem domain and will learn how to
work on new problems independently. Post-graduation, you can go
into academia (there are a ton of openings!) or industry, and you’ll
have a lot of flexibility.

If you’re thinking that you want to do a PhD, I’d strongly
recommend trying to get involved in research in the CS department.
Keep an eye open for CURIS for next year, and feel free to stop
by professors’ office hours to ask them about their work and how to
get involved. Take classes outside the CS core, if you can, since
that’s another great way to meet professors.

These are both really good options – it’s more a matter of what
you’re interested in working on and what’s a better fit for you.

Working on a Ph.D gives you a chance to work on a lot of problems
you can’t typically work on in industry. You’ll get a thorough
understanding of a particular problem domain and will learn how to
work on new problems independently. Post-graduation, you can go
into academia (there are a ton of openings!) or industry, and you’ll
have a lot of flexibility.

If you’re thinking that you want to do a PhD, I’d strongly
recommend trying to get involved in research in the CS department.
Keep an eye open for CURIS for next year, and feel free to stop
by professors’ office hours to ask them about their work and how to
get involved. Take classes outside the CS core, if you can, since
that’s another great way to meet professors.

“When have you felt inadequate?”

I’ll take this one in class rather than writing things down for
posterity’s sake, but the short answer is “all the time.”

As for “what should you do about it?,” I don’t think there’s
a one-size-fits all answer, and again I’ll take this one in
class.

I’ll take this one in class rather than writing things down for
posterity’s sake, but the short answer is “all the time.”

As for “what should you do about it?,” I don’t think there’s
a one-size-fits all answer, and again I’ll take this one in
class.

“What's your favorite game?”

A tie between Codenames, Bananagrams, Wise
and Otherwise, and One Night Werewolf. I love
games you can play in a group where you can
lose terribly and still have a really good time.

A tie between Codenames, Bananagrams, Wise
and Otherwise, and One Night Werewolf. I love
games you can play in a group where you can
lose terribly and still have a really good time.

Back to CS103!

Translating into First-Order Logic

Translating Into Logic

● First-order logic is an excellent tool for
manipulating definitions and theorems to
learn more about them.

● Applications:
● Determining the negation of a complex

statement.
● Figuring out the contrapositive of a tricky

implication.

Translating Into Logic

● Translating statements into first-order
logic is a lot more difficult than it looks.

● There are a lot of nuances that come up
when translating into first-order logic.

● We'll cover examples of both good and bad
translations into logic so that you can learn
what to watch for.

● We'll also show lots of examples of
translations so that you can see the process
that goes into it.

Using the predicates

 - Puppy(p), which states that p is a puppy, and
 - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “all puppies
are cute.”

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This first-order statement
is false even though the
English statement is true.
Therefore, it can't be a

correct translation.

This first-order statement
is false even though the
English statement is true.
Therefore, it can't be a

correct translation.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

The issue here is that this
statement asserts that
everything is a puppy.
That's too strong of a

claim to make.

The issue here is that this
statement asserts that
everything is a puppy.
That's too strong of a

claim to make.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it
must have property P but
not have property Q.

If x is a counterexample, it
must have property P but
not have property Q.

Using the predicates

 - Blobfish(b), which states that b is a blobfish, and
 - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some
blobfish is cute.”

Using the predicates

 - Blobfish(b), which states that b is a blobfish, and
 - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some
blobfish is cute.”

Using the predicates

 - Blobfish(b), which states that b is a blobfish, and
 - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some
blobfish is cute.”

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

This first-order statement
is true even though the

English statement is false.
Therefore, it can't be a

correct translation.

This first-order statement
is true even though the

English statement is false.
Therefore, it can't be a

correct translation.

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

The issue here is that
implications are true whenever
the antecedent is false. This
statement “accidentally” is true
because of what happens when

x isn't a blobfish.

The issue here is that
implications are true whenever
the antecedent is false. This
statement “accidentally” is true
because of what happens when

x isn't a blobfish.

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must
have property P on top of

property Q.

If x is an example, it must
have property P on top of

property Q.

Good Pairings

● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the

statement from being false when speaking about some
object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking about some
object you don't care about.

Next Time

● First-Order Translations
● How do we translate from English into first-order logic?

● Quantifier Orderings
● How do you select the order of quantifiers in first-order

logic formulas?
● Negating Formulas

● How do you mechanically determine the negation of a first-
order formula?

● Expressing Uniqueness
● How do we say there’s just one object of a certain type?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190

