
  

Unsolvable Problems
Part Two



  

Outline for Today

● Recap from Last Time
● Where are we, again?

● A Different Perspective on RE
● What exactly does “recognizability” mean?

● Verifiers
● A different perspective on the RE languages.

● Beyond RE
● Monstrously hard problems!



  

Recap from Last Time



  

Self-Referential Programs

● Claim: Any program can be augmented 
to include a method called mySource() that 
returns a string representation of its 
source code.

● Theorem: It it possible to build Turing 
machines that get their own encodings 
and perform arbitrary computations on 
them.



  

What does this program do?

bool willAccept(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!



  

What does this program do?

bool willHalt(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

What happens if...

… this program halts on this input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What happens if...

… this program halts on this input?
It loops on the input!

… this program loops on this input?
It halts on the input!
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New Stuff!



  

Beyond R and RE



  

Beyond R and RE

● We've now seen how to use self-reference 
as a tool for showing undecidability 
(finding languages not in R).

● We still have not broken out of RE yet, 
though.

● To do so, we will need to build up a 
better intuition for the class RE.



  

What exactly is the class RE?



  

RE, Formally

● Recall that the class RE is the class of all 
recognizable languages:

RE = { L | there is a TM M where (ℒ M) = L }
● Since R ≠ RE, there is no general way to 

“solve” problems in the class RE, if by “solve” 
you mean “make a computer program that 
can always tell you the correct answer.”

● So what exactly are the sorts of languages in 
RE?



  

Key Intuition:

A language L is in RE if, for any string w, if 
you are convinced that w ∈ L, there is some 
way you could prove that to someone else.



  

Verification

● Recall: When focusing on the RE 
languages, we need to abandon the idea 
that we can “solve” the problems we're 
looking at.

● Rather than solving problems, we can 
think about checking answers.



  

Verification
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Does this Sudoku puzzle
have a solution?



  

Verification

Is there a simple path that goes 
through every node exactly once?
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Verification

Does the hailstone sequence 
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.



  

Verification

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐
                       0 → 0, R
                       1 → 1, R

                     → ☐ ☐, L

1 → , L☐
0 → 0, L                       
1 → 1, L                       

                     → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R                     

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R        
0 → 0, R        

… 0 1 …Does this TM halt 
on this input?

Try running it 
for six steps.



  

Verification

● In each of the preceding cases, we were given some 
problem and some evidence supporting the claim that 
the answer is “yes.”

● Given the correct evidence, we can be certain that the 
answer is indeed “yes.”

● Given incorrect evidence, we aren't sure whether the 
answer is “yes.”
● Maybe there's no evidence saying that the answer is “yes,” 

or maybe there is some evidence, but just not the evidence 
we were given.

● Let's formalize this idea.



  

Verifiers

● A verifier for a language L is a TM V with 
the following properties:
● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L  ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A string c where V accepts ⟨w, c⟩ is called 

a certificate for w.
● Intuitively, what does this mean?



  

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Notice that c is existentially quantified. Any 
string w ∈ L must have at least one c that 
causes V to accept, and possibly more.

● V is required to halt, so given any potential 
certificate c for w, you can check whether the 
certificate is correct.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Notice that (ℒ V) ≠ L. (Good question: what is 
(ℒ V)?)

● The job of V is just to check certificates, not to 
decide membership in L.



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

● Let's see how to build a verifier for L.



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

● Do you see why ⟨n⟩ ∈ L iff there is some k such 
that checkHailstone(n, k) returns true?

● Do you see why checkHailstone always halts?

private boolean checkHailstone(int n, int k) {
    for (int i = 0; i < k; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
    }
    return n == 1;
}

private boolean checkHailstone(int n, int k) {
    for (int i = 0; i < k; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
    }
    return n == 1;
}



  

Some Verifiers

● Consider HALT:

  HALT = { ⟨M, w⟩ | M is a TM that halts on w }
● Let's see how to build a verifier for HALT.



  

Some Verifiers

● Consider HALT:

  HALT = { ⟨M, w⟩ | M is a TM that halts on w }

  

 

● Do you see why M halts on w iff there is some k 
such that checkHalt(M, w, k) returns true?

● Do you see why checkHalt always halts?

private boolean checkHalt(TM M, string w, int k) {
    simulate M running on w for k steps;
    if (M is in an accepting state) return true;
    if (M is in a rejecting state) return true;
    return false;
}

private boolean checkHalt(TM M, string w, int k) {
    simulate M running on w for k steps;
    if (M is in an accepting state) return true;
    if (M is in a rejecting state) return true;
    return false;
}



  

What languages are verifiable?



  

Theorem: If L is a language, then there is 
a verifier for L if and only if L ∈ RE.



  

Verifiers and RE

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”



Verifiers and RE

● Theorem: If there is a verifier V for a language L, then L ∈ RE.

● Proof idea: Build a recognizer that tries every possible 
certificate to see if w ∈ L.

● Proof sketch: Consider this program:

 

If w ∈ L, then there is a c ∈ Σ* such that V accepts ⟨w, c⟩. This 
program tries all possible strings as certificates, so it eventually 
finds c, watches V accept ⟨w, c⟩, then and accepts w. If w ∉ L, 
there is no c ∈ Σ* where V accepts ⟨w, c⟩, so this program loops 
on w. ■

private boolean isInL(string w) {
    for (i from 0 to ∞) {
       for (each string c of length i) {
           if (V accepts  w, c ) ⟨ ⟩ return true;
       }
    }

private boolean isInL(string w) {
    for (i from 0 to ∞) {
       for (each string c of length i) {
           if (V accepts  w, c ) ⟨ ⟩ return true;
       }
    }
} 



  

Verifiers and RE
● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof goal: Beginning with a recognizer M for the language L, 

show how to construct a verifier V for L.
● The machine M will accept w if w ∈ L. If M doesn't accept w, then 

w ∉ L.
● A certificate is supposed to be some sort of “proof” that the string 

is in the language. Since the only thing we know about L is that M 
is a recognizer for it, our certificate would have to tell us 
something about what M does.

● We need to choose a certificate with the following properties:
● We can decide in finite time whether a certificate is right or wrong.
● A “good” certificate proves that w ∈ L (meaning M accepts w)
● A “bad” certificate never proves w ∈ L.

● Idea: If M accepts w, it will do so in finitely many steps. What if 
our certificate is the number of steps?



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.

● Proof sketch: Let L be an RE language and let M 
be a recognizer for it. Then show that this is a 
verifier for L:

private boolean checkInL(string w, int k) {
    run M on w for k steps;
    if (M is in an accepting state) return true;
    else return false;

private boolean checkInL(string w, int k) {
    run M on w for k steps;
    if (M is in an accepting state) return true;
    else return false;
}

If w ∈ L, then M accepts w in some number of
steps (call it c). Calling checkInL(w, c) then returns
true. Conversely, if there is a k where checkInL(w, k)
returns true, then M accepts w, so w ∈ L. ■



  

RE and Proofs

● Verifiers and recognizers give two different 
perspectives on the “proof” intuition for RE.

● Verifiers are explicitly built to check proofs that 
strings are in the language.
● If you know that some string w belongs to the 

language and you have the proof of it, you can 
convince someone else that w ∈ L.

● You can think of a recognizer as a device that 
“searches” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.



  

RE and Proofs

● If the RE languages represent languages 
where membership can be proven, what 
does a non-RE language look like?

● Intuitively, a language is not in RE if 
there is no general way to prove that a 
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a 
string was in the language, you may 
never be able to convince anyone of it!



  

Time-Out for Announcements!



  

Second Midterm Graded

● We’ve graded the second midterm exam and 
emailed out scores yesterday afternoon.

● The exams themselves are available for pickup after 
class today.
● Reading this online? Unclaimed exams will be in the first 

floor of the Gates building. Enter through the side 
entrance next to Herrin marked “Stanford Engineering 
Venture Fund Laboratories” and look in the filing 
cabinets to your right.

● Overall, we are extremely impressed by how 
everyone did on this exam. More on that later!



  

Problem Sets

● Problem Set Seven solutions are now up online. 
We’ll return graded PS7’s later this week.

● Problem Set Eight is due on Friday.
● Problem Set Nine will go out on Friday. It will be 

due next Wednesday (the last day of class).
● No late days can be used on PS9.
● PS9 is shorter than the other problem sets this quarter.
● We’ll get the finalized office hours timetable posted as 

soon as we can.



  

A Reminder: Honor Code

● We're coming up to the point in the quarter where we 
start to see a marked uptick in the number of 
assignments submitted that are pretty obviously copied 
from old solution sets.

● I know that a lot of you are stressed, tired, and worn out 
at this point. However, please, please, please don't do 
this. The costs are really high and it's super easy to spot.

● To the campus community at large: if someone you 
know (a friend, a dormmate, a problem set partner, etc.) 
is really suffering, please reach out to them and make 
sure they're okay. It's easy for people to get isolated and 
overwhelmed at this point in the quarter, and (from 
experience) that can be an awful, awful feeling.



  

Final Exam Logistics

● Our final exam is one week from Friday. It’ll be from 
3:30PM – 6:30PM. Rooms are divvied up by last (family) name:
● Abb – Kan: Go to Bishop Auditorium.
● Kar – Zuc: Go to Cemex Auditorium.

● Exam is cumulative and all topics from the lectures and 
problem sets are fair game.

● The exam focus is roughly 50/50 between  discrete math topics 
(PS1 – PS5) and computability/complexity topics (PS6 – PS9).

● As with the midterms, the exam is closed-book, closed-
computer, and limited-note. You can bring a single, double-
sided, 8.5” × 11” sheet of notes with you to the exam.

● Students with OAE accommodations: please contact us by 
Friday if you haven’t yet done so.



  

Preparing for the Exam

● Last week, we released EPP9, EPP10, and EPP11. 
Solutions are now available online.

● We’ve just released four practice final exams. They’re 
based on past final exams, with a few minor 
modifications.
● Practice Final 1: Fall 2016 final exam.
● Practice Final 2: Winter 2016 final exam.
● Practice Final 3: Spring 2015 final exam.
● Practice Final 4: Fall 2015 final exam.

● Solutions will go out on Friday.
● Need some more practice? Let us know how we can 

help out!



  

Your Questions



  

“What's your best piece of relationship 
advice?”

Communication is key! From experience, open and honest 
communication is essential to being in a relationship. If 
you can’t communicate openly and honestly, then things 
will build up, you’ll misread situations, and it’s easy for 
things to spiral out of control.

Remember that you’re part of a team and that the point 
of a relationship is for the whole to be greater than the 
sum of the parts. So talk about things that matter to 
you, be supportive, and be accommodating, and have fun 
creating new life experiences with someone!

Communication is key! From experience, open and honest 
communication is essential to being in a relationship. If 
you can’t communicate openly and honestly, then things 
will build up, you’ll misread situations, and it’s easy for 
things to spiral out of control.

Remember that you’re part of a team and that the point 
of a relationship is for the whole to be greater than the 
sum of the parts. So talk about things that matter to 
you, be supportive, and be accommodating, and have fun 
creating new life experiences with someone!



  

“Why are the proofwriting guidelines in 
this class so much different and more rigid 

than math classes (or standard 
mathematical proofs in general)?”

One of the goals of CS103 is to get you to transition from “pre-formal” mathematics to 
“formal” mathematics. We want you to be able to ask the question “why is this true?” in a 
way that really cuts to the core of the issue and forces you to ask questions like “how is 
this defined?” and “is this really true, or is this just something I think is true?”
 

Our only way to measure whether you’re capable of doing this is to see whether you actually 
do it when we ask you to. We’re precise with our grading because we want to make sure 
that you’re asking the right questions, that you’re formulating an answer in a way that calls 
back to definitions, and that you’re not skipping over key, nontrivial steps.
 

All the available evidence we have suggests that this is working phenomenally well this 
quarter. The exam scores are higher now than they’ve been in years and we’re seeing 
significantly fewer logic errors.
 

Downstream, classes often assume you’ve already made the pre-formal to formal transition, 
and they’ll grade proofs more for insight than execution because there’s a baseline belief 
that you could do these lower-level proofs if you needed to. But even in that case, the 
sorts of questions you’d need to ask to really probe the material – why is this true? how 
does this follow from the definition? is this actually even true? – follow from these skills.

One of the goals of CS103 is to get you to transition from “pre-formal” mathematics to 
“formal” mathematics. We want you to be able to ask the question “why is this true?” in a 
way that really cuts to the core of the issue and forces you to ask questions like “how is 
this defined?” and “is this really true, or is this just something I think is true?”
 

Our only way to measure whether you’re capable of doing this is to see whether you actually 
do it when we ask you to. We’re precise with our grading because we want to make sure 
that you’re asking the right questions, that you’re formulating an answer in a way that calls 
back to definitions, and that you’re not skipping over key, nontrivial steps.
 

All the available evidence we have suggests that this is working phenomenally well this 
quarter. The exam scores are higher now than they’ve been in years and we’re seeing 
significantly fewer logic errors.
 

Downstream, classes often assume you’ve already made the pre-formal to formal transition, 
and they’ll grade proofs more for insight than execution because there’s a baseline belief 
that you could do these lower-level proofs if you needed to. But even in that case, the 
sorts of questions you’d need to ask to really probe the material – why is this true? how 
does this follow from the definition? is this actually even true? – follow from these skills.



  

“How can we pick ourself up in this class 
when it feels like everyone else does so 

well? Is this class similar in rigor to higher-
level CS classes?”

For starters, sorry to hear that you’re feeling this!
 

A good first step is to figure out what areas you need to work on. Find 
something you did right, and find something you didn’t do right. Are you in a 
spot where you can answer why one is right and one is wrong? If not, stop by 
office hours and ask a clarifying question! Are you making a lot of minor 
sporadic errors, or is there some root underlying skill or technique you need to 
focus on? Get input from the course staff on where you should focus your 
efforts, then use the available resources (extra practice problems, CS103A 
materials, course reader, etc.) to practice those specific skills.
 

As to the rigor question – most downstream courses are less rigorous in what 
they expect of your proofwriting, but they will still expect you to think 
rigorously and precisely. Understanding what questions to ask, and how to be 
skeptical of claims, and knowing how to argue that some result is true will still 
be important, and those are skills that are closely correlated with what we’re 
looking for.

For starters, sorry to hear that you’re feeling this!
 

A good first step is to figure out what areas you need to work on. Find 
something you did right, and find something you didn’t do right. Are you in a 
spot where you can answer why one is right and one is wrong? If not, stop by 
office hours and ask a clarifying question! Are you making a lot of minor 
sporadic errors, or is there some root underlying skill or technique you need to 
focus on? Get input from the course staff on where you should focus your 
efforts, then use the available resources (extra practice problems, CS103A 
materials, course reader, etc.) to practice those specific skills.
 

As to the rigor question – most downstream courses are less rigorous in what 
they expect of your proofwriting, but they will still expect you to think 
rigorously and precisely. Understanding what questions to ask, and how to be 
skeptical of claims, and knowing how to argue that some result is true will still 
be important, and those are skills that are closely correlated with what we’re 
looking for.



  

Back to CS103!



  

Finding Non-RE Languages



  

Finding Non-RE Languages

● Right now, we know that non-RE 
languages exist, but we have no idea 
what they look like.

● How might we find one?
● The answer brings us all the way back to 

our very first lecture!



  

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }     
● Some of the strings in this set might be 

descriptions of TMs.
● What happens if we just focus on the set 

of strings that are legal TM descriptions?
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All Turing machines, 
listed in some order.
All Turing machines, 
listed in some order.
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of TMs, listed in 
the same order.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Flip all “accept” 
to “no” and 
vice-versa

Flip all “accept” 
to “no” and 
vice-versa

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has 
this behavior!
No TM has 

this behavior!

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM 
and ⟨M⟩ ∉ ℒ(M) }

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

Diagonalization Revisited

● The diagonalization language, which we 
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

● That is, LD is the set of descriptions of 
Turing machines that do not accept 
themselves. 



  

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.
 

Since (ℒ R) = LD, we know that if M is any TM, then
 

⟨M⟩ ∈ LD iff   ⟨M⟩ ∈ (ℒ R). (1)
 

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

 

⟨M⟩ ∉ (ℒ M) iff   ⟨M⟩ ∈ (ℒ R). (2)
 

Statement (2) holds for any TM M, so in particular it should
hold for R itself. This means that

 

⟨R⟩ ∉ (ℒ R) iff    ⟨R⟩ ∈ (ℒ R). (3)
 

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■
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What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will 
be some string in the language that cannot be 
proven to be in the language.

● This result can be formalized as a result called 
Gödel's incompleteness theorem, one of the 
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!



  

What This Means

● On a more philosophical note, you could interpret 
the previous result in the following way:

There are inherent limits about what 
mathematics can teach us.

● There's no automatic way to do math. There are 
true statements that we can't prove.

● That doesn't mean that mathematics is worthless. 
It just means that we need to temper our 
expectations about it.



  

Where We Stand

● We've just done a crazy, whirlwind tour of computability 
theory:
● The Church-Turing thesis tells us that TMs give us a 

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not 

just a stroke of luck. The existence of the universal TM ensures 
that such computers must exist.

● Self-reference is an inherent consequence of computational 
power.

● Undecidable problems exist partially as a consequence of the 
above and indicate that there are statements whose truth can't 
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered 
via diagonalization. They imply there are limits to mathematical 
proof.



  

The Big Picture
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Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verified by a computer. 

The mapping reduction can be used to find 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved efficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verified efficiently by a 
computer.



  

Next Time

● Introduction to Complexity Theory
● Not all decidable problems are created 

equal!

● The Classes P and NP
● Two fundamental and important complexity 

classes.

● The P  NP Question≟
● A literal million-dollar question!
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