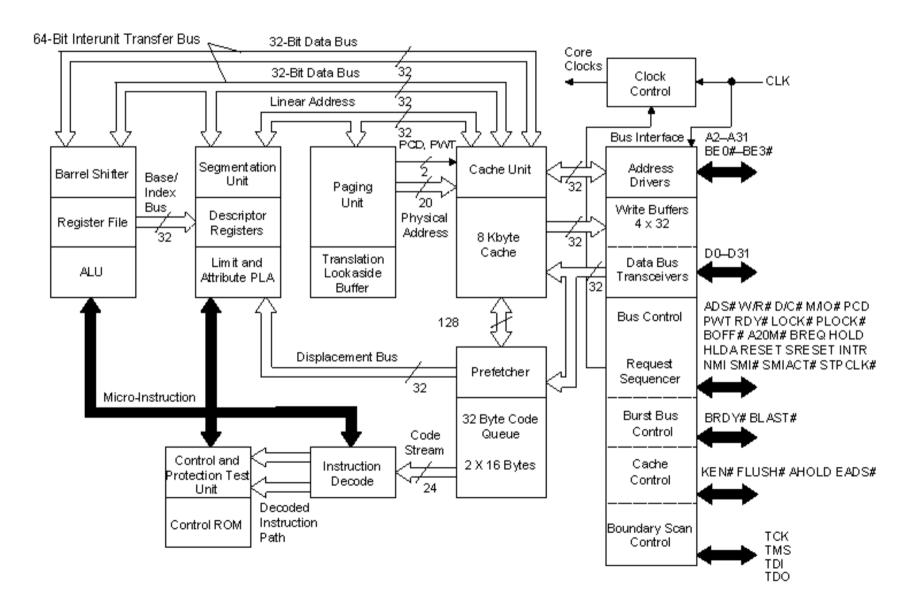
Finite Automata Part One

Computability Theory

What problems can we solve with a computer?

What kind of computer?

Computers are Messy

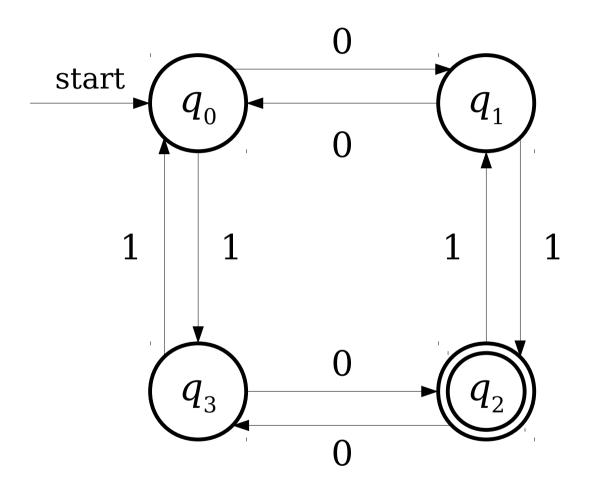


http://www.intel.com/design/intarch/prodbref/272713.htm

We need a simpler way of discussing computing machines.

An *automaton* (plural: *automata*) is a mathematical model of a computing device.

Automata are Clean



Why Build Models?

• Mathematical simplicity.

• It is significantly easier to manipulate our abstract models of computers than it is to manipulate actual computers.

• Intellectual robustness.

• If we pick our models correctly, we can make broad, sweeping claims about huge classes of real computers by arguing that they're just special cases of our more general models.

Why Build Models?

- The models of computation we will explore in this class correspond to different conceptions of what a computer could do.
- *Finite automata* (next two weeks) are an abstraction of computers with finite resource constraints.
 - Provide upper bounds for the computing machines that we can actually build.
- *Turing machines* (later) are an abstraction of computers with unbounded resources.
 - Provide upper bounds for what we could ever hope to accomplish.

What problems can we solve with a computer?

What is a "problem?"

Problems with Problems

- Before we can talk about what problems we can solve, we need a formal definition of a "problem."
- We want a definition that
 - corresponds to the problems we want to solve,
 - captures a large class of problems, and
 - is mathematically simple to reason about.
- No one definition has all three properties.

Formal Language Theory

Strings

- An alphabet is a finite, nonempty set of symbols called characters.
 - Typically, we use the symbol Σ to refer to an alphabet.
- A *string over an alphabet* Σ is a finite sequence of characters drawn from Σ .
- Example: If $\Sigma = \{a, b\}$, here are some valid strings over Σ :
 - a aabaaabbabaaabaaaabbb abbababba
- The *empty string* has no characters and is denoted ε .
- Calling attention to an earlier point: since all strings are finite sequences of characters from Σ , you cannot have a string of infinite length.

Languages

- A *formal language* is a set of strings.
- We say that L is a *language over* Σ if it is a set of strings over Σ .
- Example: The language of palindromes over $\Sigma = \{a, b, c\}$ is the set
 - {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, ... }
- The set of all strings composed from letters in Σ is denoted Σ^* .
- Formally, we say that L is a language over Σ if $L \subseteq \Sigma^*$.

To Recap

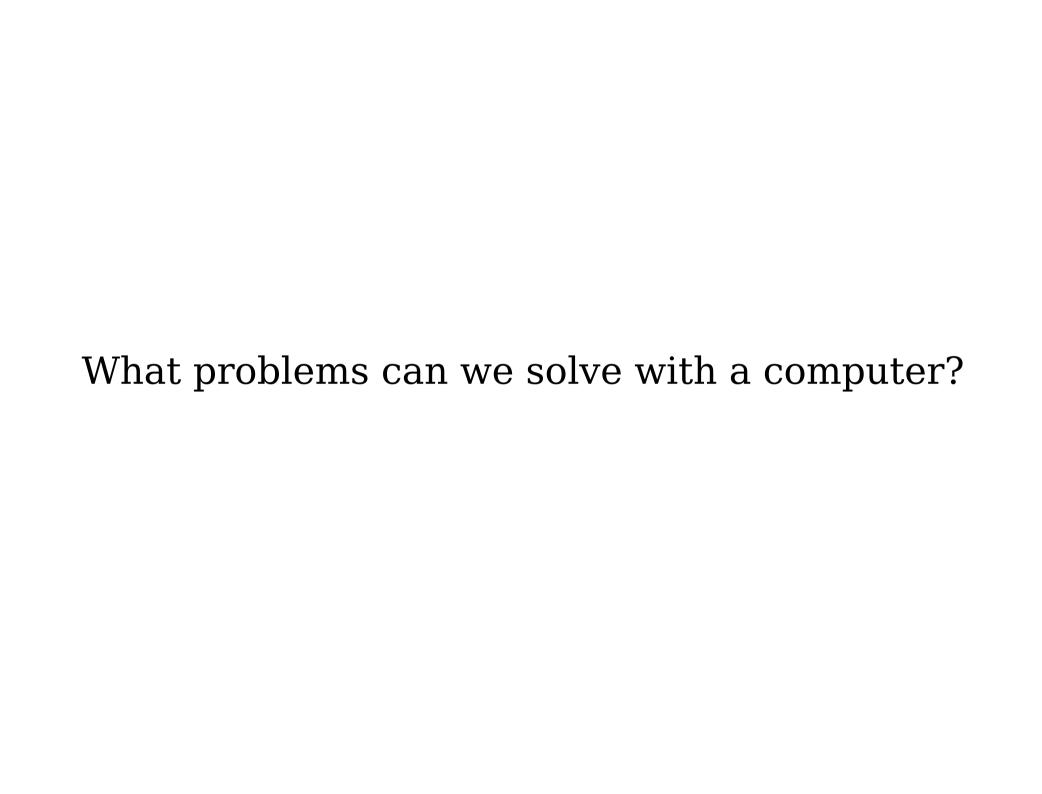
- Languages are sets of strings, and
- strings are sequences of characters, and
- *characters* are elements of an alphabet.

The Model

- *Fundamental Question:* For what languages *L* can you design an automaton that takes as input a string, then decides whether the string is in *L*?
- The answer depends on the choice of L, the choice of automaton, and the definition of "determines."
- In answering this question, we'll go through a whirlwind tour of models of computation and see how this seemingly abstract question has very real and powerful consequences.

To Summarize

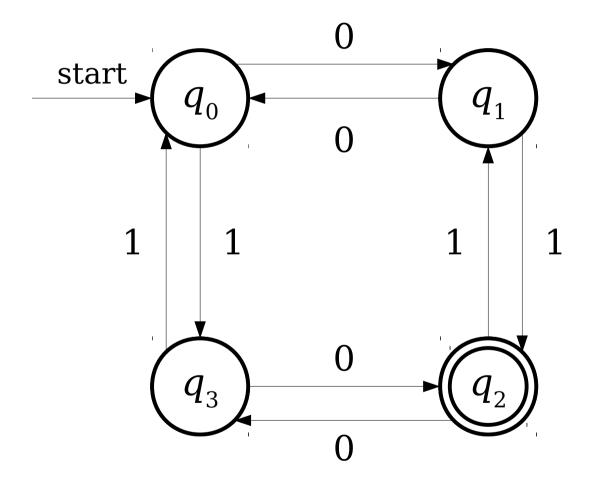
- An automaton is an idealized mathematical computing machine.
- A language is a set of strings, a string
 is a (finite) sequence of characters, and a
 character is an element of an alphabet.
- *Goal:* Figure out in which cases we can build automata for particular languages.

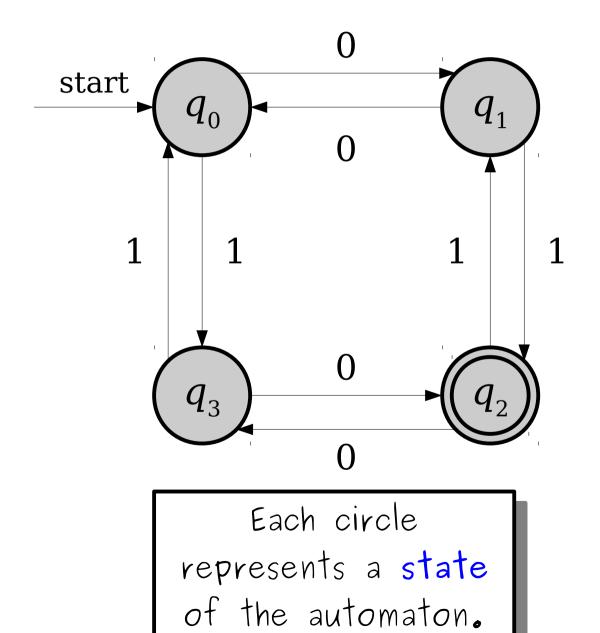


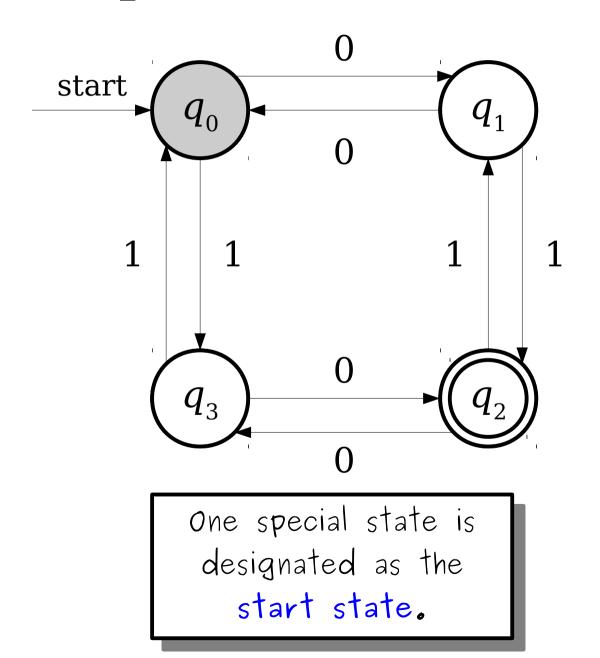
Finite Automata

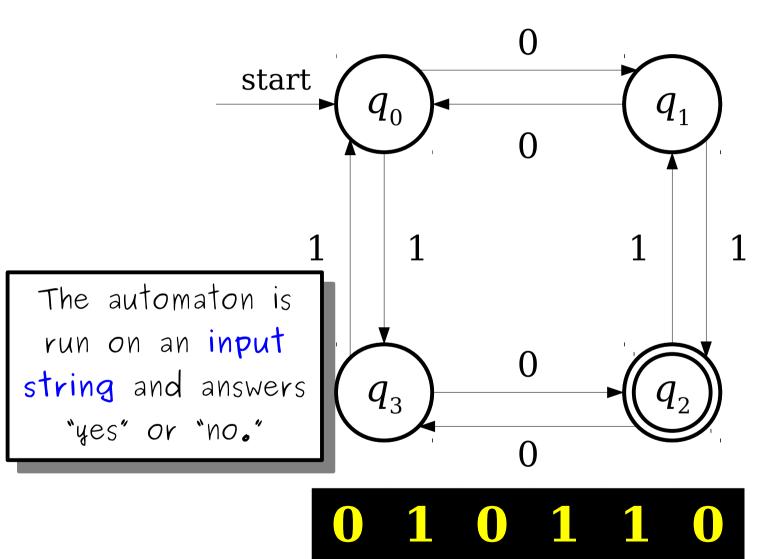
A *finite automaton* is a simple type of mathematical machine for determining whether a string is contained within some language.

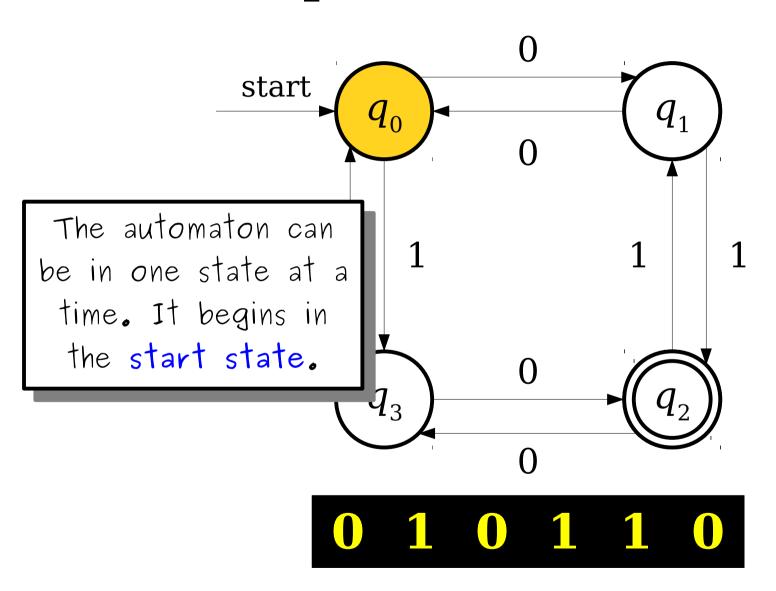
Each finite automaton consists of a set of *states* connected by *transitions*.

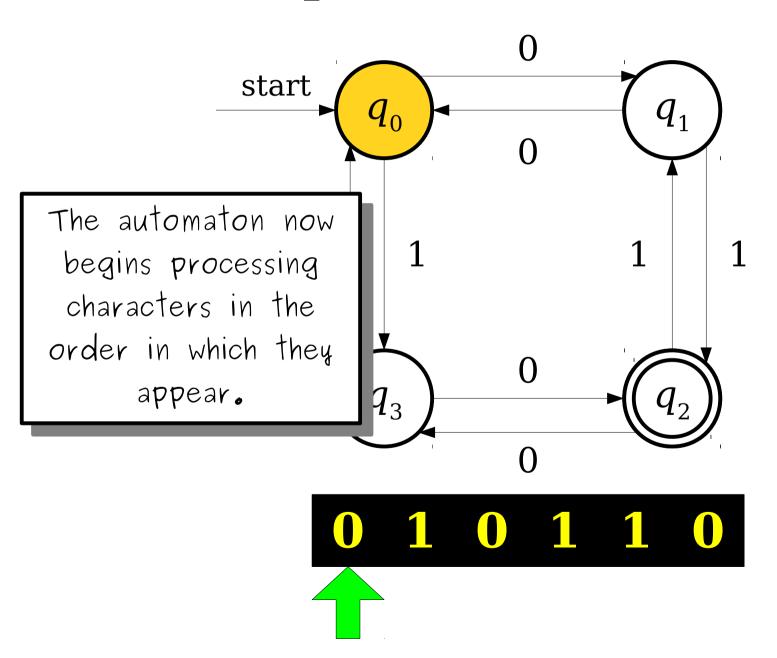


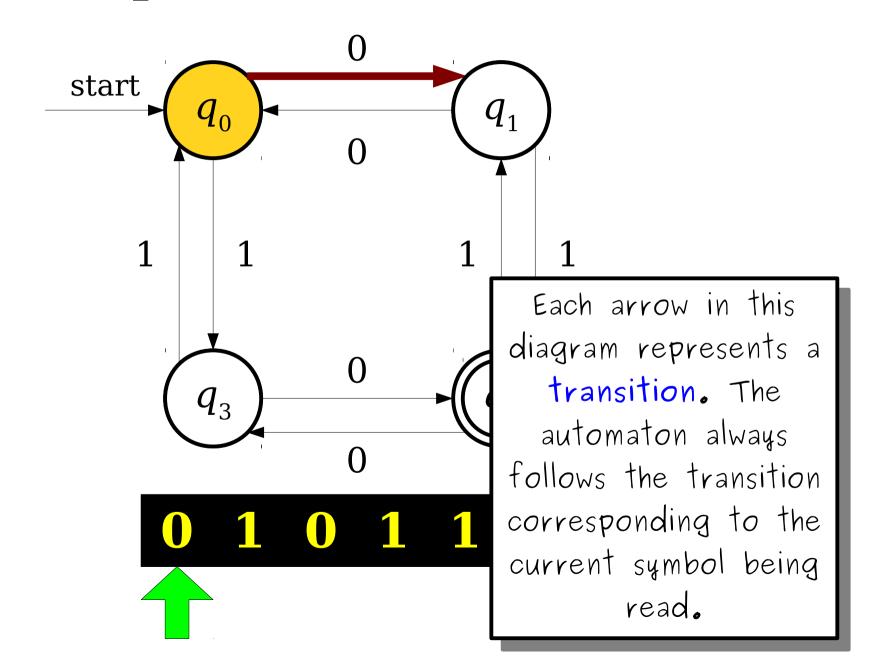


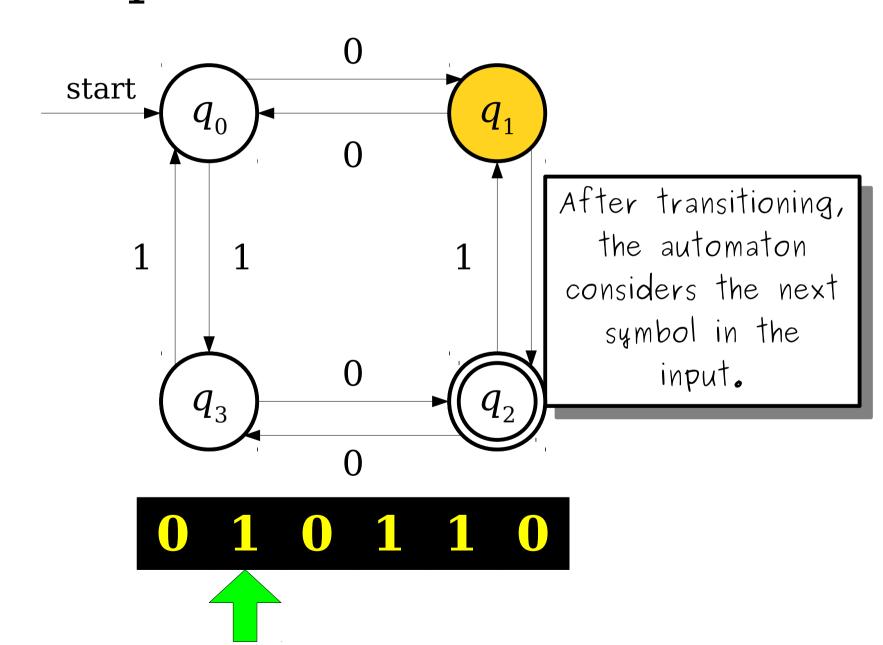


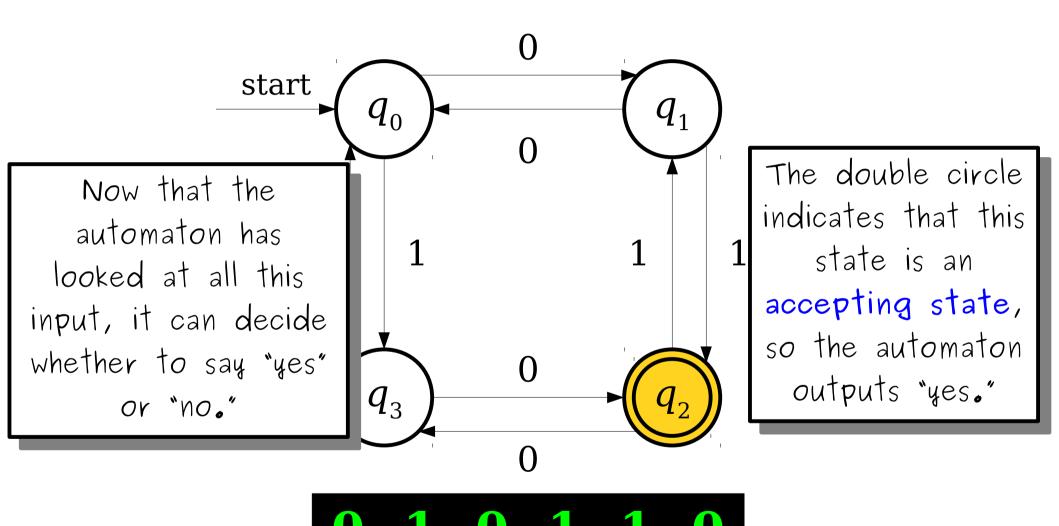


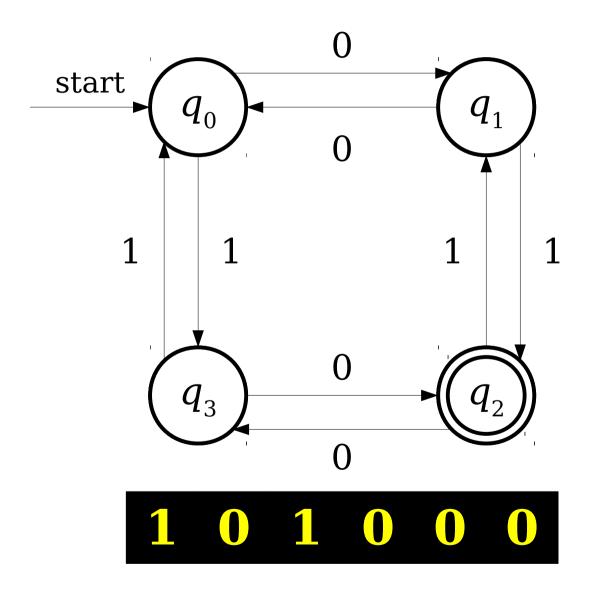


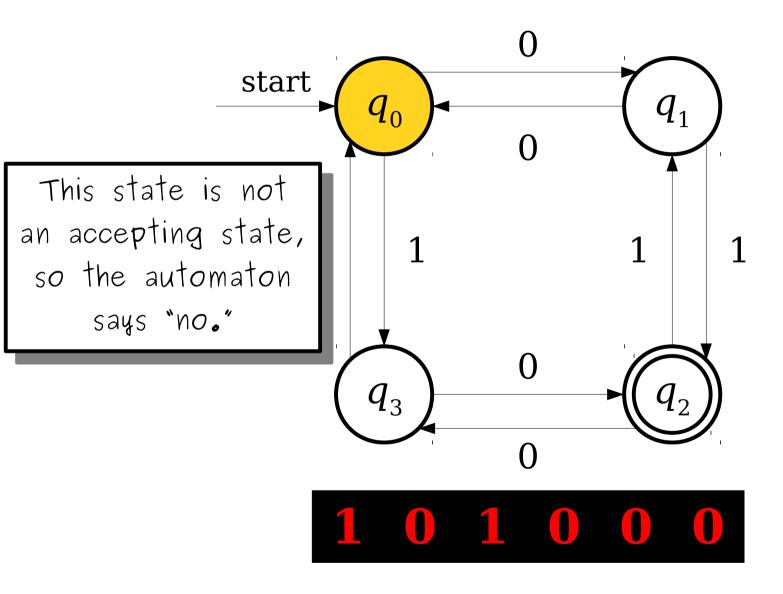


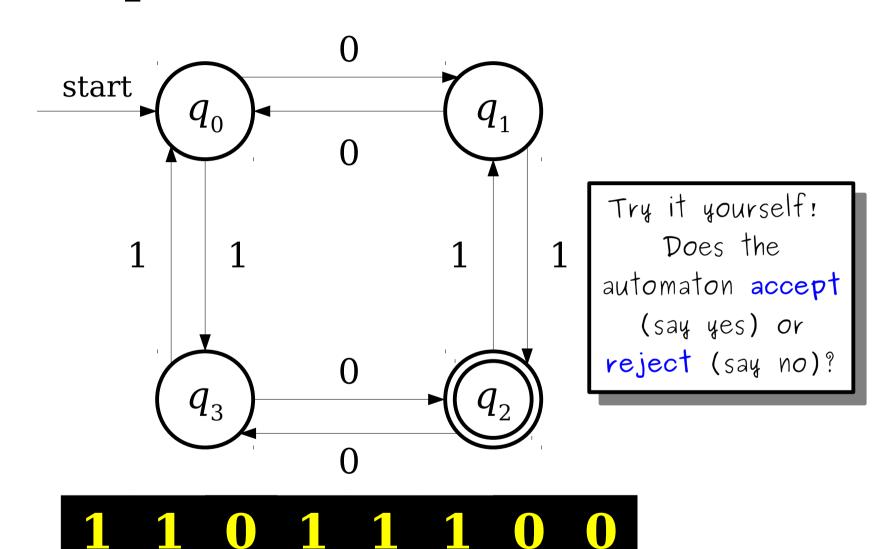












The Story So Far

- A *finite automaton* is a collection of *states* joined by *transitions*.
- Some state is designated as the *start state*.
- Some states are designated as accepting states.
- The automaton processes a string by beginning in the start state and following the indicated transitions.
- If the automaton ends in an accepting state, it *accepts* the input.
- Otherwise, the automaton rejects the input.

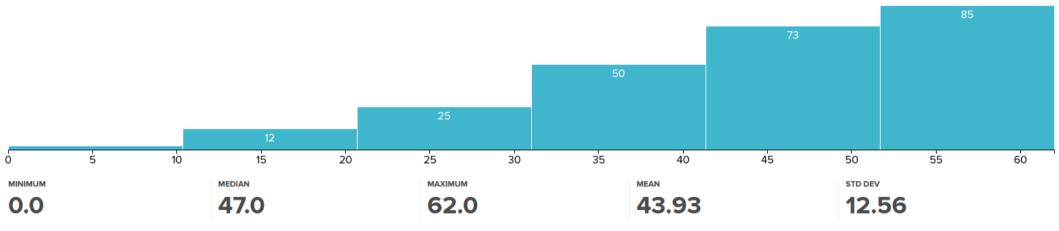
Time-Out For Announcements!

Problem Sets

- Problem Set Four was due at the start of class today.
 - You have three 24-hour late days to use throughout the quarter however you'd like.
- Problem Set Five goes out today. It's due next Friday at the start of class.
 - Play around with just about everything we've seen so far: graphs, binary relations, functions, cardinality, the pigeonhole principle, and induction!
 - There is no checkpoint problem.

Problem Set Three

• PS3 has been graded. Here's the distribution:



 We're happy to chat with you about this problem set, the feedback you received, and how to tune and nudge things going forward. Feel free to stop by OH! Your Questions

"Is there a documentary or book that really changed the way you thought about something?"

Yes! The books "Unlocking the Clubhouse" and "Whistling Vivaldi" completely changed how I think about questions of identity and belonging. And "Jiro Dreams of Sushi" was a surprisingly good exploration of the benefits and drawbacks of a singleminded focus on perfection in one domain.

"Why do you hate philosophy/philosophers so much?"

I'm sorry that I've given that impression! Many of the foundational ideas in computer science and mathematics are due to philosophers like Frege, Chomsky, and Russell. I think it's hugely valuable to explore notions of truth and meaning and would definitely recommend taking courses to learn more about that!

"Why should I or shouldn't I take a gap year if I REALLY love CS but have issues adjusting to the pace here?"

Taking a gap year can be a great experience if you're strategic about when you take it and what you want to accomplish, but it's certainly not for everyone. I typically would not recommend taking a gap year just because of the pace — I'm not sure that would necessarily fix the underlying issue. If you're in a position like this and want to chat, please let me know! I'm happy to offer advice.

"Why do you use the number 137 everywhere?"

The number 137 is very close to the reciprocal of the fine-structure constant in physics:

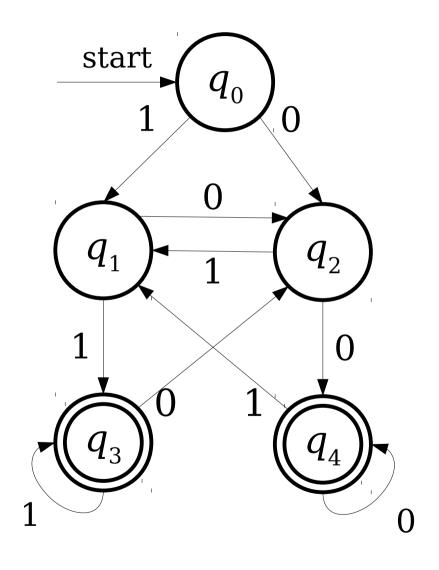
$$lpha=rac{1}{4\piarepsilon_0}rac{e^2}{\hbar c}=rac{\mu_0}{4\pi}rac{e^2c}{\hbar}=rac{k_{
m e}e^2}{\hbar c}=rac{c\mu_0}{2R_{
m K}}=rac{e^2}{4\pi}rac{Z_0}{\hbar}$$

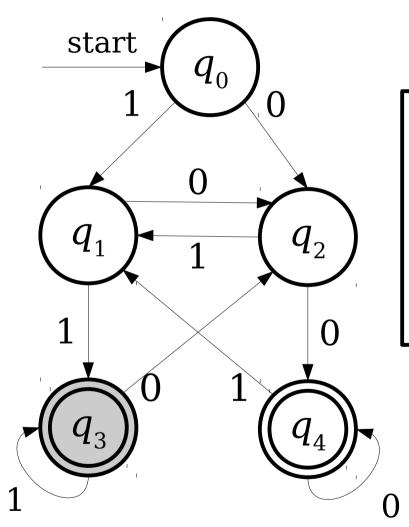
It has a fun history. Plus, it's a great "nothing-up-my-sleeve" number that (usually) indicates that the particular number doesn't have any meaning.

Back to CS103!

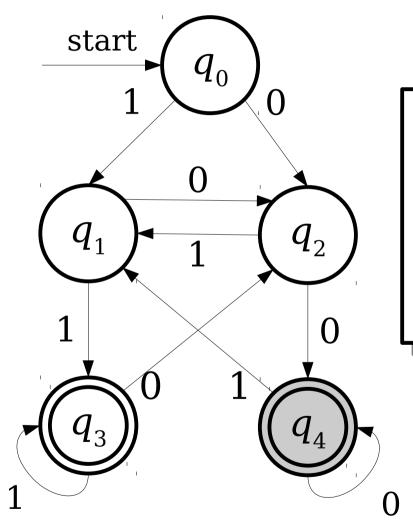
A finite automaton does *not* accept as soon as it enters an accepting state.

A finite automaton accepts if it *ends* in an accepting state.

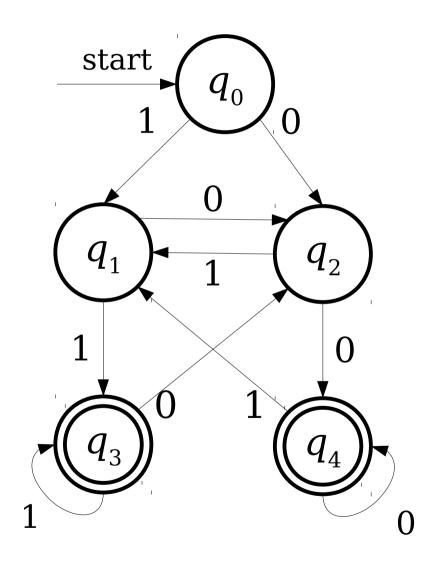




No matter where we start in the automaton, after seeing two 1's, we end up in accepting state q_3 .



No matter where we start in the automaton, after seeing two o's, we end up in accepting state q_5 .



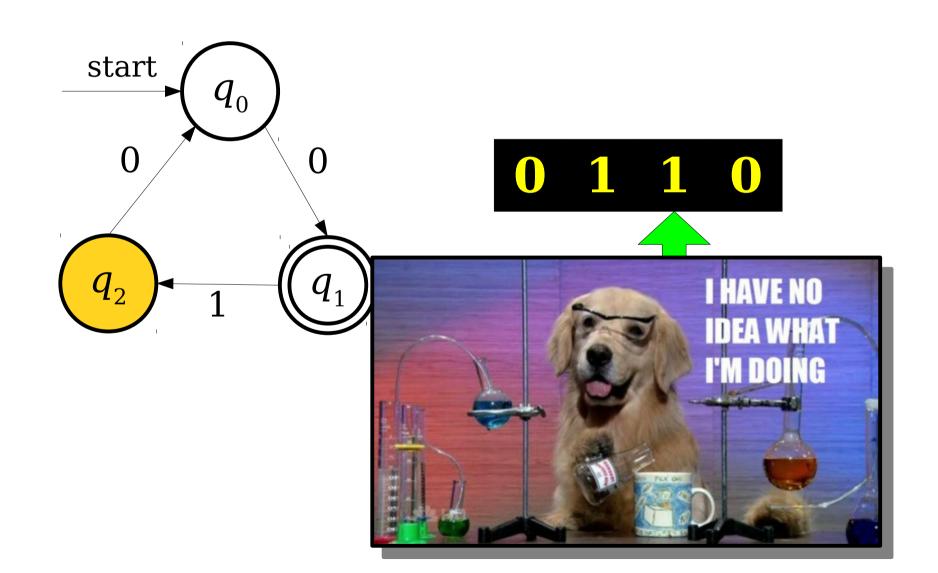
This automaton accepts a string iff the string ends in oo or 11.

The *language of an automaton* is the set of strings that it accepts.

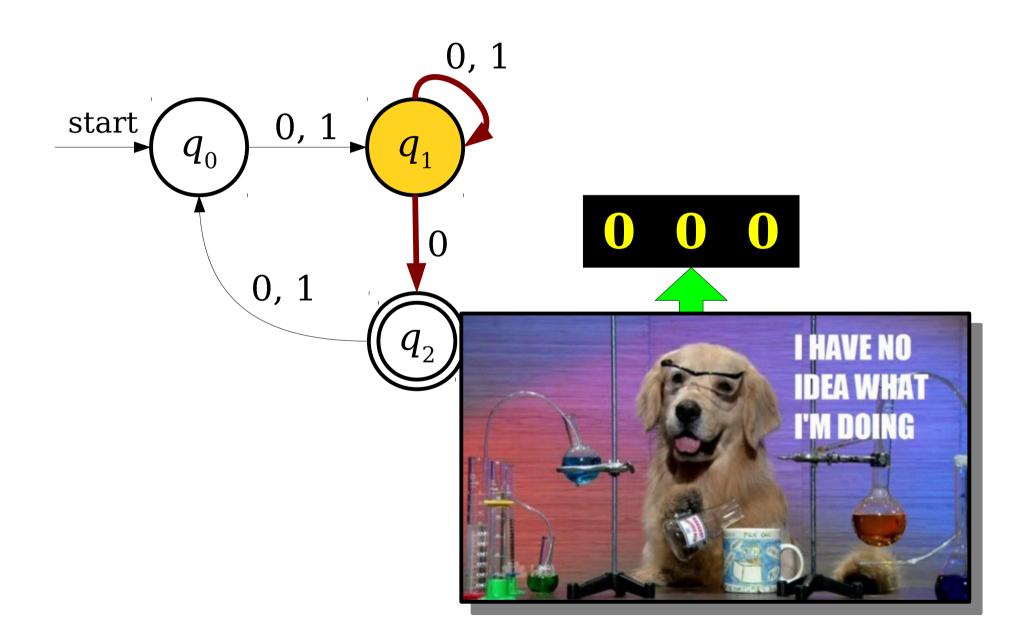
If D is an automaton, we denote the language of D as $\mathcal{L}(D)$.

 $\mathcal{L}(D) = \{ w \in \Sigma^* \mid D \text{ accepts } w \}$

A Small Problem



Another Small Problem



The Need for Formalism

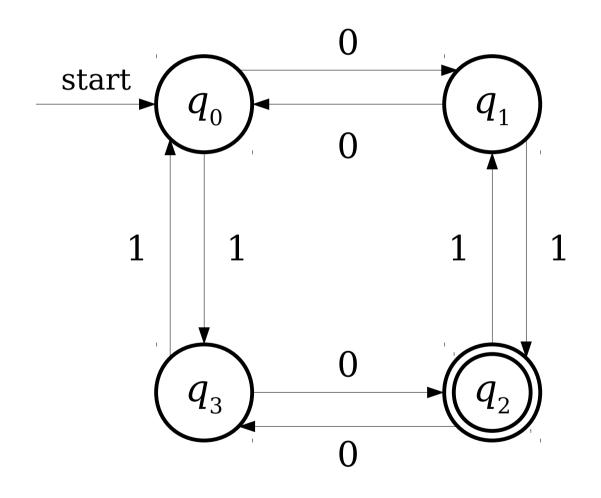
- In order to reason about the limits of what finite automata can and cannot do, we need to formally specify their behavior in *all* cases.
- All of the following need to be defined or disallowed:
 - What happens if there is no transition out of a state on some input?
 - What happens if there are *multiple* transitions out of a state on some input?

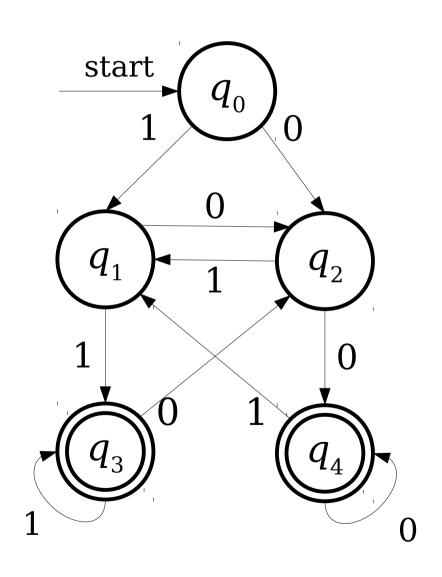
DFAs

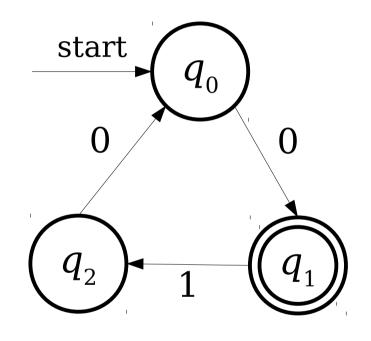
- A **DFA** is a
 - **D**eterministic
 - Finite
 - Automaton
- DFAs are the simplest type of automaton that we will see in this course.

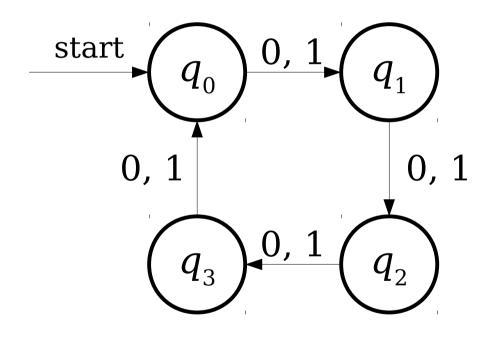
DFAs, Informally

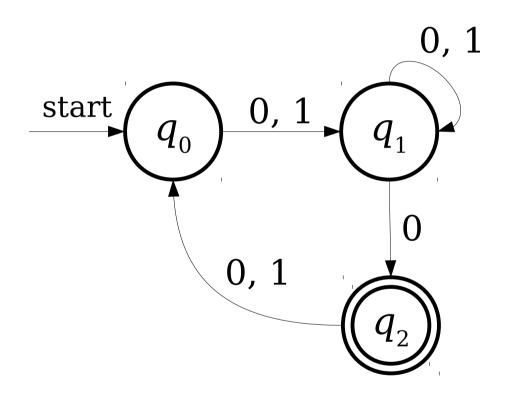
- A DFA is defined relative to some alphabet Σ .
- For each state in the DFA, there must be **exactly one** transition defined for each symbol in Σ .
 - This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.











Is this a DFA?

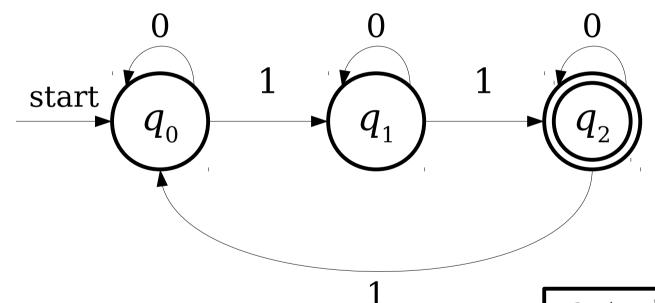
Drinking Family of Aardvarks

Designing DFAs

- At each point in its execution, the DFA can only remember what state it is in.
- **DFA Design Tip:** Build each state to correspond to some piece of information you need to remember.
 - Each state acts as a "memento" of what you're supposed to do next.
 - Only finitely many different states ≈ only finitely many different things the machine can remember.

Recognizing Languages with DFAs

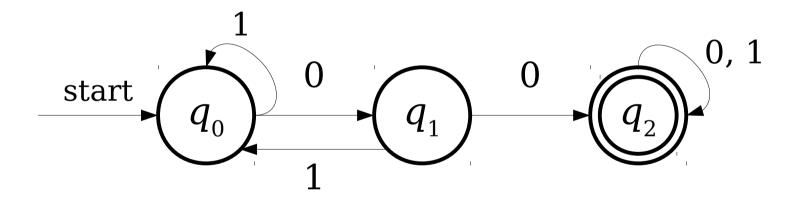
 $L = \{ w \in \{0, 1\}^* | \text{ the number of 1's in } w \text{ is congruent to two modulo three } \}$



Each state remembers the remainder of the number of 1's seen so far modulo three.

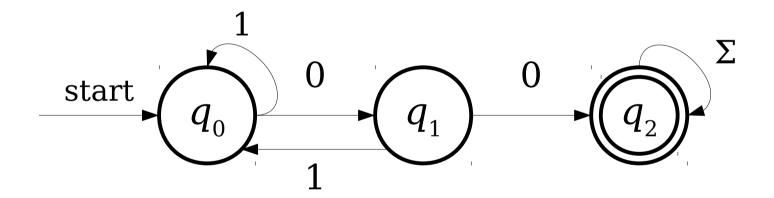
Recognizing Languages with DFAs

 $L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 00 \text{ as a substring } \}$



Recognizing Languages with DFAs

 $L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 00 \text{ as a substring } \}$



More Elaborate DFAs

 $L = \{ w \in \{a, *, /\} * \mid w \text{ represents a C-style comment } \}$

Let's have the a symbol be a placeholder for "some character that isn't a star or slash."

Try designing a DFA for comments! Here's some test cases to help you check your work:

Accepted:

/*a*/ /**/ /***/ /*aaa*aaa*/ /*a/a*/ Rejected:

More Elaborate DFAs

 $L = \{ w \in \{a, *, /\}^* \mid w \text{ represents a C-style comment } \}$

