
  

Graph Theory
Part One



  

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg



  

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-
mHrbAUOHHg/s1600/Ethanol2.gif



  

http://www.toothpastefordinner.com/



  

http://www.prospectmagazine.co.uk/wp-content/uploads/2009/09/163_taylor2.jpg



  



  

Me too!



  



  

What's in Common

● Each of these structures consists of
● a collection of objects and
● links between those objects.

● Goal: find a general framework for 
describing these objects and their 
properties.



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.
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Some graphs are directed.
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Some graphs are undirected.



  

Going forward, we're primarily going to 
focus on undirected graphs.

 

The term “graph” generally refers to 
undirected graphs unless specified 

otherwise.



  

Formalizing Graphs

● How might we define a graph 
mathematically?

● We need to specify
● what the nodes in the graph are, and
● which edges are in the graph.

● The nodes can be pretty much anything.
● What about the edges?



  

Formalizing Graphs

● An unordered pair is a set {a, b} of two elements 
(remember that sets are unordered).
● {0, 1} = {1, 0}

● An undirected graph is an ordered pair 
G = (V, E), where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes 

drawn from V.
● A directed graph is an ordered pair G = (V, E), 

where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are ordered pairs of nodes 

drawn from V.



  

Self-Loops

● An edge from a node to itself is called a self-loop.
● In undirected graphs, self-loops are generally not 

allowed unless specified otherwise.
● This is mostly to keep the math easier. If you allow self-

loops, a lot of results get messier and harder to state.
● In directed graphs, self-loops are generally allowed 

unless specified otherwise.

✓×



  

Standard Graph Terminology
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Two nodes are called adjacent if there is an edge 
between them.
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Using our Formalisms

● Let G = (V, E) be a graph.
● Intuitively, two nodes are adjacent if 

they're linked by an edge.
● Formally speaking, we say that two 

nodes u, v ∈ V are adjacent if {u, v} ∈ E.
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A path in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.
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a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
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Time-Out for Announcements!



  

Midterm Exam

● The first midterm exam is next Tuesday, May 2nd, from 
7:00PM – 10:00PM. Locations are divvied up by last 
(family) name:
● Abb – Niu: Go to Hewlett 200.
● Nor – Vas: Go to Hewlett 201.
● Vil – Yim: Go to Hewlett 102.
● You – Zuc: Go to Hewlett 103.

● You’re responsible for Lectures 00 – 05 and topics covered 
in PS1 – PS2. Later lectures and problem sets won’t be 
tested.

● The exam is closed-book, closed-computer, and limited-
note. You can bring a double-sided, 8.5” × 11” sheet of 
notes with you to the exam, decorated however you’d like.



  

Midterm Practice

● We’ve just uploaded
● the practice midterm from last night, with solutions;
● another practice midterm exam;
● solutions to Extra Practice Problems 1; and
● another set of review problems, EPP2.

● We’ll release EPP3 on Friday along with 
solutions to EPP2 and the additional practice 
midterm exam.

● Need more practice? Let us know!



  

Problem Set Two

● Problem Set Two has been graded and 
feedback has been release.
● Please read over your feedback – the 

skills tested on this problem set are the same 
skills tested on the midterm.

● Score distribution is shown here:



  

Problem Set Two: Common Mistakes



  

“Someone has two pet kittens
and no other pets.”

 

∃p. (Person(p) ∧
∃k₁. (Kitten(k₁) ∧ HasPet(p, k₁) ∧

∃k₂. (Kitten(k₂) ∧ HasPet(p, k₂))
)

)
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1. Remember that multiple quantifiers can range
over the same objects!

2. To express “and nothing else does,” show that
anything matching the property must be equal
to something you already know.
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anything matching the property must be equal
to something you already know.



  

Problem Set Three

● The Problem Set Three checkpoint has 
been graded.
● Please, please, please review your 

feedback! That problem was tricky and a lot 
of people had a lot of trouble with it.

● Remaining problems are due on Friday. 
Be strategic about taking late days.



  

PS3 Checkpoint: Common Mistakes
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Theorem: A binary relation R is a strict order if and only if
it’s irreflexive and transitive.

Proof: Let R be an arbitrary relation over a set A that is
irreflexive and transitive. We will prove that R is a strict
order by proving that it is also asymmetric.

Assume for the sake of contradiction that R is not 
asymmetric. That means that there exist some x, y ∈ A 
where xRy → yRx.

We know that R is irreflexive, so for any a ∈ A, we know 
that aRa. Plugging in x=a and y=a into xRy → yRx, tells 
us that aRa. However, this contradicts the fact that aRa.

We have reached a contradiction, so our assumption 
must have been wrong. Therefore, R is asymmetric, so R 
is a strict order. ■
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To Summarize

● Call back to definitions. If something isn’t 
asymmetric, it doesn’t mean it’s symmetric (or 
vice-versa).

● Watch your negations! There’s a reason we had 
you practice this on PS2 and why we spent time in 
lecture last week going over it.

● Don’t use first-order logic notation in your proofs.
● Watch how you introduce variables. Existentially-

quantified variables have values that you can’t 
pick. Universally-quantified variables should be 
chosen arbitrarily (except in rare circumstances).

● Make sure to prove both directions of implication.



  

Your Questions



  

“What are your favorite books?”
Guns, Germs, and Steel by Jared Diamond
    Brilliant thesis about the development of human civilizations.
 

Whistling Vivaldi by Claude Steele
    Should be required reading at Stanford.
 

The Omnivore’s Dilemma by Michael Pollan
    A peek into our food supply.
 

Command and Control by Eric Schlosser
    A study in institutional dysfunction… with nuclear weapons.
 

The Trial by Franz Kafka
    Especially the “Before the Law” section.
 

Radetsky March by Joseph Roth
    A portrait of the twilight of the Hapsburg empire.
 

Stories of Your Life and Others by Ted Chiang
    Excellent speculative fiction.
 

Longitude by Dava Sobel
    Beautiful narrative history of how science is actually done.
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Back to CS103!



  

Connected Components
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Connected Components

● Let G = (V, E) be a graph. For each v ∈ V, the 
connected component containing v is the set

[v] = { x ∈ V | v is connected to x }
● Intuitively, a connected component is a “piece” 

of a graph in the sense we just talked about.
● Question: How do we know that this 

particular definition of a “piece” of a graph is a 
good one?

● Goal: Prove that any graph can be broken 
apart into different connected components.



  

We’re trying to reason about some way of 
partitioning the nodes in a graph into 

different groups.

What structure have we studied that 
captures the idea of a partition?



  

Connectivity

● Claim: For any graph G, the “is 
connected to” relation is an equivalence 
relation.
● Is it reflexive?
● Is it symmetric?
● Is it transitive?
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Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then 
the singleton path v is a path from v to itself. Therefore, v is 
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V 
where x is connected to y. We need to show that y is connected 
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y 
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is 
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be 
arbitrary nodes where x is connected to y and y is connected to 
z. We will prove that x is connected to z. Since x is connected to 
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected 
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected 
to z, as required. ■
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Putting Things Together

● Earlier, we defined the connected component 
of a node v to be

[v] = { x ∈ V | v is connected to x }
● Connectivity is an equivalence relation! So 

what’s the equivalence class of a node v with 
respect to connectivity?

[v] = { x ∈ V | v is connected to x }
● Connected components are equivalence 

classes of the connectivity relation!



  

Theorem: If G = (V, E) is a graph, then every node in G
belongs to exactly one connected component of G.

Proof: Let G = (V, E) be an arbitrary graph and let v ∈ V be
any node in G. The connected components of G are just
the equivalence classes of the connectivity relation in G.
The Fundamental Theorem of Equivalence Relations
guarantees that v belongs to exactly one equivalence
class of the connectivity relation. Therefore, v belongs to
exactly one connected component in G. ■
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This graph is called the 
utility graph. There is no 
way to draw it in the plane 

without edges crossing.

This graph is called the 
utility graph. There is no 
way to draw it in the plane 

without edges crossing.



  

A graph is called a planar graph if there is 
some way to draw it in a 2D plane without 

any of the edges crossing.



  

A Fun (And Strangely Addicting) Game:
http://planarity.net/

http://planarity.net/


  



  



  



  



  



  



  



  

Graph Coloring



  

Graph Coloring



  



  



  

A Fantastic Video on a Cool Theorem:
https://youtu.be/-9OUyo8NFZg

https://youtu.be/-9OUyo8NFZg


  

● Intuitively, a k-coloring of a graph G = (V, E) is a way to 
color each node in V one of k different colors such that no 
two adjacent nodes in V are the same color.

Formally, a k-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic 
number.

The chromatic number of a graph G is denoted χ(G), from the 
Greek χρώμα, meaning “color.”
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Although this is the formal definition of a
k-coloring, you rarely see it used in proofs. It's 
more common to just talk about assigning 
colors to nodes. However, this definition is 
super useful if you want to write programs to 
reason about graph colorings!

Although this is the formal definition of a
k-coloring, you rarely see it used in proofs. It's 
more common to just talk about assigning 
colors to nodes. However, this definition is 
super useful if you want to write programs to 
reason about graph colorings!
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Theorem (Four-Color Theorem): Every 
planar graph is 4-colorable.



  

● 1850s: Four-Color Conjecture posed.

● 1879: Kempe proves the Four-Color Theorem.

● 1890: Heawood finds a flaw in Kempe's proof.

● 1976: Appel and Haken design a computer program that 
proves the Four-Color Theorem. The program checked 1,936 
specific cases that are “minimal counterexamples;” any 
counterexample to the theorem must contain one of the 
1,936 specific cases.

● 1980s: Doubts rise about the validity of the proof due to 
errors in the software.

● 1989: Appel and Haken revise their proof and show it is 
indeed correct. They publish a book including a 400-page 
appendix of all the cases to check.

● 1996: Roberts, Sanders, Seymour, and Thomas reduce the 
number of cases to check down to 633.

● 2005: Werner and Gonthier repeat the proof using an 
established automatic theorem prover (Coq), improving 
confidence in the truth of the theorem.



  

Philosophical Question: Is a theorem 
true if no human has ever read the proof?



  

Next Time

● The Pigeonhole Principle
● A simple, powerful, versatile theorem.

● Graph Theory Party Tricks
● Applying math to graphs of people!

● Fair Division Protocols (ITA)
● Nifty techniques for divvying things up.


