

Graph Theory
Part One

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-
mHrbAUOHHg/s1600/Ethanol2.gif

http://www.toothpastefordinner.com/

http://www.prospectmagazine.co.uk/wp-content/uploads/2009/09/163_taylor2.jpg

Me too!

What's in Common

● Each of these structures consists of
● a collection of objects and
● links between those objects.

● Goal: find a general framework for
describing these objects and their
properties.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)

Nodes

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)

Edges

Some graphs are directed.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

Going forward, we're primarily going to
focus on undirected graphs.

The term “graph” generally refers to
undirected graphs unless specified

otherwise.

Formalizing Graphs

● How might we define a graph
mathematically?

● We need to specify
● what the nodes in the graph are, and
● which edges are in the graph.

● The nodes can be pretty much anything.
● What about the edges?

Formalizing Graphs

● An unordered pair is a set {a, b} of two elements
(remember that sets are unordered).
● {0, 1} = {1, 0}

● An undirected graph is an ordered pair
G = (V, E), where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes

drawn from V.
● A directed graph is an ordered pair G = (V, E),

where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are ordered pairs of nodes

drawn from V.

Self-Loops

● An edge from a node to itself is called a self-loop.
● In undirected graphs, self-loops are generally not

allowed unless specified otherwise.
● This is mostly to keep the math easier. If you allow self-

loops, a lot of results get messier and harder to state.
● In directed graphs, self-loops are generally allowed

unless specified otherwise.

✓×

Standard Graph Terminology

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

Using our Formalisms

● Let G = (V, E) be a graph.
● Intuitively, two nodes are adjacent if

they're linked by an edge.
● Formally speaking, we say that two

nodes u, v ∈ V are adjacent if {u, v} ∈ E.

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

From

To

SLC

LA

SD

But

Mon

LV

Bar Flag

Nog

Phoe

SF Sac

Port

Sea

From

To

LA

SD

But

Mon

LV

Bar Flag

Nog

Phoe

SLCSF Sac

Port

Sea

From

To

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SF Sac

Mon

LV

Bar Flag

LA

SD Nog

Phoe

Port

Sea But A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SLC

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SLC

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SLC

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SF

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SacSF

Port

Sea But

SLC

Mon

LV

Bar Flag

SD Nog

Phoe

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SacSF

LA

Port

Sea But

SLC

Mon

LV

Bar Flag

SD Nog

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SacSF

PhoeLA

Port

Sea But

SLC

Mon

LV

Bar

SD Nog

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SacSF

PhoeLA

Flag

Port

Sea But

SLC

Mon

LV

SD Nog

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SacSF

PhoeLA

FlagBar

Port

Sea But

SLC

Mon

LV

SD Nog

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SacSF

PhoeLA

FlagBar

Port

Sea But

SLC

Mon

LV

SD Nog

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

SacSF

PhoeLA

FlagBar

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Port

Sea But

SLC

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Port

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of a path is the
number of edges in it.

The length of a path is the
number of edges in it.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A simple cycle in a graph is
cycle that does not repeat any
nodes or edges except the
first/last node.

A simple cycle in a graph is
cycle that does not repeat any
nodes or edges except the
first/last node.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

Two nodes in a graph are
called connected if there is a
path between them

Two nodes in a graph are
called connected if there is a
path between them

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

Two nodes in a graph are
called connected if there is a
path between them

Two nodes in a graph are
called connected if there is a
path between them

A graph G as a whole is called
connected if all pairs of nodes
in G are connected.

A graph G as a whole is called
connected if all pairs of nodes
in G are connected.

Time-Out for Announcements!

Midterm Exam

● The first midterm exam is next Tuesday, May 2nd, from
7:00PM – 10:00PM. Locations are divvied up by last
(family) name:
● Abb – Niu: Go to Hewlett 200.
● Nor – Vas: Go to Hewlett 201.
● Vil – Yim: Go to Hewlett 102.
● You – Zuc: Go to Hewlett 103.

● You’re responsible for Lectures 00 – 05 and topics covered
in PS1 – PS2. Later lectures and problem sets won’t be
tested.

● The exam is closed-book, closed-computer, and limited-
note. You can bring a double-sided, 8.5” × 11” sheet of
notes with you to the exam, decorated however you’d like.

Midterm Practice

● We’ve just uploaded
● the practice midterm from last night, with solutions;
● another practice midterm exam;
● solutions to Extra Practice Problems 1; and
● another set of review problems, EPP2.

● We’ll release EPP3 on Friday along with
solutions to EPP2 and the additional practice
midterm exam.

● Need more practice? Let us know!

Problem Set Two

● Problem Set Two has been graded and
feedback has been release.
● Please read over your feedback – the

skills tested on this problem set are the same
skills tested on the midterm.

● Score distribution is shown here:

Problem Set Two: Common Mistakes

“Someone has two pet kittens
and no other pets.”

∃p. (Person(p) ∧
∃k₁. (Kitten(k₁) ∧ HasPet(p, k₁) ∧

∃k₂. (Kitten(k₂) ∧ HasPet(p, k₂))
)

)

“Someone has two pet kittens
and no other pets.”

∃p. (Person(p) ∧
∃k₁. (Kitten(k₁) ∧ HasPet(p, k₁) ∧

∃k₂. (Kitten(k₂) ∧ HasPet(p, k₂))
)

)

“Someone has two pet kittens
and no other pets.”

∃p. (Person(p) ∧
∃k₁. (Kitten(k₁) ∧ HasPet(p, k₁) ∧

∃k₂. (Kitten(k₂) ∧ HasPet(p, k₂))
)

)

pk₁

k₂

“Someone has two pet kittens
and no other pets.”

∃p. (Person(p) ∧
∃k₁. (Kitten(k₁) ∧ HasPet(p, k₁) ∧

∃k₂. (Kitten(k₂) ∧ k₁ ≠ k₂ ∧ HasPet(p, k₂))
)

)

“Someone has two pet kittens
and no other pets.”

∃p. (Person(p) ∧
∃k₁. (Kitten(k₁) ∧ HasPet(p, k₁) ∧

∃k₂. (Kitten(k₂) ∧ k₁ ≠ k₂ ∧ HasPet(p, k₂))
)

)
p

k₁

k₂

“Someone has two pet kittens
and no other pets.”

∃p. (Person(p) ∧
∃k₁. (Kitten(k₁) ∧ HasPet(p, k₁) ∧

∃k₂. (Kitten(k₂) ∧ k₁ ≠ k₂ ∧ HasPet(p, k₂) ∧
∀q. (HasPet(p, q) → q = k₁ ∨ q = k₂)

)
)

)

“Someone has two pet kittens
and no other pets.”

∃p. (Person(p) ∧
∃k₁. (Kitten(k₁) ∧ HasPet(p, k₁) ∧

∃k₂. (Kitten(k₂) ∧ k₁ ≠ k₂ ∧ HasPet(p, k₂) ∧
∀q. (HasPet(p, q) → q = k₁ ∨ q = k₂)

)
)

)

1. Remember that multiple quantifiers can range
over the same objects!

2. To express “and nothing else does,” show that
anything matching the property must be equal
to something you already know.

1. Remember that multiple quantifiers can range
over the same objects!

2. To express “and nothing else does,” show that
anything matching the property must be equal
to something you already know.

Problem Set Three

● The Problem Set Three checkpoint has
been graded.
● Please, please, please review your

feedback! That problem was tricky and a lot
of people had a lot of trouble with it.

● Remaining problems are due on Friday.
Be strategic about taking late days.

PS3 Checkpoint: Common Mistakes

Is this relation symmetric?

Is this relation symmetric?

Is this relation symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Is this relation symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Is this relation symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Is this relation asymmetric?

Is this relation symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Is this relation asymmetric?

Is this relation symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Is this relation asymmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Is this relation symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Is this relation asymmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Theorem: A binary relation R is a strict order if and only if
it’s irreflexive and transitive.

Proof: Let R be an arbitrary relation over a set A that is
irreflexive and transitive. We will prove that R is a strict
order by proving that it is also asymmetric.

Assume for the sake of contradiction that R is not
asymmetric. That means that there exist some x, y ∈ A
where xRy → yRx.

We know that R is irreflexive, so for any a ∈ A, we know
that aRa. Plugging in x=a and y=a into xRy → yRx, tells
us that aRa. However, this contradicts the fact that aRa.

We have reached a contradiction, so our assumption
must have been wrong. Therefore, R is asymmetric, so R
is a strict order. ■

Theorem: A binary relation R is a strict order if and only if
it’s irreflexive and transitive.

Proof: Let R be an arbitrary relation over a set A that is
irreflexive and transitive. We will prove that R is a strict
order by proving that it is also asymmetric.

Assume for the sake of contradiction that R is not
asymmetric. That means that there exist some x, y ∈ A
where xRy → yRx.

We know that R is irreflexive, so for any a ∈ A, we know
that aRa. Plugging in x=a and y=b into xRy → yRx, tells
us that aRa. However, this contradicts the fact that aRa.

We have reached a contradiction, so our assumption
must have been wrong. Therefore, R is asymmetric, so R
is a strict order. ■

 What is the negation of the statement

∀x ∈ A. ∀y ∈ A. (xRy → yRx)?

 It’s

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx).

 What is the negation of the statement

∀x ∈ A. ∀y ∈ A. (xRy → yRx)?

 It’s

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx).

Theorem: A binary relation R is a strict order if and only if
it’s irreflexive and transitive.

Proof: Let R be an arbitrary relation over a set A that is
irreflexive and transitive. We will prove that R is a strict
order by proving that it is also asymmetric.

Assume for the sake of contradiction that R is not
asymmetric. That means that there exist some x, y ∈ A
where xRy → yRx.

We know that R is irreflexive, so for any a ∈ A, we know
that aRa. Plugging in x=a and y=b into xRy → yRx, tells
us that aRa. However, this contradicts the fact that aRa.

We have reached a contradiction, so our assumption
must have been wrong. Therefore, R is asymmetric, so R
is a strict order. ■

 What is the negation of the statement

∀x ∈ A. ∀y ∈ A. (xRy → yRx)?

 It’s

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx).

 What is the negation of the statement

∀x ∈ A. ∀y ∈ A. (xRy → yRx)?

 It’s

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx).

Theorem: A binary relation R is a strict order if and only if
it’s irreflexive and transitive.

Proof: Let R be an arbitrary relation over a set A that is
irreflexive and transitive. We will prove that R is a strict
order by proving that it is also asymmetric.

Assume for the sake of contradiction that R is not
asymmetric. That means that there exist some x, y ∈ A
where xRy → yRx.

We know that R is irreflexive, so for any a ∈ A, we know
that aRa. Plugging in x=a and y=a into xRy → yRx, tells
us that aRa. However, this contradicts the fact that aRa.

We have reached a contradiction, so our assumption
must have been wrong. Therefore, R is asymmetric, so R
is a strict order. ■

 Remember: don’t use first-order
 logic notation in your proofs!

 Remember: don’t use first-order
 logic notation in your proofs!

Theorem: A binary relation R is a strict order if and only if
it’s irreflexive and transitive.

Proof: Let R be an arbitrary relation over a set A that is
irreflexive and transitive. We will prove that R is a strict
order by proving that it is also asymmetric.

Assume for the sake of contradiction that R is not
asymmetric. That means that there exist some x, y ∈ A
where xRy → yRx.

We know that R is irreflexive, so for any a ∈ A, we know
that aRa. Plugging in x=a and y=a into xRy → yRx, tells
us that aRa. However, this contradicts the fact that aRa.

We have reached a contradiction, so our assumption
must have been wrong. Therefore, R is asymmetric, so R
is a strict order. ■

Theorem: A binary relation R is a strict order if and only if
it’s irreflexive and transitive.

Proof: Let R be an arbitrary relation over a set A that is
irreflexive and transitive. We will prove that R is a strict
order by proving that it is also asymmetric.

Assume for the sake of contradiction that R is not
asymmetric. That means that there exist some x, y ∈ A
where xRy → yRx.

We know that R is irreflexive, so for any a ∈ A, we know
that aRa. Plugging in x=a and y=a into xRy → yRx, tells
us that aRa. However, this contradicts the fact that aRa.

We have reached a contradiction, so our assumption
must have been wrong. Therefore, R is asymmetric, so R
is a strict order. ■

The x and y discussed earlier are
existentially-quantified. That means
that we know they exist, but we can’t

necessarily say what they are. We
cannot come back later on and give

them specific values!

The x and y discussed earlier are
existentially-quantified. That means
that we know they exist, but we can’t

necessarily say what they are. We
cannot come back later on and give

them specific values!

Theorem: A binary relation R is a strict order if and only if
it’s irreflexive and transitive.

Proof: Let R be an arbitrary relation over a set A that is
irreflexive and transitive. We will prove that R is a strict
order by proving that it is also asymmetric.

Assume for the sake of contradiction that R is not
asymmetric. That means that there exist some x, y ∈ A
where xRy → yRx.

We know that R is irreflexive, so for any a ∈ A, we know
that aRa. Plugging in x=a and y=a into xRy → yRx, tells
us that aRa. However, this contradicts the fact that aRa.

We have reached a contradiction, so our assumption
must have been wrong. Therefore, R is asymmetric, so R
is a strict order. ■

Theorem: A binary relation R is a strict order if and only if
it’s irreflexive and transitive.

Proof: Let R be an arbitrary relation over a set A that is
irreflexive and transitive. We will prove that R is a strict
order by proving that it is also asymmetric.

Assume for the sake of contradiction that R is not
asymmetric. That means that there exist some x, y ∈ A
where xRy → yRx.

We know that R is irreflexive, so for any a ∈ A, we know
that aRa. Plugging in x=a and y=a into xRy → yRx, tells
us that aRa. However, this contradicts the fact that aRa.

We have reached a contradiction, so our assumption
must have been wrong. Therefore, R is asymmetric, so R
is a strict order. ■

Remember to prove both directions of
implication!

Remember to prove both directions of
implication!

To Summarize

● Call back to definitions. If something isn’t
asymmetric, it doesn’t mean it’s symmetric (or
vice-versa).

● Watch your negations! There’s a reason we had
you practice this on PS2 and why we spent time in
lecture last week going over it.

● Don’t use first-order logic notation in your proofs.
● Watch how you introduce variables. Existentially-

quantified variables have values that you can’t
pick. Universally-quantified variables should be
chosen arbitrarily (except in rare circumstances).

● Make sure to prove both directions of implication.

Your Questions

“What are your favorite books?”
Guns, Germs, and Steel by Jared Diamond
 Brilliant thesis about the development of human civilizations.

Whistling Vivaldi by Claude Steele
 Should be required reading at Stanford.

The Omnivore’s Dilemma by Michael Pollan
 A peek into our food supply.

Command and Control by Eric Schlosser
 A study in institutional dysfunction… with nuclear weapons.

The Trial by Franz Kafka
 Especially the “Before the Law” section.

Radetsky March by Joseph Roth
 A portrait of the twilight of the Hapsburg empire.

Stories of Your Life and Others by Ted Chiang
 Excellent speculative fiction.

Longitude by Dava Sobel
 Beautiful narrative history of how science is actually done.

Guns, Germs, and Steel by Jared Diamond
 Brilliant thesis about the development of human civilizations.

Whistling Vivaldi by Claude Steele
 Should be required reading at Stanford.

The Omnivore’s Dilemma by Michael Pollan
 A peek into our food supply.

Command and Control by Eric Schlosser
 A study in institutional dysfunction… with nuclear weapons.

The Trial by Franz Kafka
 Especially the “Before the Law” section.

Radetsky March by Joseph Roth
 A portrait of the twilight of the Hapsburg empire.

Stories of Your Life and Others by Ted Chiang
 Excellent speculative fiction.

Longitude by Dava Sobel
 Beautiful narrative history of how science is actually done.

Back to CS103!

Connected Components

★

★

Connected Components

● Let G = (V, E) be a graph. For each v ∈ V, the
connected component containing v is the set

[v] = { x ∈ V | v is connected to x }
● Intuitively, a connected component is a “piece”

of a graph in the sense we just talked about.
● Question: How do we know that this

particular definition of a “piece” of a graph is a
good one?

● Goal: Prove that any graph can be broken
apart into different connected components.

We’re trying to reason about some way of
partitioning the nodes in a graph into

different groups.

What structure have we studied that
captures the idea of a partition?

Connectivity

● Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.
● Is it reflexive?
● Is it symmetric?
● Is it transitive?

Connectivity

Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.
● Is it reflexive?

Is it symmetric?

Is it transitive?

∀v ∈ V. Conn(v, v)∀v ∈ V. Conn(v, v)

vA path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Connectivity

Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.

Is it reflexive?
● Is it symmetric?

Is it transitive?

∀x ∈ V. ∀y ∈ V. (Conn(x, y) → Conn(y, x))∀x ∈ V. ∀y ∈ V. (Conn(x, y) → Conn(y, x))

yx

Connectivity

Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.

Is it reflexive?
● Is it symmetric?

Is it transitive?

∀x ∈ V. ∀y ∈ V. (Conn(x, y) → Conn(y, x))∀x ∈ V. ∀y ∈ V. (Conn(x, y) → Conn(y, x))

yx

Connectivity

Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.

Is it reflexive?

Is it symmetric?
● Is it transitive?

∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))

x

y

z

Connectivity

Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.

Is it reflexive?

Is it symmetric?
● Is it transitive?

∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))

x

y

z

Connectivity

Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.

Is it reflexive?

Is it symmetric?
● Is it transitive?

∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))

x

y

z

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Putting Things Together

● Earlier, we defined the connected component
of a node v to be

[v] = { x ∈ V | v is connected to x }
● Connectivity is an equivalence relation! So

what’s the equivalence class of a node v with
respect to connectivity?

[v] = { x ∈ V | v is connected to x }
● Connected components are equivalence

classes of the connectivity relation!

Theorem: If G = (V, E) is a graph, then every node in G
belongs to exactly one connected component of G.

Proof: Let G = (V, E) be an arbitrary graph and let v ∈ V be
any node in G. The connected components of G are just
the equivalence classes of the connectivity relation in G.
The Fundamental Theorem of Equivalence Relations
guarantees that v belongs to exactly one equivalence
class of the connectivity relation. Therefore, v belongs to
exactly one connected component in G. ■

Planar Graphs

21

4 3

2

1

4 3

This graph is called the
utility graph. There is no
way to draw it in the plane

without edges crossing.

This graph is called the
utility graph. There is no
way to draw it in the plane

without edges crossing.

A graph is called a planar graph if there is
some way to draw it in a 2D plane without

any of the edges crossing.

A Fun (And Strangely Addicting) Game:
http://planarity.net/

http://planarity.net/

Graph Coloring

Graph Coloring

A Fantastic Video on a Cool Theorem:
https://youtu.be/-9OUyo8NFZg

https://youtu.be/-9OUyo8NFZg

● Intuitively, a k-coloring of a graph G = (V, E) is a way to
color each node in V one of k different colors such that no
two adjacent nodes in V are the same color.

Formally, a k-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic
number.

The chromatic number of a graph G is denoted χ(G), from the
Greek χρώμα, meaning “color.”

Graph Coloring

● Intuitively, a k-coloring of a graph G = (V, E) is a way to
color each node in V one of k different colors such that no
two adjacent nodes in V are the same color.

● Formally, a k-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic
number.

The chromatic number of a graph G is denoted χ(G), from the
Greek χρώμα, meaning “color.”

Graph Coloring

● Intuitively, a k-coloring of a graph G = (V, E) is a way to
color each node in V one of k different colors such that no
two adjacent nodes in V are the same color.

● Formally, a k-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic
number.

The chromatic number of a graph G is denoted χ(G), from the
Greek χρώμα, meaning “color.”

Graph Coloring

● Intuitively, a k-coloring of a graph G = (V, E) is a way to
color each node in V one of k different colors such that no
two adjacent nodes in V are the same color.

● Formally, a k-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic
number.

The chromatic number of a graph G is denoted χ(G), from the
Greek χρώμα, meaning “color.”

Graph Coloring

● Intuitively, a k-coloring of a graph G = (V, E) is a way to
color each node in V one of k different colors such that no
two adjacent nodes in V are the same color.

● Formally, a k-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic
number.

The chromatic number of a graph G is denoted χ(G), from the
Greek χρώμα, meaning “color.”

Graph Coloring

1

3

2

4 3

1

● Intuitively, a k-coloring of a graph G = (V, E) is a way to
color each node in V one of k different colors such that no
two adjacent nodes in V are the same color.

● Formally, a k-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic
number.

The chromatic number of a graph G is denoted χ(G), from the
Greek χρώμα, meaning “color.”

Graph Coloring

Although this is the formal definition of a
k-coloring, you rarely see it used in proofs. It's
more common to just talk about assigning
colors to nodes. However, this definition is
super useful if you want to write programs to
reason about graph colorings!

Although this is the formal definition of a
k-coloring, you rarely see it used in proofs. It's
more common to just talk about assigning
colors to nodes. However, this definition is
super useful if you want to write programs to
reason about graph colorings!

● Intuitively, a k-coloring of a graph G = (V, E) is a way to
color each node in V one of k different colors such that no
two adjacent nodes in V are the same color.

● Formally, a k-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))
● A graph G is called k-colorable if a k-coloring of G exists.
● The smallest k for which G is k-colorable is its chromatic

number.
● The chromatic number of a graph G is denoted χ(G), from the

Greek χρώμα, meaning “color.”

Graph Coloring

Graph Coloring

Graph Coloring

Theorem (Four-Color Theorem): Every
planar graph is 4-colorable.

● 1850s: Four-Color Conjecture posed.

● 1879: Kempe proves the Four-Color Theorem.

● 1890: Heawood finds a flaw in Kempe's proof.

● 1976: Appel and Haken design a computer program that
proves the Four-Color Theorem. The program checked 1,936
specific cases that are “minimal counterexamples;” any
counterexample to the theorem must contain one of the
1,936 specific cases.

● 1980s: Doubts rise about the validity of the proof due to
errors in the software.

● 1989: Appel and Haken revise their proof and show it is
indeed correct. They publish a book including a 400-page
appendix of all the cases to check.

● 1996: Roberts, Sanders, Seymour, and Thomas reduce the
number of cases to check down to 633.

● 2005: Werner and Gonthier repeat the proof using an
established automatic theorem prover (Coq), improving
confidence in the truth of the theorem.

Philosophical Question: Is a theorem
true if no human has ever read the proof?

Next Time

● The Pigeonhole Principle
● A simple, powerful, versatile theorem.

● Graph Theory Party Tricks
● Applying math to graphs of people!

● Fair Division Protocols (ITA)
● Nifty techniques for divvying things up.

