

Unsolvable Problems
Part One

Recap from Last Time

What problems can we solve with a computer?

What does it
mean to solve
a problem?

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it enters an accept state when run on w.

● M rejects a string w if it enters a reject state when run on w.

● M loops infinitely (or just loops) on a string w if when run on w
it enters neither an accept nor a reject state.

● M does not accept w if it either rejects w or loops infinitely on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

The Language of a TM

● The language of a Turing machine M, denoted (ℒ M), is
the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.

● It might loop forever, or it might explicitly reject.
● A language is called recognizable if it is the language

of some TM. A TM for a language is sometimes called a
recognizer for that language.

● Notation: the class RE is the set of all recognizable
languages.

L ∈ RE ↔ L is recognizable

Deciders

● Some Turing machines always halt; they never
go into an infinite loop.

● If M is a TM and M halts on every possible
input, then we say that M is a decider.

● For deciders, accepting is the same as not
rejecting and rejecting is the same as not
accepting.

Accept

Reject
 halts (always)

does not accept

does not reject

Decidable Languages

● A language L is called decidable if there is a
decider M such that (ℒ M) = L.

● Equivalently, a language L is decidable if there is a
TM M such that

● If w ∈ L, then M accepts w.
● If w ∉ L, then M rejects w.

● The class R is the set of all decidable languages.

L ∈ R ↔ L is decidable

● A language that is not in R is called undecidable.

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT
called the universal Turing machine that, when run on
an input of the form ⟨M, w⟩, where M is a Turing machine
and w is a string, simulates M running on w and does
whatever M does on w (accepts, rejects, or loops).

● The observable behavior of UTM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

● UTM accepts ⟨M, w⟩ if and only if M accepts w.

TM

The Language of UTM

● UTM accepts ⟨M, w⟩ iff M is a TM that accepts w.

● Therefore:

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w }

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }

● For simplicity, define ATM = ℒ(UTM).

Regular
Languages CFLs

All Languages

RE

A
TM

New Stuff!

Self-Referential Software

Quines

Quines

● A Quine is a program that, when run,
prints its own source code.

● Quines aren't allowed to just read the file
containing their source code and print it
out; that's cheating (and technically
incorrect if someone changes that file!)

● How would you write such a program?

Writing a Quine

Self-Referential Programs

● Claim: Going forward, assume that any program
can be augmented to include a method called
mySource() that returns a string representation of
its source code.

● General idea:
● Write the initial program with mySource() as a

placeholder.
● Use the Quine technique we just saw to convert the

program into something self-referential.
● Now, mySource() magically works as intended.

The Recursion Theorem

● There is a deep result in computability theory
called Kleene's second recursion theorem
that, informally, states the following:

It is possible to construct TMs that
perform arbitrary computations

on their own descriptions.
● Intuitively, this generalizes our Quine

constructions to work with arbitrary TMs.
● Want the formal statement of the theorem?

Take CS154!

Time-Out for Announcements!

Problem Sets

● Problem Set Seven was due at the start
of class today.
● Want to use late days? You can extend the

deadline to Monday.
● Problem Set Eight goes out today. It’s

due next Friday.
● Explore CFGs, Turing machines, R and RE

languages, and the limits of computation!

Problem Set Six

● Here’s the score distribution for PS6:

● The most common errors were trying to
prove (rather than disprove) the results in Q6
and errors in the automaton for finding cocoa.

Extra Practice Problems

● We’ve released three more sets of extra
practice problems (EPP9 – EPP11) to the
course website.

● These are cumulative review problems that
span all the topics from the quarter. We
hope that this gives you a chance to study
up on the topics you’re interested in!

● We’ll release solutions on Wednesday, along
with some practice final exams.

Midterm Regrades

● We’ve finished regrading midterm exams.
They’re now available for pickup in the
filing cabinet with all the other midterms.

Your Questions

“How often do CS/EE majors enter non-
tech careers, such as medicine, law, or

government?”

Whatever the frequency is, it’s not enough. We desperately need
more people with technical skills in decision-making/leadership

roles; at least at the US level, federal policy surrounding tech is
either lacking, poorly thought out, or both.

I’ve written rec letters for folks going to medical school with a
CS background, and that’s a really exciting direction that I wish
more people would explore. I also know some former section
leaders who are now lawyers and some law students who are

interested in studying CS, and I’m excited to see what they do
going forward!

Whatever the frequency is, it’s not enough. We desperately need
more people with technical skills in decision-making/leadership

roles; at least at the US level, federal policy surrounding tech is
either lacking, poorly thought out, or both.

I’ve written rec letters for folks going to medical school with a
CS background, and that’s a really exciting direction that I wish
more people would explore. I also know some former section
leaders who are now lawyers and some law students who are

interested in studying CS, and I’m excited to see what they do
going forward!

Back to CS103!

Where We're Going

● We are about to use the existence of self-
referential programs to find a concrete
example of an undecidable problem.

● Before we go there, though, we need to
set up some notation and terminology
we'll use in a little while.

TMs and Programs

● Every TM
● receives some input,
● does some work, then
● (optionally) accepts or rejects.

● We can model a TM as a computer program where
● the input is provided by a special method getInput() that

returns the input to the program,
● the program's logic is written in a normal programming

language, and the program
● the program (optionally) calls the special method
accept() to immediately accept the input and reject() to
immediately reject the input.

TMs and Programs

● Here's a sample program we might use to model a
Turing machine for { w ∈ {a, b}* | w has the same
number of a's and b's }:

 int main() {
 string input = getInput();
 int difference = 0;

 for (char ch: input) {
 if (ch == 'a') difference++;
 else if (ch == 'b') difference--;
 else reject();
 }

 if (difference == 0) accept();
 else reject();
 }

TMs and Programs

● As mentioned before, it's always possible to build
a method mySource() into a program, which
returns the source code of the program.

● For example, here's a narcissistic program:

 int main() {
 string me = mySource();
 string input = getInput();

 if (input == me) accept();
 else reject();
 }

TMs and Programs

● Sometimes, TMs use other TMs as subroutines.
● We can think of a decider for a language as a method that

takes in some number of arguments and returns a
boolean.

● For example, a decider for { anbn | n ∈ ℕ } might be
represented in software as a method with this signature:

bool isAnBn(string w);

● Similarly, a decider for { ⟨m, n⟩ | m, n ∈ ℕ and m is a
multiple of n } might be represented in software as a
method with this signature:

bool isMultipleOf(int m, int n);

TMs and Programs

● On Wednesday, we built a TM for the language
{ w ∈ {0, 1}* | w has the same number of 0s and 1s } out
of a decider for { 0n1n | n ∈ ℕ } and a sorting subroutine.

● We could represent that in code like this:

 bool is0n1n(string w);
 string sort(string input);

 int main() {
 string input = sort(getInput());
 if (is0n1n(input)) accept();
 else reject();
 }

It's Showtime!

The Problem of Loops

● Suppose we have a TM M and a string w.
● If we run M on w, we may never find out

whether w ∈ (ℒ M) because M might loop.
● Is there some algorithm we can use to

determine whether M is eventually going
to accept w?

● If so, we can decide whether w ∈ (ℒ M): we
run the algorithm to see if M accepts w.

A Decider for ATM

● Recall: ATM is the language of the
universal Turing machine.

● We know that ⟨M, w⟩ ∈ ATM if and only if
M accepts w.

● The universal Turing machine is a
recognizer for ATM. Could we build a
decider for ATM?

A Recipe for Disaster

● Suppose that ATM ∈ R.
● Formally, this means that there is a TM

that decides ATM.
● Intuitively, this means that there is a TM

that takes as input a TM M and string w,
then
● accepts if M accepts w, and
● rejects if M does not accept w.

A Recipe for Disaster

● To make the previous discussion more concrete,
let's explore the analog for computer programs.

● If ATM is decidable, we could construct a function

 bool willAccept(string program,
 string input)

that takes in as input a program and a string,
then returns true if the program will accept the
input and false otherwise.

● What could we do with this?

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Knowing the Future

● This TM is analogous to a classical
philosophical/logical paradox:

If you know what you are fated
to do, can you avoid your fate?

● If ATM is decidable, we can construct a TM that
determines what it's going to do in the future
(whether it will accept its input), then actively
chooses to do the opposite.

● This leads to an impossible situation with only one
resolution: ATM must not be decidable!

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) reject();
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willAccept method. If
willAccept(me, input) returns true, then P must accept its input w.
However, in this case P proceeds to reject its input w. Otherwise, if
willAccept(me, input) returns false, then P must not accept its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Regular
Languages CFLs

All Languages

R RE

ATM

What Does This Mean?

● In one fell swoop, we've proven that
● ATM is undecidable; there is no general

algorithm that can determine whether a TM
will accept a string.

● R ≠ RE, because ATM ∉ R but ATM ∈ RE.

● What do these two statements really
mean? As in, why should you care?

ATM ∉ R

● The proof we've done says that

There is no possible way to design an
algorithm that will determine whether

a program will accept an input.
● Notice that our proof just assumed there

was some decider for ATM and didn't
assume anything about how that decider
worked. In other words, no matter how
you try to implement a decider for ATM, you
can never succeed!

ATM ∉ R

● At a more fundamental level, the existence
of undecidable problems tells us the
following:

There is a difference between what is
true and what we can discover is true.

● Given an TM and any string w, either the
TM accepts the string or it doesn't – but
there is no algorithm we can follow that will
always tell us which it is!

ATM ∉ R

● What exactly does it mean for ATM to be
undecidable?

Intuition: The only general way to find
out what a program will do is to run it.

● As you'll see, this means that it's provably
impossible for computers to be able to
answer questions about what a program
will do.

R ≠ RE

● The fact that R ≠ RE has enormous philosophical
ramifications.

● A problem is in class R if there is an algorithm for
solving it – there's some computational procedure that
will give you the answer.

● A problem is in class RE if there is a semialgorithm for
it. If the answer is “yes,” the machine can tell this to
you, but if the answer is “no,” you may never learn this.

● Because R ≠ RE, there are some problems where “yes”
answers can be checked, but there is no algorithm for
deciding what the answer is.

● In some sense, it is fundamentally harder to solve a
problem than it is to check an answer.

More Impossibility Results

The Halting Problem

● The most famous undecidable problem is the
halting problem, which asks:

Given a TM M and a string w,
will M halt when run on w?

● As a formal language, this problem would be
expressed as

HALT = { ⟨M, w⟩ | M is a TM that halts on w }
● How hard is this problem to solve?
● How do we know?

HALT ∉ R

● Claim: HALT ∉ R.
● If HALT is decidable, we could write some

function

 bool willHalt(string program,
 string input)

that accepts as input a program and a string
input, then reports whether the program will
halt when run on the given input.

● Then, we could do this...

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Theorem: HALT ∉ R.

Proof: By contradiction; assume that HALT ∈ R. Then there’s a decider
D for HALT, which we can represent in software as a method willHalt
that takes as input the source code of a program and an input, then
returns true if the program halts on the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willHalt(me, input)) while (true) { /* loop! */ }
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willHalt method. If
willHalt(me, input) returns true, then P must halt on its input w.
However, in this case P proceeds to loop infinitely on w. Otherwise, if
willHalt(me, input) returns false, then P must not halt its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, HALT ∉ R. ■

HALT ∈ RE

● Claim: HALT ∈ RE.
● Idea: If you were certain that a TM M halted on a

string w, could you convince me of that?
● Yes – just run M on w and see what happens!

int main() {
TM M = getInputTM();
string w = getInputString();

feed w into M;
while (true) {

if (M is in an accepting state) accept();
else if (M is in a rejecting state) accept();
else simulate one more step of M running on w;

}
}

int main() {
TM M = getInputTM();
string w = getInputString();

feed w into M;
while (true) {

if (M is in an accepting state) accept();
else if (M is in a rejecting state) accept();
else simulate one more step of M running on w;

}
}

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

So What?

● These problems might not seem all that
exciting, so who cares if we can't solve
them?

● Turns out, this same line of reasoning
can be used to show that some very
important problems are impossible to
solve.

Secure Voting

● Suppose that you want to make a voting
machine for use in an election between two
parties.

● Let Σ = {r, d}. A string in w corresponds to
a series of votes for the candidates.

● Example: rrdddrd means “two people voted
for r, then three people voted for d, then
one more person voted for r, then one more
person voted for d.”

Secure Voting

● A voting machine is a program that accepts a
string of r's and d's, then reports whether
person r won the election.

● Formally: a TM M is a secure voting machine if
(ℒ M) = { w ∈ {r, d}* | w has more r's than d's }

● Question: Given a TM that someone claims is a
secure voting machine, could we automatically
check whether it actually is a secure voting
machine?
● That is, is there an algorithm we can follow to

determine this?

Secure Voting

● The secure voting problem is the
following:

Given a TM M, is the language of M
{ w ∈ {r, d}* | w has more r's than d's }?

● Claim: This problem is not decidable –
there is no algorithm that can check an
arbitrary TM to verify that it's a secure
voting machine!

Secure Voting

● Suppose that the secure voting problem is
decidable. Then we could write a function

bool isSecureVotingMachine(string program)

that would accept as input a program and
return whether or not it's a secure voting
machine.

● As you might expect, this lets us do Cruel
and Unusual Things...

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

So it should accept precisely strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

So it should accept precisely strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

falseanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

falseanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

trueanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

trueanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

trueanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

This program is a secure voting machine.

It should accept precisely the strings in
{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on ddd?

trueanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

trueanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

trueanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

trueanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What happens if we run it on a string in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

falseanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

falseanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

falseanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

falseanswer

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
then it is a secure voting machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
then it is a secure voting machine!

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

This isn't a secure voting machine, so its
language is not

{ w ∈ {r, d}* | w has more r's than d's }.

What if we run it on a string not in
{ w ∈ {r, d}* | w has more r's than d's }?

falseanswer

Theorem: The secure voting problem is undecidable.

Proof: By contradiction; assume that the secure voting problem is decidable.
Then there is some decider D for the secure voting problem, which we can
represent in software as a method isSecureVotingMachine that, given as input
the source code of a program, returns true if the program is a secure voting
machine and false otherwise.

Given this, we could then construct the following program P:

 int main() {
 string me = mySource();

 string input = getInput();

 bool answer = (countRs(input) > countDs(input));
 if (!isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
 }

Now, either P is a secure voting machine or it isn’t. If P is a secure voting
machine, then isSecureVotingMachine(me) will return true. Therefore, when P is run,
it will determine whether w has more r’s than d’s, flip the result, and accept
strings with at least as many d’s as r’s and reject strings with more r’s than d’s.
Thus, P is not a secure voting machine. On the other hand, if P is not a secure
voting machine, then isSecureVotingMachine(me) will return false. Therefore, when
P is run, it will accept all strings with at least as many r’s as d’s and reject all
other strings, and so P is a secure voting machine.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, the secure voting problem is undecidable. ■

Interpreting this Result

● The previous argument tells us that there is no
general algorithm that we can follow to determine
whether a program is a secure voting machine. In
other words, any general algorithm to check voting
machines will always be wrong on at least one input.

● So what can we do?
● Design algorithms that work in some, but not all cases.

(This is often done in practice.)
● Fall back on human verification of voting machines. (We

do that too.)
● Carry a healthy degree of skepticism about electronic

voting machines. (Then again, did we even need the
theoretical result for this?)

Next Time

● Intuiting RE
● What exactly is the class RE all about?

● Verifiers
● A totally different perspective on problem

solving.
● Beyond RE

● Finding an impossible problem using very
familiar techniques.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135

