

Finite Automata
Part Two

Recap from Last Time

Strings

● An alphabet is a finite, nonempty set of symbols called
characters.

● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

● Example: If Σ = {a, b}, here are some valid strings over Σ:

a aabaaabbabaaabaaaabbb abbababba

● The empty string has no characters and is denoted ε.

● Calling attention to an earlier point: since all strings
are finite sequences of characters from Σ, you cannot
have a string of infinite length.

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is a

set of strings over Σ.
● Example: The language of palindromes over

Σ = {a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in
Σ is denoted Σ*.

● Formally, we say that L is a language over Σ if
L ⊆ Σ*.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

The language of an automaton is the
set of strings that it accepts.

If D is an automaton, we denote the
language of D as ℒ(D).

ℒ(D) = { w ∈ Σ* | D accepts w }

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs, Informally

● A DFA is defined relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Designing DFAs

● At each point in its execution, the DFA
can only remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.
● Each state acts as a “memento” of what

you're supposed to do next.
● Only finitely many different states ≈ only

finitely many different things the machine
can remember.

Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| the number of 1's in w is congruent
 to two modulo three }

q0

start
q1 q2

1 1

0 0 0

1

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

Recognizing Languages with DFAs

L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

New Stuff!

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ
1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1

1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

These stars
indicate accepting

states.

These stars
indicate accepting

states.

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

Since this is the
first row, it's the

start state.

Since this is the
first row, it's the

start state.

q3

Code‽ In a Theory Course‽
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool SimulateDFA(string input) {
 int state = 0;
 for (char ch: input)
 state = kTransitionTable[state][ch];
 return kAcceptTable[state];
}

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

Σ*

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

Σ*

L

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

L L

Σ*

Complements of Regular Languages

● As we saw a few minutes ago, a regular
language is a language accepted by some DFA.

● Question: If L is a regular language, is L
necessarily a regular language?

● If the answer is “yes,” then if there is a way to
construct a DFA for L, there must be some way
to construct a DFA for L.

● If the answer is “no,” then some language L can
be accepted by some DFA, but L cannot be
accepted by any DFA.

Complementing Regular Languages

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

L = { w ∈ {0, 1}* | w does not contain 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

More Elaborate DFAs

L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

More Elaborate DFAs

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

More Elaborate DFAs

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

q5

q3q2q1q0

Closure Properties

● Theorem: If L is a regular language, then L
is also a regular language.

● As a result, we say that the regular languages
are closed under complementation.

All languages

Regular languages

L

L

Time-Out For Announcements!

Problem Sets

● As a reminder, PS5 is due this Friday.
● Have questions?

● Ask them on Piazza!
● Stop by office hours!

● We recommend that you work through at
least one or two of the problems by the
end of the evening.

Midterms Graded

● We’ve graded the first midterm exam!
We’ll hand back graded midterms at the
end of class today.

● Check the solution sets for statistics,
information on how to estimate your
grade, common mistakes, and techniques
for improving going forward.

WiCS Board Applications 2017-2018

Interested in joining Stanford Women in Computer Science
(WiCS) next year? Apply for the WiCS Board today!

Applications are live at
https://goo.gl/forms/2PFLVbwfS6HkO2Dk1

Find a list of the teams here
https://quip.com/j4DYAbnFeMTC

The Deadline is Friday, May 12th at 11:59 PM

Contact Anvita (avgupta) or Nancy (xnancy) with any
questions!

Your Questions

“Why do you delete questions you don't
want to answer?”

Typically, I only delete questions if they aren’t
constructive or they’re shibboleth questions.

Please feel free to reach out to me via email if
you’d like to chat about things!

Typically, I only delete questions if they aren’t
constructive or they’re shibboleth questions.

Please feel free to reach out to me via email if
you’d like to chat about things!

“What do you think when people say
‘college should be the best 4 years of your

life?’”

Story
time!

Story
time!

“Do you think that Stanford is too pre-
professional?”

It’s complicated. On the one hand, I think it is
important to think about career prospects post-

graduation. On the other hand, I’m concerned that
people worry way too much about this way too early on.

I’ll speak a bit more candidly in class.

It’s complicated. On the one hand, I think it is
important to think about career prospects post-

graduation. On the other hand, I’m concerned that
people worry way too much about this way too early on.

I’ll speak a bit more candidly in class.

Back to CS103!

NFAs

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.

(Non)determinism

● A model of computation is deterministic if
at every point in the computation, there is
exactly one choice that can make.

● The machine accepts if that series of choices
leads to an accepting state.

● A model of computation is nondeterministic
if the computing machine may have multiple
decisions that it can make at one point.

● The machine accepts if any series of choices
leads to an accepting state.

A Simple NFA

q0 q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

A Simple NFA

q0 q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

q0 has two transitions
defined on 1!

q0 has two transitions
defined on 1!

A Simple NFA

q0 q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1 1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

start 1 1

 0, 1

0 0, 1

 0, 1

0 1 0 1 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

start 1 1

 0, 1

0 0, 1

 0, 1

0 1 0 1 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

start 1 1

 0, 1

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1 1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1 1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1 1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1 1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path rejects.

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path rejects.

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1 1 q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1 1 q2

 0, 1

0 1 0 1 1

q1q0q0 q2q2

A More Complex NFA

q2

start 1 1 q2

 0, 1

0 1 0 1 1

Oh no! There's no
transition defined!

q1q1q0q0 q2q2

A More Complex NFA

q2

start 1 1 q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1 1 q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2

start 1 1 q2

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1 1

 0, 1

Question to ponder:
What does this NFA

accept?

Question to ponder:
What does this NFA

accept?

NFA Acceptance

● An NFA N accepts a string w if there is
some series of choices that lead to an
accepting state.

● Consequently, an NFA N rejects a string w
if no possible series of choices lead it into
an accepting state.

● It's easier to show that an NFA does accept
something than to show that it doesn't

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q0

a

ε

a

b

b, ε b

a

ε

q3

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

q1

q4 q5

q2

q0

a

ε

a

b

b, ε b

a

ε

q3

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

q1

q4 q5

q2

q0

a

ε

a

b

b, ε b

a

ε

q3

q0q0 q1

q4 q5

q2

q0q3

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

q1

q4 q5

q2

q0

a

ε

a

b

b, ε b

a

ε

q3

q0q3q0q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

q1

q4 q5

q2
a

ε

a

b

b, ε b

a

ε

q4q0q3q0q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

q1

q5

q2
a

ε

a

b

b, ε b

a

ε

q4q0q3q0q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

q1

q5

q2
a

ε

a

b

b, ε b

a

ε

q4

q1

q4q0q3q0q3

q0q0 q1

q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b bq5

q2
a

ε

a

b

b, ε b

a

ε

q1 q2

q4

q1

q4q0q3q0q3

q0q0

q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b bq5

a

ε

a

b

b, ε b

a

ε

q1 q2

q4

q1

q4q0q3q0q3

q0q0

q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b bq5

a

ε

a

b

b, ε b

a

ε

q0 q2q1 q2

q4

q1

q4q0q3q0q3

q0

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b bq5

a

ε

a

b

b, ε b

a

ε

q0 q2q1 q2

q4

q1

q4q0q3q0q3

q0

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b bq5

a

ε

a

b

b, ε b

a

ε

q0q3

q0q0 q2q1 q2

q4

q1

q4q0q3 q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b bq5

a

ε

a

b

b, ε b

a

ε

q4q0q3q0q3

q0q0 q2q1 q2

q4

q1

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b bq5

a

ε

a

b

b, ε b

a

ε

q4 q5q4q0q3q0q3

q0q0 q2q1 q2q1

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

a

ε

a

b

b, ε b

a

ε

q4 q5q4q0q3q0q3

q0q0 q2q1 q2q1

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

a

ε

a

b

b, ε b

a

ε

q0q3 q5q4 q5q4q0q3

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

a

ε

a

b

b, ε b

a

ε

q0q3 q5q4 q5q4q0q3

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

b a a b b

a

ε

a

b

b, ε b

a

ε

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

● NFAs are not required to follow ε-transitions.
It's simply another option at the machine's
disposal.

Intuiting Nondeterminism

● Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

● There are two particularly useful
frameworks for interpreting
nondeterminism:
● Perfect guessing
● Massive parallelism

q₀ q₁ q₂ q₃

Perfect Guessing

start
q₀ q₁ q₂a b

Σ

q₃a q₃

q₀ q₁ q₂ q₃

Perfect Guessing

start

a

q₀ q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Guessing

start

a

a b

Σ

b

q₃a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Guessing

start

a

a b

Σ

b

q₃a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Guessing

start

a

a b

Σ

b

a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Guessing

start

a

a b

Σ

b

a

a

q₃

Perfect Guessing

● We can view nondeterministic machines
as having Magic Superpowers that
enable them to guess choices that lead to
an accepting state.
● If there is at least one choice that leads to an

accepting state, the machine will guess it.
● If there are no choices, the machine guesses

any one of the wrong guesses.
● No known physical analog for this style

of computation – this is totally new!

q₃q₃q₂q₁ q₂q₀ q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

We're in at least one
accepting state, so there's
some path that gets us to

an accepting state.

Therefore, we accept!

We're in at least one
accepting state, so there's
some path that gets us to

an accepting state.

Therefore, we accept!

Massive Parallelism

● An NFA can be thought of as a DFA that can be in many
states at once.

● At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

● (Here's a rigorous explanation about how this works;
read this on your own time).
● Start off in the set of all states formed by taking the start state

and including each state that can be reached by zero or more ε-
transitions.

● When you read a symbol a in a set of states S:
– Form the set S’ of states that can be reached by following a single a

transition from some state in S.
– Your new set of states is the set of states in S’, plus the states

reachable from S’ by following zero or more ε-transitions.

So What?

● Each intuition of nondeterminism is useful in a
different setting:
● Perfect guessing is a great way to think about how to

design a machine.
● Massive parallelism is a great way to test machines – and

has nice theoretical implications.
● Nondeterministic machines may not be feasible, but

they give a great basis for interesting questions:
● Can any problem that can be solved by a nondeterministic

machine be solved by a deterministic machine?
● Can any problem that can be solved by a nondeterministic

machine be solved efficiently by a deterministic
machine?

● The answers vary from automaton to automaton.

Designing NFAs

Designing NFAs

● When designing NFAs, embrace the
nondeterminism!

● Good model: Guess-and-check:
● Is there some information that you'd really like to have?

Have the machine nondeterministically guess that
information.

● Then, have the machine deterministically check that the
choice was correct.

● The guess phase corresponds to trying lots of
different options.

● The check phase corresponds to filtering out bad
guesses or wrong options.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0
0

 1

1

 1

0

0 1

0

1

 0

1

start

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1

0 1

start Σ

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1

0 1

start Σ

Nondeterministically guess when to
leave the start state.

Deterministically check whether that
was the right time to do so.

Nondeterministically guess when to
leave the start state.

Deterministically check whether that
was the right time to do so.

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a

b

c

a

b

a, b

c a

c

b

c

c

a
b

a, c

b, c

b

a

 Σstart

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

Nondeterministically
guess which character

is missing.

Deterministically check
whether that

character is indeed
missing.

Nondeterministically
guess which character

is missing.

Deterministically check
whether that

character is indeed
missing.

Just how powerful are NFAs?

