

Unsolvable Problems
Part Two

Outline for Today

● Recap from Last Time
● Where are we, again?

● A Different Perspective on RE
● What exactly does “recognizability” mean?

● Verifiers
● A different perspective on the RE languages.

● Beyond RE
● Monstrously hard problems!

Recap from Last Time

Self-Referential Programs

● Claim: Any program can be augmented
to include a method called mySource() that
returns a string representation of its
source code.

● Theorem: It it possible to build Turing
machines that get their own encodings
and perform arbitrary computations on
them.

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

What happens if...

… this program halts on this input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What happens if...

… this program halts on this input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

New Stuff!

Beyond R and RE

Beyond R and RE

● We've now seen how to use self-reference
as a tool for showing undecidability
(finding languages not in R).

● We still have not broken out of RE yet,
though.

● To do so, we will need to build up a
better intuition for the class RE.

What exactly is the class RE?

RE, Formally

● Recall that the class RE is the class of all
recognizable languages:

RE = { L | there is a TM M where (ℒ M) = L }
● Since R ≠ RE, there is no general way to

“solve” problems in the class RE, if by “solve”
you mean “make a computer program that
can always tell you the correct answer.”

● So what exactly are the sorts of languages in
RE?

Key Intuition:

A language L is in RE if, for any string w, if
you are convinced that w ∈ L, there is some
way you could prove that to someone else.

Verification

● Recall: When focusing on the RE
languages, we need to abandon the idea
that we can “solve” the problems we're
looking at.

● Rather than solving problems, we can
think about checking answers.

Verification

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku puzzle
have a solution?

Verification

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Verification

Does the hailstone sequence
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.

Verification

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐
 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐
0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R

… 0 1 …Does this TM halt
on this input?

Try running it
for six steps.

Verification

● In each of the preceding cases, we were given some
problem and some evidence supporting the claim that
the answer is “yes.”

● Given the correct evidence, we can be certain that the
answer is indeed “yes.”

● Given incorrect evidence, we aren't sure whether the
answer is “yes.”
● Maybe there's no evidence saying that the answer is “yes,”

or maybe there is some evidence, but just not the evidence
we were given.

● Let's formalize this idea.

Verifiers

● A verifier for a language L is a TM V with
the following properties:
● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A string c where V accepts ⟨w, c⟩ is called

a certificate for w.
● Intuitively, what does this mean?

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Verifiers

● A verifier for a language L is a TM V with the
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Verifiers

● A verifier for a language L is a TM V with the
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Notice that c is existentially quantified. Any
string w ∈ L must have at least one c that
causes V to accept, and possibly more.

● V is required to halt, so given any potential
certificate c for w, you can check whether the
certificate is correct.

Verifiers

● A verifier for a language L is a TM V with the
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Notice that (ℒ V) ≠ L. (Good question: what is
(ℒ V)?)

● The job of V is just to check certificates, not to
decide membership in L.

Some Verifiers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

● Let's see how to build a verifier for L.

Some Verifiers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

● Do you see why ⟨n⟩ ∈ L iff there is some k such
that checkHailstone(n, k) returns true?

● Do you see why checkHailstone always halts?

private boolean checkHailstone(int n, int k) {
 for (int i = 0; i < k; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return n == 1;
}

private boolean checkHailstone(int n, int k) {
 for (int i = 0; i < k; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return n == 1;
}

Some Verifiers

● Consider HALT:

 HALT = { ⟨M, w⟩ | M is a TM that halts on w }
● Let's see how to build a verifier for HALT.

Some Verifiers

● Consider HALT:

 HALT = { ⟨M, w⟩ | M is a TM that halts on w }

● Do you see why M halts on w iff there is some k
such that checkHalt(M, w, k) returns true?

● Do you see why checkHalt always halts?

private boolean checkHalt(TM M, string w, int k) {
 simulate M running on w for k steps;
 if (M is in an accepting state) return true;
 if (M is in a rejecting state) return true;
 return false;
}

private boolean checkHalt(TM M, string w, int k) {
 simulate M running on w for k steps;
 if (M is in an accepting state) return true;
 if (M is in a rejecting state) return true;
 return false;
}

What languages are verifiable?

Theorem: If L is a language, then there is
a verifier for L if and only if L ∈ RE.

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language L, then L ∈ RE.

● Proof idea: Build a recognizer that tries every possible
certificate to see if w ∈ L.

● Proof sketch: Consider this program:

If w ∈ L, then there is a c ∈ Σ* such that V accepts ⟨w, c⟩. This
program tries all possible strings as certificates, so it eventually
finds c, watches V accept ⟨w, c⟩, then and accepts w. If w ∉ L,
there is no c ∈ Σ* where V accepts ⟨w, c⟩, so this program loops
on w. ■

private boolean isInL(string w) {
 for (i from 0 to ∞) {
 for (each string c of length i) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
 }

private boolean isInL(string w) {
 for (i from 0 to ∞) {
 for (each string c of length i) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
 }
}

Verifiers and RE
● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof goal: Beginning with a recognizer M for the language L,

show how to construct a verifier V for L.
● The machine M will accept w if w ∈ L. If M doesn't accept w, then

w ∉ L.
● A certificate is supposed to be some sort of “proof” that the string

is in the language. Since the only thing we know about L is that M
is a recognizer for it, our certificate would have to tell us
something about what M does.

● We need to choose a certificate with the following properties:
● We can decide in finite time whether a certificate is right or wrong.
● A “good” certificate proves that w ∈ L (meaning M accepts w)
● A “bad” certificate never proves w ∈ L.

● Idea: If M accepts w, it will do so in finitely many steps. What if
our certificate is the number of steps?

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.

● Proof sketch: Let L be an RE language and let M
be a recognizer for it. Then show that this is a
verifier for L:

private boolean checkInL(string w, int k) {
 run M on w for k steps;
 if (M is in an accepting state) return true;
 else return false;

private boolean checkInL(string w, int k) {
 run M on w for k steps;
 if (M is in an accepting state) return true;
 else return false;
}

If w ∈ L, then M accepts w in some number of
steps (call it c). Calling checkInL(w, c) then returns
true. Conversely, if there is a k where checkInL(w, k)
returns true, then M accepts w, so w ∈ L. ■

RE and Proofs

● Verifiers and recognizers give two different
perspectives on the “proof” intuition for RE.

● Verifiers are explicitly built to check proofs that
strings are in the language.
● If you know that some string w belongs to the

language and you have the proof of it, you can
convince someone else that w ∈ L.

● You can think of a recognizer as a device that
“searches” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.

RE and Proofs

● If the RE languages represent languages
where membership can be proven, what
does a non-RE language look like?

● Intuitively, a language is not in RE if
there is no general way to prove that a
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a
string was in the language, you may
never be able to convince anyone of it!

Time-Out for Announcements!

Second Midterm Graded

● We’ve graded the second midterm exam and
emailed out scores yesterday afternoon.

● The exams themselves are available for pickup after
class today.
● Reading this online? Unclaimed exams will be in the first

floor of the Gates building. Enter through the side
entrance next to Herrin marked “Stanford Engineering
Venture Fund Laboratories” and look in the filing
cabinets to your right.

● Overall, we are extremely impressed by how
everyone did on this exam. More on that later!

Problem Sets

● Problem Set Seven solutions are now up online.
We’ll return graded PS7’s later this week.

● Problem Set Eight is due on Friday.
● Problem Set Nine will go out on Friday. It will be

due next Wednesday (the last day of class).
● No late days can be used on PS9.
● PS9 is shorter than the other problem sets this quarter.
● We’ll get the finalized office hours timetable posted as

soon as we can.

A Reminder: Honor Code

● We're coming up to the point in the quarter where we
start to see a marked uptick in the number of
assignments submitted that are pretty obviously copied
from old solution sets.

● I know that a lot of you are stressed, tired, and worn out
at this point. However, please, please, please don't do
this. The costs are really high and it's super easy to spot.

● To the campus community at large: if someone you
know (a friend, a dormmate, a problem set partner, etc.)
is really suffering, please reach out to them and make
sure they're okay. It's easy for people to get isolated and
overwhelmed at this point in the quarter, and (from
experience) that can be an awful, awful feeling.

Final Exam Logistics

● Our final exam is one week from Friday. It’ll be from
3:30PM – 6:30PM. Rooms are divvied up by last (family) name:
● Abb – Kan: Go to Bishop Auditorium.
● Kar – Zuc: Go to Cemex Auditorium.

● Exam is cumulative and all topics from the lectures and
problem sets are fair game.

● The exam focus is roughly 50/50 between discrete math topics
(PS1 – PS5) and computability/complexity topics (PS6 – PS9).

● As with the midterms, the exam is closed-book, closed-
computer, and limited-note. You can bring a single, double-
sided, 8.5” × 11” sheet of notes with you to the exam.

● Students with OAE accommodations: please contact us by
Friday if you haven’t yet done so.

Preparing for the Exam

● Last week, we released EPP9, EPP10, and EPP11.
Solutions are now available online.

● We’ve just released four practice final exams. They’re
based on past final exams, with a few minor
modifications.
● Practice Final 1: Fall 2016 final exam.
● Practice Final 2: Winter 2016 final exam.
● Practice Final 3: Spring 2015 final exam.
● Practice Final 4: Fall 2015 final exam.

● Solutions will go out on Friday.
● Need some more practice? Let us know how we can

help out!

Your Questions

“What's your best piece of relationship
advice?”

Communication is key! From experience, open and honest
communication is essential to being in a relationship. If
you can’t communicate openly and honestly, then things
will build up, you’ll misread situations, and it’s easy for
things to spiral out of control.

Remember that you’re part of a team and that the point
of a relationship is for the whole to be greater than the
sum of the parts. So talk about things that matter to
you, be supportive, and be accommodating, and have fun
creating new life experiences with someone!

Communication is key! From experience, open and honest
communication is essential to being in a relationship. If
you can’t communicate openly and honestly, then things
will build up, you’ll misread situations, and it’s easy for
things to spiral out of control.

Remember that you’re part of a team and that the point
of a relationship is for the whole to be greater than the
sum of the parts. So talk about things that matter to
you, be supportive, and be accommodating, and have fun
creating new life experiences with someone!

“Why are the proofwriting guidelines in
this class so much different and more rigid

than math classes (or standard
mathematical proofs in general)?”

One of the goals of CS103 is to get you to transition from “pre-formal” mathematics to
“formal” mathematics. We want you to be able to ask the question “why is this true?” in a
way that really cuts to the core of the issue and forces you to ask questions like “how is
this defined?” and “is this really true, or is this just something I think is true?”

Our only way to measure whether you’re capable of doing this is to see whether you actually
do it when we ask you to. We’re precise with our grading because we want to make sure
that you’re asking the right questions, that you’re formulating an answer in a way that calls
back to definitions, and that you’re not skipping over key, nontrivial steps.

All the available evidence we have suggests that this is working phenomenally well this
quarter. The exam scores are higher now than they’ve been in years and we’re seeing
significantly fewer logic errors.

Downstream, classes often assume you’ve already made the pre-formal to formal transition,
and they’ll grade proofs more for insight than execution because there’s a baseline belief
that you could do these lower-level proofs if you needed to. But even in that case, the
sorts of questions you’d need to ask to really probe the material – why is this true? how
does this follow from the definition? is this actually even true? – follow from these skills.

One of the goals of CS103 is to get you to transition from “pre-formal” mathematics to
“formal” mathematics. We want you to be able to ask the question “why is this true?” in a
way that really cuts to the core of the issue and forces you to ask questions like “how is
this defined?” and “is this really true, or is this just something I think is true?”

Our only way to measure whether you’re capable of doing this is to see whether you actually
do it when we ask you to. We’re precise with our grading because we want to make sure
that you’re asking the right questions, that you’re formulating an answer in a way that calls
back to definitions, and that you’re not skipping over key, nontrivial steps.

All the available evidence we have suggests that this is working phenomenally well this
quarter. The exam scores are higher now than they’ve been in years and we’re seeing
significantly fewer logic errors.

Downstream, classes often assume you’ve already made the pre-formal to formal transition,
and they’ll grade proofs more for insight than execution because there’s a baseline belief
that you could do these lower-level proofs if you needed to. But even in that case, the
sorts of questions you’d need to ask to really probe the material – why is this true? how
does this follow from the definition? is this actually even true? – follow from these skills.

“How can we pick ourself up in this class
when it feels like everyone else does so

well? Is this class similar in rigor to higher-
level CS classes?”

For starters, sorry to hear that you’re feeling this!

A good first step is to figure out what areas you need to work on. Find
something you did right, and find something you didn’t do right. Are you in a
spot where you can answer why one is right and one is wrong? If not, stop by
office hours and ask a clarifying question! Are you making a lot of minor
sporadic errors, or is there some root underlying skill or technique you need to
focus on? Get input from the course staff on where you should focus your
efforts, then use the available resources (extra practice problems, CS103A
materials, course reader, etc.) to practice those specific skills.

As to the rigor question – most downstream courses are less rigorous in what
they expect of your proofwriting, but they will still expect you to think
rigorously and precisely. Understanding what questions to ask, and how to be
skeptical of claims, and knowing how to argue that some result is true will still
be important, and those are skills that are closely correlated with what we’re
looking for.

For starters, sorry to hear that you’re feeling this!

A good first step is to figure out what areas you need to work on. Find
something you did right, and find something you didn’t do right. Are you in a
spot where you can answer why one is right and one is wrong? If not, stop by
office hours and ask a clarifying question! Are you making a lot of minor
sporadic errors, or is there some root underlying skill or technique you need to
focus on? Get input from the course staff on where you should focus your
efforts, then use the available resources (extra practice problems, CS103A
materials, course reader, etc.) to practice those specific skills.

As to the rigor question – most downstream courses are less rigorous in what
they expect of your proofwriting, but they will still expect you to think
rigorously and precisely. Understanding what questions to ask, and how to be
skeptical of claims, and knowing how to argue that some result is true will still
be important, and those are skills that are closely correlated with what we’re
looking for.

Back to CS103!

Finding Non-RE Languages

Finding Non-RE Languages

● Right now, we know that non-RE
languages exist, but we have no idea
what they look like.

● How might we find one?
● The answer brings us all the way back to

our very first lecture!

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }
● Some of the strings in this set might be

descriptions of TMs.
● What happens if we just focus on the set

of strings that are legal TM descriptions?

M
1

M
2

M
0

M
3

M
4

M
5

…

All Turing machines,
listed in some order.
All Turing machines,
listed in some order.

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

All descriptions
of TMs, listed in
the same order.

All descriptions
of TMs, listed in
the same order.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Flip all “accept”
to “no” and
vice-versa

Flip all “accept”
to “no” and
vice-versa

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has
this behavior!
No TM has

this behavior!

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM
and ⟨M⟩ ∉ ℒ(M) }

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Diagonalization Revisited

● The diagonalization language, which we
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

● That is, LD is the set of descriptions of
Turing machines that do not accept
themselves.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Statement (2) holds for any TM M, so in particular it should
hold for R itself. This means that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT

What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will
be some string in the language that cannot be
proven to be in the language.

● This result can be formalized as a result called
Gödel's incompleteness theorem, one of the
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!

What This Means

● On a more philosophical note, you could interpret
the previous result in the following way:

There are inherent limits about what
mathematics can teach us.

● There's no automatic way to do math. There are
true statements that we can't prove.

● That doesn't mean that mathematics is worthless.
It just means that we need to temper our
expectations about it.

Where We Stand

● We've just done a crazy, whirlwind tour of computability
theory:
● The Church-Turing thesis tells us that TMs give us a

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not

just a stroke of luck. The existence of the universal TM ensures
that such computers must exist.

● Self-reference is an inherent consequence of computational
power.

● Undecidable problems exist partially as a consequence of the
above and indicate that there are statements whose truth can't
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered
via diagonalization. They imply there are limits to mathematical
proof.

The Big Picture

DFA NFA

Regex
Right-
Linear
Gmr

CFG Decider

Recog-
nizer

Verifier

REG

CFL
R

RE

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

The mapping reduction can be used to find
connections between problems.

Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

Next Time

● Introduction to Complexity Theory
● Not all decidable problems are created

equal!

● The Classes P and NP
● Two fundamental and important complexity

classes.

● The P NP Question≟
● A literal million-dollar question!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

