
  

Binary Relations
Part II



  

Outline for Today

● Recap from Last Time
● Where are we, again?

● Properties of Equivalence Relations
● What’s so special about those three rules?

● Strict Orders
● A different type of mathematical structure

● Hasse Diagrams
● How to visualize rankings



  

Recap from Last Time



  

Binary Relations

● A binary relation over a set A is a predicate 
R that can be applied to pairs of elements 
drawn from A.

● If R is a binary relation over A and it holds for 
the pair (a, b), we write aRb.
● For example: 3 = 3, 5 < 7, and Ø ⊆ ℕ.

● If R is a binary relation over A and it does not 
hold for the pair (a, b), we write aRb.
● For example: 4 ≠ 3, 4 <≮ 3, and ℕ ⊆≮ Ø.



  

Reflexivity

● Some relations always hold from any element to itself.
● Examples:

● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called reflexive.
● Formally speaking, a binary relation R over a set A is 

reflexive if the following first-order logic statement is 
true about R:

∀a ∈ A. aRa   

(“Every element is related to itself.”)   



  

Reflexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

Symmetry

● In some relations, the relative order of the objects 
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called 

symmetric if the following first-order statement is true 
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)  

(“If a is related to b, then b is related to a.”)



  

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if 

the following first-order statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)



  

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



  

Equivalence Relations

● An equivalence relation is a relation 
that is reflexive, symmetric and 
transitive.

● Some examples:
● x = y
● x ≡ₖ y
● x has the same color as y
● x has the same shape as y.



  

Equivalence Classes

● Given an equivalence relation R over a set A, for 
any x ∈ A, the equivalence class of x is the set

[x]R = { y ∈ A | xRy }

● [x]R is the set of all elements of A that are related 
to x by relation R.

● For example, consider the ≡₃ relation over ℕ. 
Then
● [0]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}

● [1]≡₃ = {1, 4, 7, 10, 13, 16, 19, …}

● [2]≡₃ = {2, 5, 8, 11, 14, 17, 20, …}

● [3]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}       

Notice that [0]≡₃ = [3]≡₃. 
These are literally the 
same set, so they're just 
different names for the 
same thing.

Notice that [0]≡₃ = [3]≡₃. 
These are literally the 
same set, so they're just 
different names for the 
same thing.



  

The Fundamental Theorem of 
Equivalence Relations: Let R be an 
equivalence relation over a set A. Then 
every element a ∈ A belongs to exactly one 
equivalence class of R.



  

New Stuff!



  

How’d We Get Here?

● We discovered equivalence relations by thinking 
about partitions of a set of elements.

● We saw that if we had a binary relation that tells 
us whether two elements are in the same group, 
it had to be reflexive, symmetric, and transitive.

● The FToER says that, in some sense, these rules 
precisely capture what it means to be a partition.

● Question: What’s so special about these three 
rules?



  ∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

A binary relation 
with this property 
is called cyclic.

A binary relation 
with this property 
is called cyclic.



  ∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

Is this an 
equivalence 
relation?

Is this an 
equivalence 
relation?



  

Theorem: A binary relation R over a set A 
is an equivalence relation if and only if it is 

reflexive and cyclic.



  

Theorem: A binary relation R over a set A 
is an equivalence relation if and only if it is 

reflexive and cyclic.



  

Lemma 1: If R is an equivalence relation 
over a set A, then R is reflexive and cyclic.

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.



  

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation 
over a set A, then R is reflexive and cyclic.

● R is an equivalence 
relation.

● R is reflexive.
● R is symmetric.
● R is transitive.

● R is reflexive.
● R is cyclic.



  

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation 
over a set A, then R is reflexive and cyclic.

R is an equivalence 
relation.

● R is reflexive.

R is symmetric.

R is transitive.

● R is reflexive.

R is cyclic.



  

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation 
over a set A, then R is reflexive and cyclic.

● R is an equivalence 
relation.

● R is reflexive.
● R is symmetric.
● R is transitive.

R is reflexive.

R is cyclic.
● If aRb and bRc, 
then cRa.



  

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation 
over a set A, then R is reflexive and cyclic.

● R is an equivalence 
relation.

● R is reflexive.
● R is symmetric.
● R is transitive.

● If aRb and bRc, then 
cRa.

a                      b 

c 



  

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation 
over a set A, then R is reflexive and cyclic.

R is an equivalence 
relation.

R is reflexive.

R is symmetric.
● R is transitive.

● If aRb and bRc, then 
cRa.

a                      b 

c 



  

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation 
over a set A, then R is reflexive and cyclic.

R is an equivalence 
relation.

R is reflexive.
● R is symmetric.

R is transitive.

● If aRb and bRc, then 
cRa.

a                      b 

c 



  

Lemma 1: If R is an equivalence relation over a set A, then R
is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is 
reflexive, symmetric, and transitive. Consequently, we 
already know that R is reflexive, so we only need to show 
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A 
where aRb and bRc. We need to prove that cRa holds. 
Since R is transitive, from aRb and bRc we see that aRc. 
Then, since R is symmetric, from aRc we see that cRa, 
which is what we needed to prove. ■



  

Lemma 1: If R is an equivalence relation over a set A, then R
is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is 
reflexive, symmetric, and transitive. Consequently, we 
already know that R is reflexive, so we only need to show 
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A 
where aRb and bRc. We need to prove that cRa holds. 
Since R is transitive, from aRb and bRc we see that aRc. 
Then, since R is symmetric, from aRc we see that cRa, 
which is what we needed to prove. ■

Notice how the first few sentences of this 
proof mirror the structure of what needs 
to be proved. We’re just following the 
templates from the first week of class!

Notice how the first few sentences of this 
proof mirror the structure of what needs 
to be proved. We’re just following the 
templates from the first week of class!



  

Lemma 1: If R is an equivalence relation over a set A, then R
is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is 
reflexive, symmetric, and transitive. Consequently, we 
already know that R is reflexive, so we only need to show 
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A 
where aRb and bRc. We need to prove that cRa holds. 
Since R is transitive, from aRb and bRc we see that aRc. 
Then, since R is symmetric, from aRc we see that cRa, 
which is what we needed to prove. ■

Notice how this setup mirrors the first-order 
definition of cyclicity:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

When writing proofs about terms with first-order 
definitions, it’s critical to call back to those 

definitions!

Notice how this setup mirrors the first-order 
definition of cyclicity:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

When writing proofs about terms with first-order 
definitions, it’s critical to call back to those 

definitions!



  

Lemma 1: If R is an equivalence relation over a set A, then R
is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is 
reflexive, symmetric, and transitive. Consequently, we 
already know that R is reflexive, so we only need to show 
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A 
where aRb and bRc. We need to prove that cRa holds. 
Since R is transitive, from aRb and bRc we see that aRc. 
Then, since R is symmetric, from aRc we see that cRa, 
which is what we needed to prove. ■

Although this proof is deeply informed by the first-order 
definitions, notice that there is no first-order logic 

notation anywhere in the proof. That’s normal – it’s actually 
quite rare to see first-order logic in written proofs.

Although this proof is deeply informed by the first-order 
definitions, notice that there is no first-order logic 

notation anywhere in the proof. That’s normal – it’s actually 
quite rare to see first-order logic in written proofs.



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.

● R is reflexive.
● R is cyclic.

● R is an equivalence 
relation.

● R is reflexive.
● R is symmetric.
● R is transitive.



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.

● R is reflexive.

R is cyclic.

R is an equivalence 
relation.

● R is reflexive.

R is symmetric.

R is transitive.



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.

● R is reflexive.
● R is cyclic.

R is an equivalence 
relation.

R is reflexive.
● R is symmetric.

R is transitive.



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.

● R is reflexive.
● R is cyclic.

● R is symmetric.
● If aRb, then bRa.

a                            b



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.

R is reflexive.
● ∀x  ∈ A. xRx

R is cyclic.

xRy  ∧ yRz  → zRx

● R is symmetric.
● If aRb, then bRa.

a                            b



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.

R is reflexive.

∀x  ∈ A. xRx

R is cyclic.
● xRy  ∧ yRz  → zRx

● R is symmetric.
● If aRb, then bRa.

a                            b

x
y

z



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.

● R is reflexive.
● ∀x  ∈ A. xRx

● R is cyclic.
● xRy  ∧ yRz  → zRx

R is an equivalence 
relation.

R is reflexive.

R is symmetric.
● R is transitive.



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.

R is reflexive.

∀x  ∈ A. xRx

R is cyclic.

xRy  ∧ yRz  → zRx

● R is transitive.
● If aRb and bRc, 
then aRc.

a                      b 

c 



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is reflexive and cyclic, then R is 

an equivalence relation.

● R is reflexive.
● ∀x  ∈ A. xRx

● R is cyclic.
● xRy  ∧ yRz  → zRx

● R is symmetric
● xRy  → yRx

● R is transitive.
● If aRb and bRc, 
then aRc.

a                      b 

c 



  

Lemma 2: If R is a binary relation over a set A that is cyclic
and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and reflexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
reflexive, symmetric, and transitive. Since we already
know by assumption that R is reflexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any 
arbitrary a, b ∈ A where aRb holds. We need to prove that 
bRa is true. Since R is reflexive, we know that aRa holds. 
Therefore, by cyclicity, since aRa and aRb, we learn that 
bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any 
elements of A where aRb and bRc. We need to prove that 
aRc. Since R is cyclic, from aRb and bRc we see that cRa. 
Earlier, we showed that R is symmetric. Therefore, from 
cRa we see that aRc is true, as required. ■



  

Lemma 2: If R is a binary relation over a set A that is cyclic
and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and reflexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
reflexive, symmetric, and transitive. Since we already
know by assumption that R is reflexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any 
arbitrary a, b ∈ A where aRb holds. We need to prove that 
bRa is true. Since R is reflexive, we know that aRa holds. 
Therefore, by cyclicity, since aRa and aRb, we learn that 
bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any 
elements of A where aRb and bRc. We need to prove that 
aRc. Since R is cyclic, from aRb and bRc we see that cRa. 
Earlier, we showed that R is symmetric. Therefore, from 
cRa we see that aRc is true, as required. ■

Notice how this setup mirrors the first-order definition 
of symmetry:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

When writing proofs about terms with first-order 
definitions, it’s critical to call back to those definitions!

Notice how this setup mirrors the first-order definition 
of symmetry:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

When writing proofs about terms with first-order 
definitions, it’s critical to call back to those definitions!



  

Lemma 2: If R is a binary relation over a set A that is cyclic
and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and reflexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
reflexive, symmetric, and transitive. Since we already
know by assumption that R is reflexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any 
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bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any 
elements of A where aRb and bRc. We need to prove that 
aRc. Since R is cyclic, from aRb and bRc we see that cRa. 
Earlier, we showed that R is symmetric. Therefore, from 
cRa we see that aRc is true, as required. ■

Notice how this setup mirrors the first-order definition 
of transitivity:

∀a ∈ A. ∀b ∈ A. ∀ c ∈ A. (aRb ∧ bRc → aRc)

When writing proofs about terms with first-order 
definitions, it’s critical to call back to those definitions!

Notice how this setup mirrors the first-order definition 
of transitivity:

∀a ∈ A. ∀b ∈ A. ∀ c ∈ A. (aRb ∧ bRc → aRc)

When writing proofs about terms with first-order 
definitions, it’s critical to call back to those definitions!



  

Lemma 2: If R is a binary relation over a set A that is cyclic
and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and reflexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
reflexive, symmetric, and transitive. Since we already
know by assumption that R is reflexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any 
arbitrary a, b ∈ A where aRb holds. We need to prove that 
bRa is true. Since R is reflexive, we know that aRa holds. 
Therefore, by cyclicity, since aRa and aRb, we learn that 
bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any 
elements of A where aRb and bRc. We need to prove that 
aRc. Since R is cyclic, from aRb and bRc we see that cRa. 
Earlier, we showed that R is symmetric. Therefore, from 
cRa we see that aRc is true, as required. ■

Although this proof is deeply informed by the first-order 
definitions, notice that there is no first-order logic 

notation anywhere in the proof. That’s normal – it’s actually 
quite rare to see first-order logic in written proofs.

Although this proof is deeply informed by the first-order 
definitions, notice that there is no first-order logic 

notation anywhere in the proof. That’s normal – it’s actually 
quite rare to see first-order logic in written proofs.



  

Refining Your Proofwriting

● When writing proofs about terms with formal definitions, 
you must call back to those definitions.
● Use the first-order definition to see what you’ll assume and what 

you’ll need to prove.
● When writing proofs about terms with formal definitions, 

you should not include any first-order logic in your 
proofs.
● Although you won’t use any FOL notation in your proofs, your 

proof implicitly calls back to the FOL definitions.
● You’ll get a lot of practice with this on Problem Set Three. 

If you have any questions about how to do this properly, 
please feel free to ask on Piazza or stop by office hours!



  

Time-Out for Announcements!



  

My Office Hours

● Oops! I forgot to put my office hours into 
the OH timetable.

● They’re Thursdays, 2:15PM – 4:15PM, in 
Gates 167.

● Feel free to stop on by!



  

Problem Set One Graded

● We’ve finished grading Problem Set One. 
Feedback is available on GradeScope.

● Here’s the distribution:



  

What To Do Next

● Review the grader’s feedback. We try to leave 
detailed feedback on each problem. Look over our 
notes and see if you can find some concrete, 
tangible ways to improve going forward.

● Don’t get discouraged. This problem set is 
downweighted relative to the other problem sets 
this quarter. For the overwhelming majority of you, 
this is your first time writing proofs. Don’t 
extrapolate from just one data point – figure out 
where to focus your efforts, and try to make new 
mistakes each time.



  

 THE ROAD TO WISDOM

The road to wisdom?—Well, it's plain
and simple to express:

Err
and err

and err again,
but less
and less
and less.

                           — Piet Hein
CS legend Don Knuth 
has this poem on the 
wall of his house.

CS legend Don Knuth 
has this poem on the 
wall of his house.

And this guy is 
interesting. You should 

look him up.

And this guy is 
interesting. You should 

look him up.



  

Problem Set Two

● Problem Set Two is due on Friday at the 
start of class.
● Have questions? Stop by office hours or ask 

on Piazza!
● We’ve released a handout containing a 

first-order logic translation checklist. We 
highly recommend reviewing your 
translations using that checklist before 
submitting!



  

Your Questions



  

“Why is biocomp rare? Will it be big in the 
future?”

Biocomputation is a really big field right now! The number 
of CS majors graduating with the biocomputation track has 
exploded over the past few years (much faster than the 

general CS major), which is really exciting!
 

I’ve seen some amazing talks by Gill Bejerano and Serafim 
Batzoglu about the work they’re doing working out how 
genes control one another and how to sequence cancer 

genomes, and it really feels like science fiction. This is a 
very cool area to explore!

Biocomputation is a really big field right now! The number 
of CS majors graduating with the biocomputation track has 
exploded over the past few years (much faster than the 

general CS major), which is really exciting!
 

I’ve seen some amazing talks by Gill Bejerano and Serafim 
Batzoglu about the work they’re doing working out how 
genes control one another and how to sequence cancer 

genomes, and it really feels like science fiction. This is a 
very cool area to explore!



  

“Do you think Silicon Valley has a good 
moral compass?”

I think it’s useful to think about things like this from a 
few perspectives. First, what does the leadership at a 

company value? Second, what are the incentive structures? 
Third, what are the broader values of the community?

 

There are many areas where I think the tech industry has 
things right. There are many areas where I think the tech 

industry has things wrong. But I wouldn’t necessarily 
attribute it to a “moral compass.” I (personally) think 

aggregate behavior is best explained by the three above 
factors.

I think it’s useful to think about things like this from a 
few perspectives. First, what does the leadership at a 

company value? Second, what are the incentive structures? 
Third, what are the broader values of the community?

 

There are many areas where I think the tech industry has 
things right. There are many areas where I think the tech 

industry has things wrong. But I wouldn’t necessarily 
attribute it to a “moral compass.” I (personally) think 

aggregate behavior is best explained by the three above 
factors.



  

Back to CS103!



  

Prerequisite Structures
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Pancakes
 

Everyone's got a pancake recipe. This one comes from Food Wishes 
(http://foodwishes.blogspot.com/2011/08/grandma-kellys-good-old-
fashioned.html).
 

Ingredients
 

  · 1 1/2 cups all-purpose flour
  · 3 1/2 tsp baking powder
  · 1 tsp salt
  · 1 tbsp sugar
  · 1 1/4 cup milk
  · 1 egg
  · 3 tbsp butter, melted
 

Directions
 

1. Sift the dry ingredients together.
2. Stir in the butter, egg, and milk. Whisk together to form the batter.
3. Heat a large pan or griddle on medium-high heat. Add some oil.
4. Make pancakes one at a time using 1/4 cup batter each. They're ready
    to flip when the centers of the pancakes start to bubble.



  

Measure
Flour

Measure
Baking Pwdr

Measure
Salt

Measure
Sugar

Measure
Milk

Melt
Butter

Beat Egg

Combine Dry
Ingredients

Heat
Griddle

Oil
Griddle

Add Wet
Ingredients

Make
Pancakes

Serve
Pancakes



  



  

Relations and Prerequisites

● Let's imagine that we have a prerequisite 
structure with no circular dependencies.

● We can think about a binary relation R 
where aRb means

“a must happen before b”
● What properties of R could we deduce 

just from this?



  

aa

ba cb ca

∧ →

ba ab

→



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Irreflexivity

● Some relations never hold from any element to 
itself.

● As an example, x <≮ x for any x.

● Relations of this sort are called irreflexive.
● Formally speaking, a binary relation R over a 

set A is irreflexive if the following first-order 
logic statement is true about R:

∀a ∈ A. aRa   

(“No element is related to itself.”)   



  

Irreflexivity Visualized

∀a ∈ A. aRa
(“No element is related to itself.”)



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation 
reflexive?

Is this relation 
reflexive?

Nope!



  

∀a ∈ A. aRa
(“No element is related to itself.”)

Is this relation 
irreflexive?

Is this relation 
irreflexive?

Nope!



  

Reflexivity and Irreflexivity

● Reflexivity and irreflexivity are not opposites!
● Here's the definition of reflexivity:

∀a ∈ A. aRa
● What is the negation of the above statement?

∃a ∈ A. aRa
● What is the definition of irreflexivity?

∀a ∈ A. aRa



  

Irreflexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Asymmetry

● In some relations, the relative order of the 
objects can never be reversed.

● As an example, if x < y, then y <≮ x.
● These relations are called asymmetric.
● Formally: a binary relation R over a set A is 

called asymmetric if the following first-order 
logic statement is true about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)  

(“If a relates to b, then b does not relate to a.”)



  

Asymmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a relates to b, then b does not relate to a.”)



  

Question to Ponder: Are symmetry and 
asymmetry opposites of one another?



  

Irreflexivity

Transitivity

Asymmetry



  

Strict Orders

● A strict order is a relation that is irreflexive, 
asymmetric and transitive.

● Some examples:
● x < y.
● a can run faster than b.
● A  ⊊ B (that is, A ⊆ B and A ≠ B).

● Strict orders are useful for representing 
prerequisite structures and have applications in 
complexity theory (measuring notions of relative 
hardness) and algorithms (searching and sorting).



  

Strict Order Proofs

● Let's suppose that you're asked to prove 
that a binary relation is a strict order.

● Calling back to the definition, you could 
prove that the relation is asymmetric, 
irreflexive, and transitive.

● However, there's a slightly easier 
approach we can use instead.



  

Theorem: Let R be a binary relation over a set A. If R
is asymmetric, then R is irreflexive.

Proof: Let R be an arbitrary asymmetric binary relation
over a set A. We will prove that R is irreflexive.

To do so, we will proceed by contradiction. Suppose 
that R is not irreflexive. That means that there must 
be some x ∈ A such that xRx.

Since R is asymmetric, we know for any a, b ∈ A that 
if aRb holds, then bRa holds. Plugging in a=x and 
b=x, we see that if xRx holds, then xRx holds. We 
know by assumption that xRx is true, so we conclude 
that xRx holds. However, this is impossible, since we 
can't have both xRx and xRx.

We have reached a contradiction, so our assumption 
must have been wrong. Thus R must be irreflexive. ■



  

Theorem: If a binary relation R is asymmetric
and transitive, then R is a strict order.

Proof: Let R be a binary relation that is
asymmetric and transitive. Since R is
asymmetric, by our previous theorem we
know that R is also irreflexive. Therefore, R
is asymmetric, irreflexive, and transitive, so
by definition R is a strict order. ■

To prove that some binary relation R is a 
strict order, you can just prove that R is 
asymmetric and transitive. In the next 
problem set, you'll see an even simpler 

technique!

To prove that some binary relation R is a 
strict order, you can just prove that R is 
asymmetric and transitive. In the next 
problem set, you'll see an even simpler 

technique!



  

Drawing Strict Orders



  

Gold Silver Bronze

46 37 38

27 23 17

26 18 26

19 18 19

17 10 15

12 8 21

10 18 1410 18 14

9 3 9

8 12 8

8 11 10

7 6 6

7 4 6

6 6 1

6 3 2

8 7 4

8 3 4



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)

(12, 8, 21) (10, 18, 14)



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)

(12, 8, 21) (10, 18, 14)



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)(12, 8, 21) (10, 18, 14)

More Medals

Fewer Medals



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)(12, 8, 21) (10, 18, 14)



  

Hasse Diagrams

● A Hasse diagram is a graphical 
representation of a strict order.

● Elements are drawn from bottom-to-top.
● Higher elements are bigger than lower 

elements: by asymmetry, the edges can 
only go in one direction.

● No redundant edges: by transitivity, we 
can infer the missing edges.



  

The Meta Strict Order

Irreflexivity

Asymmetry Transitivity Reflexivity

Strict Order Equivalence
Relation

Symmetry

aRb      if      a is less specific than b



  

The Binary Relation Editor


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

