
  

Binary Relations
Part One



  

Outline for Today

● Binary Relations
● Reasoning about connections between 

objects.
● Equivalence Relations

● Reasoning about clusters.
● A Fundamental Theorem

● How do we know we have the “right” 
definition for something?



  

Relationships

● In CS103, you've seen examples of relationships
● between sets:

– A ⊆ B
● between numbers:

– x < y    x ≡ₖ y    x ≤ y
● between people:

– p loves q

● Since these relations focus on connections 
between two objects, they are called binary 
relations.
● The “binary” here means “pertaining to two things,” 

not “made of zeros and ones.”



  

What exactly is a binary relation?
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Binary Relations

● A binary relation over a set A is a predicate 
R that can be applied to pairs of elements 
drawn from A.

● If R is a binary relation over A and it holds for 
the pair (a, b), we write aRb.
● For example: 3 = 3, 5 < 7, and Ø ⊆ ℕ.

● If R is a binary relation over A and it does not 
hold for the pair (a, b), we write aRb.
● For example: 4 ≠ 3, 4 <≮ 3, and ℕ ⊆≮ Ø.



  

Properties of Relations

● Generally speaking, if R is a binary relation over 
a set A, the order of the operands is significant.
● For example, 3 < 5, but 5 <≮ 3.
● In some relations order is irrelevant; more on that 

later.
● Relations are always defined relative to some 

underlying set.
● It's not meaningful to ask whether ☺ ⊆ 15, for 

example, since ⊆ is defined over sets, not arbitrary 
objects.



  

Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing a line between 
an element a and an element b if aRb is true.

● Example: the relation a | b (meaning “a divides b”) over 
the set {1, 2, 3, 4} looks like this:
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Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing a line between 
an element a and an element b if aRb is true.

● Example: the relation a ≠ b over the set {1, 2, 3, 4} 
looks like this:
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Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing a line between 
an element a and an element b if aRb is true.

● Example: the relation a = b over the set {1, 2, 3, 4} 
looks like this:
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Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing a line between 
an element a and an element b if aRb is true.

● Example: below is some relation over {1, 2, 3, 4} that's 
a totally valid relation even though there doesn't 
appear to be a simple unifying rule.
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Capturing Structure



  

Capturing Structure

● Binary relations are an excellent way for 
capturing certain structures that appear in 
computer science.

● Today, we'll look at one of them 
(partitions), and next time we'll see 
another (prerequisites).

● Along the way, we'll explore how to write 
proofs about definitions given in first-order 
logic.
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Partitions

● A partition of a set is a way of splitting the set 
into disjoint, nonempty subsets so that every 
element belongs to exactly one subset.
● Two sets are disjoint if their intersection is the 

empty set; formally, sets S and T are disjoint 
if S ∩ T = Ø.

● Intuitively, a partition of a set breaks the set 
apart into smaller pieces.

● There doesn't have to be any rhyme or reason to 
what those pieces are, though often there is one.



  

Partitions and Clustering

● If you have a set of data, you can often 
learn something from the data by finding 
a “good” partition of that data and 
inspecting the partitions.
● Usually, the term clustering is used in data 

analysis rather than partitioning.
● Interested to learn more? Take CS161 or 

CS246!



  

What's the connection between partitions 
and binary relations?
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∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
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Reflexivity

● Some relations always hold from any element to 
itself.

● Examples:
● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called reflexive.
● Formally speaking, a binary relation R over a set A 

is reflexive if the following is true:

∀a ∈ A. aRa   

(“Every element is related to itself.”)   



  

Reflexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

Is This Relation Reflexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)
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Symmetry

● In some relations, the relative order of the objects 
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called 

symmetric if the following first-order statement is true 
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)  

(“If a is related to b, then b is related to a.”)



  

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)
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Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if 

the following first-order statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)



  

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



  

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



  

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)
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Is This Relation Transitive?
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Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)
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Equivalence Relations

● An equivalence relation is a relation 
that is reflexive, symmetric and 
transitive.

● Some examples:
● x = y
● x ≡ₖ y
● x has the same color as y
● x has the same shape as y.



  

Binary relations give us a common 
language to describe common 

structures.



  

Equivalence Relations

● Most modern programming languages include some 
sort of hash table data structure.
● Java: HashMap
● C++: std::unordered_map
● Python: dict

● If you insert a key/value pair and then try to look up a 
key, the implementation has to be able to tell whether 
two keys are equal.

● Although each language has a different mechanism for 
specifying this, many languages describe them in 
similar ways...



  

Equivalence Relations

“The equals method implements an equivalence 
relation on non-null object references:
● It is reflexive: for any non-null reference value x, 
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and 
y, x.equals(y) should return true if and only if 
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y, 
and z, if x.equals(y) returns true and y.equals(z) returns 
true, then x.equals(z) should return true.”

Java 8 Documentation



  

Equivalence Relations

“The equals method implements an equivalence 
relation on non-null object references:
● It is reflexive: for any non-null reference value x, 
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and 
y, x.equals(y) should return true if and only if 
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y, 
and z, if x.equals(y) returns true and y.equals(z) returns 
true, then x.equals(z) should return true.”

Java 8 Documentation



  

Equivalence Relations

“Each unordered associative container is 
parameterized by Key, by a function object type 
Hash that meets the Hash requirements 
(17.6.3.4) and acts as a hash function for 
argument values of type Key, and by a binary 
predicate Pred that induces an equivalence 
relation on values of type Key. Additionally, 
unordered_map and unordered_multimap associate 
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3



  

Equivalence Relations

“Each unordered associative container is 
parameterized by Key, by a function object type 
Hash that meets the Hash requirements 
(17.6.3.4) and acts as a hash function for 
argument values of type Key, and by a binary 
predicate Pred that induces an equivalence 
relation on values of type Key. Additionally, 
unordered_map and unordered_multimap associate 
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3



  

Time-Out for Announcements!



  

Problem Set Two

● The Problem Set Two checkpoint problem was 
due at 3:00PM today.
● We'll get back to you with feedback by Wednesday.
● Solutions are available – please read over them! 

The checkpoint problem covers a lot of interesting 
nuances of first-order logic and you should be 
absolutely certain you completely understand all 
the answers.

● The remaining problems are due on Friday.
● Please feel free to stop by office hours with 

questions!



  

Problem Set One Solutions

● Problem Set One solutions are now available.
● Please read over the solutions. Each problem 

was chosen for a reason, and it's important to both 
see one possible solution and the motivation 
behind the problem.

● Make sure you understand the solutions. If you 
don't understand the solutions, please come talk to 
us and ask us questions. That's how you learn!

● We'll try to get graded problem sets back by 
Wednesday.



  

Back to CS103!



  

Equivalence Relation Proofs

● Let's suppose you've found a binary 
relation R over a set A and want to prove 
that it's an equivalence relation.

● How exactly would you go about doing 
this?



  

An Example Relation

● Consider the binary relation ~ defined over the set ℤ:

a~b    if    a+b is even
● Some examples:

0~4       1~9       2~6       5~5
● Turns out, this is an equivalence relation! Let's see how to 

prove it.

We can binary relations by giving a rule, like this:
 

a~b      if      some property of a and b holds
 

This is the general template for defining a relation. 
Although we're using “if” rather than “iff” here, the two 
above statements are definitionally equivalent. For a 
variety of reasons, definitions are often introduced with 
“if” rather than “iff.” Check the “Mathematical 
Vocabulary” handout for details.

We can binary relations by giving a rule, like this:
 

a~b      if      some property of a and b holds
 

This is the general template for defining a relation. 
Although we're using “if” rather than “iff” here, the two 
above statements are definitionally equivalent. For a 
variety of reasons, definitions are often introduced with 
“if” rather than “iff.” Check the “Mathematical 
Vocabulary” handout for details.



  

What properties must ~ have to be an 
equivalence relation?

Reflexivity
Symmetry

Transitivity

Let's prove each property independently.



  

a~b   if   a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■
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Notice that these are grammatically complete sentences.
In your own proofs, make sure to write in complete
sentences and use appropriate punctuation. It looks
really classy and makes your proofs easier to read.

Try the “mugga mugga test.” If you read a proof and
replace mathematical symbols with “mugga mugga,” it should

still be grammatically correct.
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We know what equivalence relations are.



  

So what do equivalence relations do?



  

Properties of Equivalence Relations



  xRy    if    x and y have the same shape



  xRy    if    x and y have the same shape



  xTy    if    x is the same color as y



  xTy    if    x is the same color as y



  

Equivalence Classes

● Given an equivalence relation R over a set A, for 
any x ∈ A, the equivalence class of x is the set

[x]R = { y ∈ A | xRy }

● [x]R is the set of all elements of A that are related 
to x by relation R.

● For example, consider the ≡₃ relation over ℕ. 
Then
● [0]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}

● [1]≡₃ = {1, 4, 7, 10, 13, 16, 19, …}

● [2]≡₃ = {2, 5, 8, 11, 14, 17, 20, …}

● [3]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}       

Notice that [0]≡₃ = [3]≡₃. 
These are literally the 
same set, so they're just 
different names for the 
same thing.

Notice that [0]≡₃ = [3]≡₃. 
These are literally the 
same set, so they're just 
different names for the 
same thing.



  

The Fundamental Theorem of 
Equivalence Relations: Let R be an 
equivalence relation over a set A. Then 
every element a ∈ A belongs to exactly one 
equivalence class of R.
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