
  

Graph Theory
Part Two



  

Recap from Last Time



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or 
vertices) connected by edges (or arcs)



  

Adjacency and Connectivity

● Two nodes in a graph are called 
adjacent if there's an edge between 
them.

● Two nodes in a graph are called 
connected if there's a path between 
them.
● A path is a series of one or more nodes 

where consecutive nodes are adjacent.



  

k-Colorability

● If G = (V, E) is a graph, a k-coloring of G is a way of 
assigning colors to the nodes of G, using at most k colors, 
so that no two nodes of the same color are adjacent.

● The chromatic number of G, denoted χ(G), is the 
minimum number of colors needed in any k-coloring of G.

● Today, we’re going to see several results involving 
coloring parts of graphs. They don’t necessarily involve
k-colorings of graphs, so feel free to ask for clarifications 
if you need them!



  

New Stuff!



  

The Pigeonhole Principle



  

The Pigeonhole Principle

● Theorem (The Pigeonhole Principle): 
If m objects are distributed into n bins 
and m > n, then at least one bin will 
contain at least two objects.



  

Some Simple Applications
● Any group of 367 people must have a pair of people that 

share a birthday.
● 366 possible birthdays (pigeonholes)
● 367 people (pigeons)

● Two people in San Francisco have the exact same number 
of hairs on their head.
● Maximum number of hairs ever found on a human head is no 

greater than 500,000.
● There are over 800,000 people in San Francisco.

● Each day, two people in New York City drink the same 
amount of water, to the thousandth of a fluid ounce.
● No one can drink more than 50 gallons of water each day.
● That's 6,400 fluid ounces.  This gives 6,400,001 possible 

numbers of thousands of fluid ounces.
● There are about 8,000,000 people in New York City proper.



  

Theorem: If m objects are distributed into n bins and m > n,
then there must be some bin that contains at least two objects.

Proof: Suppose for the sake of contradiction that, for some m and
n where m > n, there is a way to distribute m objects into n
bins such that each bin contains at most one object.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of 
objects in bin i. There are m objects in total, so we know that

  m = x₁ + x₂ + … + xₙ.

Since each bin has at most one object in it, we know xᵢ ≤ 1 for 
each i. This means that

  m = x₁ + x₂ + … + xₙ
≤ 1  +  1 + … + 1   (n times)
= n.

This means that m ≤ n, contradicting that m > n. We’ve 
reached a contradiction, so our assumption must have been 
wrong. Therefore, if m objects are distributed into n bins with 
m > n, some bin must contain at least two objects. ■



  

Pigeonhole Principle Party Tricks



  



  

Degrees

● The degree of a node v in a graph is the 
number of nodes that v is adjacent to.

 

● Theorem: Every graph with at least two 
nodes has at least two nodes with the same 
degree.
● Equivalently: at any party with at least two 

people, there are at least two people with the 
same number of Facebook friends at the party.
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of 
degree 0 and a node v of degree n – 1: if there were such 
nodes, then node u would be adjacent to no other nodes 
and node v would be adjacent to all other nodes, 
including u. (Note that u and v must be different nodes, 
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of 
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1 
possible degrees, so by the pigeonhole principle two 
nodes in G must have the same degree. ■



  

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there
is a graph G with n ≥ 2 nodes where no two nodes
have the same degree. There are n possible choices
for the degrees of nodes in G, namely 0, 1, 2, …, n – 1,
so this means that G must have exactly one node of
each degree. However, this means that G has a node
of degree 0 and a node of degree n – 1. (These can't
be the same node, since n ≥ 2.) This first node is
adjacent to no other nodes, but this second node is
adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption 
must have been wrong. Thus if G is a graph with at 
least two nodes, G must have at least two nodes of the 
same degree. ■



  

The Generalized Pigeonhole Principle



  

A More General Version
● The generalized pigeonhole principle says 

that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

  m = 11
   n = 5

⌈m / n⌉ = 3
⌊m / n⌋ = 2

  



  

Theorem: If m objects are distributed into n > 0 bins, then some
bin will contain at least ⌈m/ₙ⌉ objects.

Proof: We will prove that if m objects are distributed into n bins, then
some bin contains at least m/ₙ objects. Since the number of objects in
each bin is an integer, this will prove that some bin must contain at
least ⌈m/ₙ⌉ objects.

To do this, we proceed by contradiction. Suppose that, for some m 
and n, there is a way to distribute m objects into n bins such that 
each bin contains fewer than m/ₙ objects.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects 
in bin i. Since there are m objects in total, we know that

  m = x₁  +  x₂  + … + xₙ.

Since each bin contains fewer than m/ₙ objects, we see that
xᵢ < m/ₙ for each i. Therefore, we have that

  m = x₁  +  x₂  + … + xₙ
< m/ₙ + m/ₙ  + … + m/ₙ  (n times)
= m.

But this means that m < m, which is impossible. We have reached a 
contradiction, so our initial assumption must have been wrong. 
Therefore, if m objects are distributed into n bins, some bin must 
contain at least ⌈m/ₙ⌉ objects. ■



  

An Application: Friends and Strangers



  

Friends and Strangers

● Suppose you have a party of six people. 
Each pair of people are either friends 
(they know each other) or strangers (they 
do not).

● Theorem: Any such party must have a 
group of three mutual friends (three 
people who all know one another) or three 
mutual strangers (three people where no 
one knows anyone else).



  



  



  

This graph is called 
a 6-clique, by the 

way.

This graph is called 
a 6-clique, by the 

way.



  



  



  



  

Friends and Strangers Restated

● From a graph-theoretic perspective, the 
Theorem on Friends and Strangers can 
be restated as follows:

● Theorem: Consider a 6-clique where 
every edge is colored red or blue. The 
the graph contains a red triangle, a blue 
triangle, or both.

● How can we prove this?



  

Observation 1: If 
we pick any node in 
the graph, that node 

will have at least 
⌈5/2⌉ = 3 edges of 

the same color 
incident to it.

Observation 1: If 
we pick any node in 
the graph, that node 

will have at least 
⌈5/2⌉ = 3 edges of 

the same color 
incident to it.



  



  



  

Theorem: Consider a 6-clique in which every edge is colored
either red or blue. Then there must be a triangle of red
edges, a triangle of blue edges, or both.

Proof: Color the edges of the 6-clique either red or blue
arbitrarily. Let x be any node in the 6-clique. It is incident
to five edges and there are two possible colors for those
edges. Therefore, by the generalized pigeonhole principle,
at least ⌈⁵/₂⌉ = 3 of those edges must be the same color.
Call that color c₁ and let the other color be c₂.

Let r, s, and t be three of the nodes connected to node x 
by an edge of color c₁. If any of the edges {r, s}, {r, t}, or 
{s, t} are of color c₁, then one of those edges plus the two 
edges connecting back to node x form a triangle of color 
c₁. Otherwise, all three of those edges are of color c₂, and 
they form a triangle of color c₂. Overall, this gives a red 
triangle or a blue triangle, as required. ■



  

What This Means

● The proof we just did was along the following 
lines:

If you choose a sufficiently large object, you 
are guaranteed to find a large subobject of 

type A or a large subobject of type B.
● Intuitively, it's not possible to find gigantic 

objects that have absolutely no patterns or 
structure in them – there is no way to avoid 
having some interesting structure.

● There are numerous theorems of this sort. The 
mathematical field of Ramsey theory explicitly 
studies problems of this type.



  

Time-Out for Announcements!



  

APPLY TO JOIN
BLACK IN CS CORE!

Applications are live

DEADLINE: Wednesday, May 3rd at 11:59 PM

As we prepare for our second year as a student group, you can be a 
crucial part of forming the vision and impact of Black in CS. As a core 
member, part of your duty is to continue to build the foundations for 
the student group and help cultivate a strong Black in CS community. 
Feel free to self-nominate or nominate others for positions in Black in 
CS. Candidates for Co-Presidents and Financial Officer positions can 

expect elections and for General Core Member positions, an 
application process.

Please contact a co-president, either Lindsey Redd 
(l1redd@stanford.edu) or Ekua Awotwi (eawotwi@stanford.edu), 

if you have any questions!

https://docs.google.com/a/stanford.edu/forms/d/e/1FAIpQLSevTFrGA5yl-obc_n67clh4vZ4f4KDX1xxSno6lZOjm4R59Bw/viewform?usp=sf_link
mailto:l1redd@stanford.edu
mailto:eawotwi@stanford.edu


  

The Grace Hopper Celebration is the world's largest 
gathering of women in computing. It is designed to 
bring the interests of women in computing to the 

forefront.

Do you want to attend? The CS department can send up 
to 30 CS women to Grace Hopper this year. We'll pay for 

registration, travel, and hotel costs (within reason).

The Grace Hopper Celebration of Women in Computing
Dates: October 4-6, 2017

Location: Orlando, Florida
http://ghc.anitaborg.org

If you're interested, please fill out this link by
Sunday, April 30.

http://ghc.anitaborg.org/
https://docs.google.com/forms/d/e/1FAIpQLScyZRFaT8_jZvAOLWWDiMp2fwGQGhU3JL6WmQ7JwGLaTQGkOA/viewform


  

Midterm Exam

● The first midterm exam is next Tuesday, May 2nd, from 
7:00PM – 10:00PM. Locations are divvied up by last (family) 
name:
● Abb – Niu: Go to Hewlett 200.
● Nor – Vas: Go to Hewlett 201.
● Vil – Yim: Go to Hewlett 102.
● You – Zuc: Go to Hewlett 103.

● You’re responsible for Lectures 00 – 05 and topics covered in 
PS1 – PS2. Later lectures and problem sets won’t be tested.

● The exam is closed-book, closed-computer, and limited-note. 
You can bring a double-sided, 8.5” × 11” sheet of notes with 
you to the exam, decorated however you’d like.

● Students with OAE accommodations: you should have heard 
back from us with alternate exam logistics earlier today. Let us 
know if that’s not the case!



  

Midterm Practice

● To help you prep for the midterm, we’ve posted

two practice midterm exams and

three sets of extra practice problems,

with solutions, up on the course website.
● Need more practice? Let us know what we can 

do to help out!
● Please feel free to ask questions on Piazza over 

the weekend. We’re happy to help!



  

Problem Sets

● Problem Set Three was due at the start of class 
today.

● Problem Set Four goes out today.
● Checkpoint problems are due on Monday right before 

class.
● Remaining problems due on Friday right before class.

● Play around with infinite cardinalities, the limits 
of set theory, nifty properties of graphs, and 
some cool applications of the material!



  

Your Questions



  

“What gets you up in the morning?”
“Who inspires you?”

You do! I never cease to be 
amazed by what students here can 
do and what you’ll accomplish. 

Like, really.

You do! I never cease to be 
amazed by what students here can 
do and what you’ll accomplish. 

Like, really.



  

“Do you think political diversity is 
important? Do you think Stanford has 

enough political diversity?”

It’s absolutely important. Lack of political diversity takes ideas 
and solution routes off the table.

 

Take a look at Salt Lake City’s program for helping the 
homeless by giving them homes (which is now a national model) 
or San Antonio’s approach to mental health services (again, a 
national model). These approaches combine ideas across the 

political spectrum and show a lot of promise.

It’s absolutely important. Lack of political diversity takes ideas 
and solution routes off the table.

 

Take a look at Salt Lake City’s program for helping the 
homeless by giving them homes (which is now a national model) 
or San Antonio’s approach to mental health services (again, a 
national model). These approaches combine ideas across the 

political spectrum and show a lot of promise.

http://apps.bostonglobe.com/spotlight/the-desperate-and-the-dead/series/solutions/?p1=Spotlight_MI_Overview_Read
http://apps.bostonglobe.com/spotlight/the-desperate-and-the-dead/series/solutions/?p1=Spotlight_MI_Overview_Read


  

Back to CS103!



  

Another View of Pigeonholing

● The pigeonhole principle is a result that, 
broadly speaking, follows this template:

m objects cannot be distributed into 
n bins without property X being true.

● What other sorts of properties can we 
say about how objects get distributed?



  

m = 12 pigeons
n = 5 boxes

Observation: The number 
of boxes containing an odd 
number of pigeons seems 

to always be even!

Observation: The number 
of boxes containing an odd 
number of pigeons seems 

to always be even!



  

m = 11 pigeons
n = 5 boxes

Observation: Now the 
number of boxes containing 
an odd number of pigeons 
seems to always be odd!

Observation: Now the 
number of boxes containing 
an odd number of pigeons 
seems to always be odd!



  

Theorem: Suppose m objects are distributed into some number of bins.
Let k be the number of bins containing an odd number of objects.
Then m and k have the same parity.

Proof: Let m be an arbitrary natural number and suppose that m
objects are distributed across some number of bins. Let k be the
number of bins with an odd number of objects. We will prove that k
has the same parity as m.

Denote the numbers of objects in each of the even-size bins as
2r₁, 2r₂, …, and 2rₕ and the numbers of objects in the odd-size bins 
as 2s₁+1, 2s₂+1, …, and 2sₖ+1. Then, since each object is placed 
into some bin, we have that

m = (2r₁ + 2r₂ + … + 2rₕ) + ((2s₁ + 1) + (2s₂ + 1) + … + (2sₖ + 1)).

There are k copies of the +1 term in the second group, so we see

m = (2r₁ + 2r₂ + … + 2rₕ) + (2s₁ + 2s₂ + … + 2sₖ) + k.

Regrouping the terms to isolate k yields

m – 2(r₁ + r₂ + … + rₕ + s₁ + s₂ + … + sₖ) = k.

If m is even, then k is the difference of two even numbers, so k is 
even. Otherwise, m is odd. Then k is the difference of an odd number 
and an even number, so k is odd as well. In both cases, we see that k 
has the same parity as m, as required. ■



  

A Pretty Nifty Theorem:
Sperner’s Lemma



  

● Begin with a triangle.

Subdivide the triangle into 
smaller triangles that meet 
corner-to-corner (that is, 
with no corner of one 
triangle intersecting the 
edge of another)

Color the three corners of 
the big triangle three 
different colors.

Color each other vertex 
using those three colors 
however you’d like, except 
that each vertex on an edge 
of the big triangle must not 
be the same color as the 
opposite corner of the big 
triangle.

Sperner’s Lemma: At least 
one of the smaller triangles 
will have corners of all three 
colors.
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only be yellow or 

magenta.
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● Begin with a triangle.
● Subdivide the triangle into 

smaller triangles that meet 
corner-to-corner (that is, 
with no corner of one 
triangle intersecting the 
edge of another)
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the big triangle three 
different colors.

● Color each other vertex 
using those three colors 
however you’d like, except 
that each vertex on an edge 
of the big triangle must not 
be the same color as the 
opposite corner of the big 
triangle.

Sperner’s Lemma: At least 
one of the smaller triangles 
will have corners of all three 
colors.

These nodes can 
only be blue or 

yellow.

These nodes can 
only be blue or 

yellow.



  

● Begin with a triangle.
● Subdivide the triangle into 

smaller triangles that meet 
corner-to-corner (that is, 
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The remaining 
nodes can use any 
of the three colors.
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For each triangle, count 
the number of edges of 
that triangle with one 
blue and one yellow 

endpoint.

For each triangle, count 
the number of edges of 
that triangle with one 
blue and one yellow 

endpoint.



  

         

   

           

    

     

    

    

   

             

   

      

Lemma 1: A triangle has corners 
of three different colors iff it has 

exactly one coin in it.

Lemma 1: A triangle has corners 
of three different colors iff it has 

exactly one coin in it.

To make things a bit easier 
to see, imagine putting one 
coin into each triangle for 

each of its blue/yellow edges.
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Lemma 2: A triangle has corners 
of three different colors iff it has 

an odd number of coins in it.
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Lemma 3: The total number of 
coins is equal to 2I + E, where I is 
the number of internal blue/yellow 

edges and E is the number of 
external blue/yellow edges.
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Proof of Sperner’s Lemma:
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This means that there must be at least 
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of coins, since otherwise there would 
be zero such triangles and zero is not 
odd.
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at least one triangle with one corner of 
each color. ■
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Some Nifty Applications

● Sperner’s lemma is a key step in many fair division protocols, 
ways of splitting up chores or rent in a way that everyone is 
happy.
● See this New York Times article, for example.

● It’s also a key step in Monsky’s theorem, which says that you 
can’t split a square into an odd number of triangles of equal area.
● This theorem has an unusual history and relates several seemingly 

unrelated branches of mathematics together.
● And it’s used in an elegant proof of the Brouwer fixed-point 

theorem, which says (among other things) that no matter how 
you stir your coffee, there must be some point in the coffee that 
stays in the same place that it started.

● And they’re all based on the simple idea of looking at what 
happens if you divide an odd number of things into some buckets!

https://www.nytimes.com/2014/04/29/science/to-divide-the-rent-start-with-a-triangle.html?_r=0
https://en.wikipedia.org/wiki/Equidissection#History
https://www.youtube.com/watch?v=csInNn6pfT4


  

Next Time

● Mathematical Induction
● Proofs on stepwise processes

● Applications of Induction
● … to numbers!
● … to data compression!
● … to puzzles!
● … to algorithms!


