

Finite Automata
Part One

Computability Theory

What problems can we solve with a computer?

What kind of
computer?

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm

We need a simpler way of
discussing computing machines.

An automaton (plural: automata) is a
mathematical model of a computing device.

Automata are Clean

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Why Build Models?

● Mathematical simplicity.
● It is significantly easier to manipulate our

abstract models of computers than it is to
manipulate actual computers.

● Intellectual robustness.
● If we pick our models correctly, we can make

broad, sweeping claims about huge classes of
real computers by arguing that they're just
special cases of our more general models.

Why Build Models?

● The models of computation we will explore in
this class correspond to different conceptions of
what a computer could do.

● Finite automata (next two weeks) are an
abstraction of computers with finite resource
constraints.
● Provide upper bounds for the computing machines

that we can actually build.
● Turing machines (later) are an abstraction of

computers with unbounded resources.
● Provide upper bounds for what we could ever hope to

accomplish.

What problems can we solve with a computer?

What is a
“problem?”

Problems with Problems

● Before we can talk about what problems
we can solve, we need a formal definition
of a “problem.”

● We want a definition that
● corresponds to the problems we want to solve,
● captures a large class of problems, and
● is mathematically simple to reason about.

● No one definition has all three properties.

Formal Language Theory

Strings

● An alphabet is a finite, nonempty set of symbols called
characters.

● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

● Example: If Σ = {a, b}, here are some valid strings over Σ:

a aabaaabbabaaabaaaabbb abbababba

● The empty string has no characters and is denoted ε.

● Calling attention to an earlier point: since all strings
are finite sequences of characters from Σ, you cannot
have a string of infinite length.

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is a

set of strings over Σ.
● Example: The language of palindromes over

Σ = {a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in
Σ is denoted Σ*.

● Formally, we say that L is a language over Σ if
L ⊆ Σ*.

To Recap

● Languages are sets of strings, and
● strings are sequences of characters, and
● characters are elements of an alphabet.

The Model

● Fundamental Question: For what languages L
can you design an automaton that takes as input
a string, then decides whether the string is in L?

● The answer depends on the choice of L, the
choice of automaton, and the definition of
“determines.”

● In answering this question, we’ll go through a
whirlwind tour of models of computation and see
how this seemingly abstract question has very
real and powerful consequences.

To Summarize

● An automaton is an idealized
mathematical computing machine.

● A language is a set of strings, a string
is a (finite) sequence of characters, and a
character is an element of an alphabet.

● Goal: Figure out in which cases we can
build automata for particular languages.

What problems can we solve with a computer?

Finite Automata

A finite automaton is a simple type of
mathematical machine for determining

whether a string is contained within some
language.

Each finite automaton consists of a set
of states connected by transitions.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

Each circle
represents a state
of the automaton.

Each circle
represents a state
of the automaton.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

One special state is
designated as the

start state.

One special state is
designated as the

start state.

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

The automaton is
run on an input

string and answers
“yes” or “no.”

The automaton is
run on an input

string and answers
“yes” or “no.”

0 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

The automaton can
be in one state at a
time. It begins in
the start state.

The automaton can
be in one state at a
time. It begins in
the start state.

0 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

The automaton now
begins processing
characters in the

order in which they
appear.

The automaton now
begins processing
characters in the

order in which they
appear.

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

Each arrow in this
diagram represents a

transition. The
automaton always

follows the transition
corresponding to the
current symbol being

read.

Each arrow in this
diagram represents a

transition. The
automaton always

follows the transition
corresponding to the
current symbol being

read.

q1

q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

After transitioning,
the automaton

considers the next
symbol in the

input.

After transitioning,
the automaton

considers the next
symbol in the

input.

0 1 0 1 1 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

0 1 0 1 1 0

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

This state is not
an accepting state,
so the automaton

says “no.”

This state is not
an accepting state,
so the automaton

says “no.”

q1

q3 q2

A Simple Finite Automaton

q0 q1

q3

0

 1

0

1

0

1 1

0

start

q2

1 1 0 1 1 1 0 0

Try it yourself!
Does the

automaton accept
(say yes) or

reject (say no)?

Try it yourself!
Does the

automaton accept
(say yes) or

reject (say no)?

The Story So Far

● A finite automaton is a collection of states joined
by transitions.

● Some state is designated as the start state.

● Some states are designated as accepting states.

● The automaton processes a string by beginning in
the start state and following the indicated
transitions.

● If the automaton ends in an accepting state, it
accepts the input.

● Otherwise, the automaton rejects the input.

Time-Out For Announcements!

Problem Sets

● Problem Set Four was due at the start of class
today.
● You have three 24-hour late days to use throughout

the quarter however you’d like.
● Problem Set Five goes out today. It’s due next

Friday at the start of class.
● Play around with just about everything we’ve seen so

far: graphs, binary relations, functions, cardinality,
the pigeonhole principle, and induction!

● There is no checkpoint problem.

Problem Set Three

● PS3 has been graded. Here’s the
distribution:

● We’re happy to chat with you about this
problem set, the feedback you received,
and how to tune and nudge things going
forward. Feel free to stop by OH!

Your Questions

“Is there a documentary or book that really
changed the way you thought about

something?”

Yes! The books “Unlocking the Clubhouse” and
“Whistling Vivaldi” completely changed how I

think about questions of identity and
belonging. And “Jiro Dreams of Sushi” was a
surprisingly good exploration of the benefits
and drawbacks of a singleminded focus on

perfection in one domain.

Yes! The books “Unlocking the Clubhouse” and
“Whistling Vivaldi” completely changed how I

think about questions of identity and
belonging. And “Jiro Dreams of Sushi” was a
surprisingly good exploration of the benefits
and drawbacks of a singleminded focus on

perfection in one domain.

“Why do you hate philosophy/philosophers
so much?”

I’m sorry that I’ve given that impression! Many
of the foundational ideas in computer science
and mathematics are due to philosophers like

Frege, Chomsky, and Russell. I think it’s hugely
valuable to explore notions of truth and

meaning and would definitely recommend taking
courses to learn more about that!

I’m sorry that I’ve given that impression! Many
of the foundational ideas in computer science
and mathematics are due to philosophers like

Frege, Chomsky, and Russell. I think it’s hugely
valuable to explore notions of truth and

meaning and would definitely recommend taking
courses to learn more about that!

“Why should I or shouldn't I take a gap
year if I REALLY love CS but have issues

adjusting to the pace here?”

Taking a gap year can be a great experience if
you’re strategic about when you take it and what
you want to accomplish, but it’s certainly not for
everyone. I typically would not recommend taking a
gap year just because of the pace – I’m not sure
that would necessarily fix the underlying issue. If
you’re in a position like this and want to chat,
please let me know! I’m happy to offer advice.

Taking a gap year can be a great experience if
you’re strategic about when you take it and what
you want to accomplish, but it’s certainly not for
everyone. I typically would not recommend taking a
gap year just because of the pace – I’m not sure
that would necessarily fix the underlying issue. If
you’re in a position like this and want to chat,
please let me know! I’m happy to offer advice.

“Why do you use the number 137
everywhere?”

The number 137 is very close to the reciprocal of the fine-structure
constant in physics:

It has a fun history. Plus, it’s a great “nothing-up-my-sleeve”
number that (usually) indicates that the particular number doesn’t
have any meaning.

The number 137 is very close to the reciprocal of the fine-structure
constant in physics:

It has a fun history. Plus, it’s a great “nothing-up-my-sleeve”
number that (usually) indicates that the particular number doesn’t
have any meaning.

Back to CS103!

A finite automaton does not accept as
soon as it enters an accepting state.

A finite automaton accepts if it ends in
an accepting state.

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

No matter where we
start in the automaton,
after seeing two 1's, we

end up in accepting
state q3.

No matter where we
start in the automaton,
after seeing two 1's, we

end up in accepting
state q3.

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

No matter where we
start in the automaton,
after seeing two 0's,
we end up in accepting

state q5.

No matter where we
start in the automaton,
after seeing two 0's,
we end up in accepting

state q5.

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

This automaton
accepts a string iff
the string ends in 00

or 11.

This automaton
accepts a string iff
the string ends in 00

or 11.

The language of an automaton is the
set of strings that it accepts.

If D is an automaton, we denote the
language of D as ℒ(D).

ℒ(D) = { w ∈ Σ* | D accepts w }

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

The Need for Formalism

● In order to reason about the limits of
what finite automata can and cannot do,
we need to formally specify their
behavior in all cases.

● All of the following need to be defined or
disallowed:
● What happens if there is no transition out of

a state on some input?
● What happens if there are multiple

transitions out of a state on some input?

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs, Informally

● A DFA is defined relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Is this a DFA over {0, 1}?

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Is this a DFA over {0, 1}?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

Is this a DFA over {0, 1}?

q0

q1

 0

start

q2 1

0

Is this a DFA over {0, 1}?

q0 q1
0, 1start

q3

 0, 10, 1

q2
0, 1

Is this a DFA over {0, 1}?

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Is this a DFA?

Drinking Family of Aardvarks

Designing DFAs

● At each point in its execution, the DFA
can only remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.
● Each state acts as a “memento” of what

you're supposed to do next.
● Only finitely many different states ≈ only

finitely many different things the machine
can remember.

Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| the number of 1's in w is congruent
 to two modulo three }

q0

start
q1 q2

1 1

0 0 0

1
Each state remembers
the remainder of the
number of 1's seen so
far modulo three.

Each state remembers
the remainder of the
number of 1's seen so
far modulo three.

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 0, 1

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help
you check your work:

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help
you check your work:

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

