
  

Complexity Theory
Part One



  

Complexity Theory



  

It may be that since one is customarily 
concerned with existence, […] finiteness, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”
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It may be that since one is customarily 
concerned with existence, […] decidability, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



  

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning 

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● (P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can 
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in 
Presburger arithmetic is true or false has to move its tape 
head at least       times on some inputs of length n (for some 
fixed constant c).
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For Reference
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The Limits of Decidability

● The fact that a problem is decidable does not 
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved
efficiently by a computer?

● In the remainder of this course, we will 
explore this question in more detail.
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The Setup

● In order to study computability, we 
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer 
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?



  

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.
● Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)



  

What is an efficient algorithm?



  

Searching Finite Spaces

● Many decidable problems can be solved by 
searching over a large but finite space of 
possible options.

● Searching this space might take a 
staggeringly long time, but only finite time.

● From a decidability perspective, this is totally 
fine.

● From a complexity perspective, this is totally 
unacceptable.



  

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of 
the longest increasing 
subsequence of this 

sequence.

Goal: Find the length of 
the longest increasing 
subsequence of this 

sequence.
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Longest Increasing Subsequences

● One possible algorithm: try all subsequences, find 
the longest one that's increasing, and return that.

● There are 2n subsequences of an array of length n.
● (Each subset of the elements gives back a subsequence.)

● Checking all of them to find the longest increasing 
subsequence will take time O(n · 2n).

● Nifty fact: the age of the universe is about 4.3 × 1026 
nanoseconds old. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't terminate 
if you give it an input of size 100 or more.



  

Longest Increasing Subsequences

● Theorem: There is an algorithm that can find 
the longest increasing subsequence of an array 
in time O(n log n).

● The algorithm is beautiful and surprisingly 
elegant. Look up patience sorting if you're 
curious.

● This algorithm works by exploiting particular 
aspects of how longest increasing subsequences 
are constructed. It's not immediately obvious 
that it works correctly.



  

Another Problem

E
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Goal: Determine the 
length of the shortest 
path from A to F in 

this graph.

Goal: Determine the 
length of the shortest 
path from A to F in 

this graph.



  

Shortest Paths

● It is possible to find the shortest path in a 
graph by listing off all sequences of 
nodes in the graph in ascending order of 
length and finding the first that's a path.

● This takes time O(n · n!) in an n-node 
graph.

● For reference: 29! nanoseconds is longer 
than the lifetime of the universe.



  

Shortest Paths

● Theorem: It's possible to find the shortest 
path between two nodes in an n-node, m-
edge graph in time O(m + n).

● This is the breadth-first search algorithm. 
Take CS106B/X or CS161 for more details!

● The algorithm is a bit nuanced. It uses 
some specific properties of shortest paths 
and the proof of correctness is nontrivial.



  

For Comparison

● Longest increasing 
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path 
problem:
● Naive: O(n · n!)
● Fast: O(n + m).



  

Defining Efficiency

● When dealing with problems that search 
for the “best” object of some sort, there 
are often at least exponentially many 
possible options.

● Brute-force solutions tend to take at least 
exponential time to complete.

● Clever algorithms often run in time O(n), 
or O(n2), or O(n3), etc.



  

Polynomials and Exponentials

● An algorithm runs in polynomial time if 
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

 

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.
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The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n



  

Why Polynomials?

● Polynomial time somewhat captures efficient 
computation, but has a few edge cases.

● However, polynomials have very nice mathematical 
properties:
● The sum of two polynomials is a polynomial. (Running one 

efficient algorithm after the other gives an efficient 
algorithm.)

● The product of two polynomials is a polynomial. (Running 
one efficient algorithm a “reasonable” number of times 
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial. 
(Using the output of one efficient algorithm as the input to 
another efficient algorithm gives an efficient algorithm.)



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, a 
language is in P if it can be decided 
efficiently.



  

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the 

CYK algorithm or Earley's algorithm.)
● And a ton of other problems are in P as 

well.
● Curious? Take CS161!
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What can't you do in polynomial time?



  

start

end

How many simple 
paths are there 
from the start 
node to the end 

node?

How many simple 
paths are there 
from the start 
node to the end 

node?



  

, , ,

How many 
subsets of this 
set are there?

How many 
subsets of this 
set are there?



  

An Interesting Observation

● There are (at least) exponentially many 
objects of each of the preceding types.

● However, each of those objects is not very 
large.
● Each simple path has length no longer than the 

number of nodes in the graph.
● Each subset of a set has no more elements than 

the original set.
● This brings us to our next topic...



  

What if you need to search a large 
space for a single object?



  

Verifiers – Again
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have a solution?



  

4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

Verifiers – Again

Is there an ascending subsequence of 
length at least 7?



  

Verifiers – Again

Is there a simple path that goes 
through every node exactly once?
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Polynomial-Time Verifiers

● A polynomial-time verifier for L is a 
TM V such that
● V halts on all inputs.
● w ∈ L    iff    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's 

runtime is O(|w|k) for some integer k)



  

The Complexity Class NP

● The complexity class NP (nondeterministic 
polynomial time) contains all problems that can be 
verified in polynomial time.

● Formally:

             NP = { L | There is a polynomial-time 
                                 verifier for L }

● The name NP comes from another way of 
characterizing NP. If you introduce nondeterministic 
Turing machines and appropriately define 
“polynomial time,” then NP is the set of problems 
that an NTM can solve in polynomial time.



  

And now...



  

The
 

Most Important Question
 

in
 

Theoretical Computer Science



  

What is the connection between P and NP?



  

       P = { L | There is a polynomial-time
                       decider for L }

     NP = { L | There is a polynomial-time
                        verifier for L }

P ⊆ NP



  

P NP

Which Picture is Correct?



  

P NP

Which Picture is Correct?



  

Does P = NP?



  

P  ≟ NP

● The P ≟ NP question is the most important question in 
theoretical computer science.

● With the verifier definition of NP, one way of phrasing 
this question is

If a solution to a problem can be checked efficiently,
can that problem be solved efficiently?

● An answer either way will give fundamental insights 
into the nature of computation.



  

Why This Matters

● The following problems are known to be efficiently 
verifiable, but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up 
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple 
gene sequences could be a part of (shortest common 
supersequence).

● Determining the best way to assign hardware resources in a 
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple 
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.



  

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems 

could be solved efficiently.
● Our capacity to solve many problems will scale 

well with the size of the problems we want to 
solve.

● If P ≠ NP:
● Enormous computational power would be 

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up 

with our curiosity.



  

What We Know

● Resolving P  ≟ NP has proven extremely difficult.
● In the past 45 years:

● Not a single correct proof either way has been 
found.

● Many types of proofs have been shown to be 
insufficiently powerful to determine whether 
P ≟ NP.

● A majority of computer scientists believe P ≠ NP, 
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers 
about P  ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf


  

The Million-Dollar Question

The Clay Mathematics Institute has offered 
a $1,000,000 prize to anyone who proves 

or disproves P = NP.



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Eight was due at the start of class 
today.
● You can use late days to extend the deadline to 

Monday, but it’s not recommended.
● Problem Set Nine goes out today. It’s due next 

Wednesday at the start of class.
● No late submissions can be accepted. This is 

university policy.
● This problem set is much shorter than the other 

ones we’ve given out so far this quarter.



  

Problem Set Seven

● PS7 has been graded and returned. Here’s 
the overall distribution:

 

  

 

● The trickiest problems were the tautonyms 
problem and the regex design questions.



  

Final Exam Logistics

● Our final exam is one week from Friday. It’ll be from 
3:30PM – 6:30PM. Rooms are divvied up by last (family) name:
● Abb – Kan: Go to Bishop Auditorium.
● Kar – Zuc: Go to Cemex Auditorium.

● Exam is cumulative and all topics from the lectures and 
problem sets are fair game.

● The exam focus is roughly 50/50 between discrete math topics 
(PS1 – PS5) and computability/complexity topics (PS6 – PS9).

● As with the midterms, the exam is closed-book, closed-
computer, and limited-note. You can bring a single, double-
sided, 8.5” × 11” sheet of notes with you to the exam.

● Students with OAE accommodations: please contact us ASAP if 
you haven’t already done so.



  

Preparing for the Exam

● Up on the course website, you’ll find
● three sets of extra practice problems (EPP9 – 

EPP11), with solutions, and
● four practice final exams, with solutions.

● Feel free to ask questions about them on 
Piazza or in office hours.

● Need more practice on a particular 
topic? Let us know!



  

Your Questions



  

“Earlier you said "it's great that [almost] 
everyone did really well on the midterm". 

How does that bode for the midterm's 
curve? Doesn't that just make it hard?”

We don’t curve individual exam grades – it makes no sense 
to enforce a fixed distribution that doesn’t match the actual 
distribution. If you did well on the exam, that’s fantastic! 
Don’t worry if other folks did better. That doesn’t put you 

at a disadvantage.

You’re not competing against your classmates. If everyone in 
this class rocks the final, we’ll give out more As than usual.

We don’t curve individual exam grades – it makes no sense 
to enforce a fixed distribution that doesn’t match the actual 
distribution. If you did well on the exam, that’s fantastic! 
Don’t worry if other folks did better. That doesn’t put you 

at a disadvantage.

You’re not competing against your classmates. If everyone in 
this class rocks the final, we’ll give out more As than usual.



  

“I'm concerned/stressed with the quick 
turnaround between PSET 9 and our 

FINAL so what do suggest, realistically, to 
be the best way to prep for this exam?”

We’ve deliberately scaled back the size and difficulty of this 
problem set to try to give you some more time to study for 
the final. Working through this problem set is a great way to 
study the “apex predator” topics from the course from the 
last week, and hopefully you’ll have time to study up on the 

topics that you need some practice with.

Realistically: aim to complete this problem set as soon as you 
can (you know everything you need for it with the exception 
of one part of one problem), and spend your remaining 
time prepping for the final however you best see fit.

We’ve deliberately scaled back the size and difficulty of this 
problem set to try to give you some more time to study for 
the final. Working through this problem set is a great way to 
study the “apex predator” topics from the course from the 
last week, and hopefully you’ll have time to study up on the 

topics that you need some practice with.

Realistically: aim to complete this problem set as soon as you 
can (you know everything you need for it with the exception 
of one part of one problem), and spend your remaining 
time prepping for the final however you best see fit.



  

Back to CS103!



  

What do we know about P  ≟ NP?



  

Adapting our Techniques



  

A Problem

● The R and RE languages correspond to 
problems that can be decided and verified, 
period, without any time bounds.

● To reason about what's in R and what's in RE, 
we used two key techniques:
● Universality: TMs can run other TMs as 

subroutines.
● Self-Reference: TMs can get their own source code.

● Why can't we just do that for P and NP?



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



  

A Challenge



  

      NP        PREG

Problems in NP vary widely in their 
difficulty, even if P = NP.

 

How can we rank the relative difficulties 
of problems?



  

Reducibility



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A matching, but 
not a maximum 

matching.

A matching, but 
not a maximum 

matching.



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A maximum 
matching.

A maximum 
matching.



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.



  

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and 
Flowers” gives a polynomial-time 
algorithm for finding maximum 
matchings.
● (This is the same Edmonds as in “Cobham-

Edmonds Thesis.”)
● Using this fact, what other problems can 

we solve?



  

Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

In Pseudocode

boolean canPlaceDominos(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}



  

Intuition:

Tiling a grid with dominoes can't be 
“harder” than solving maximum matching, 

because if we can solve maximum 
matching efficiently, we can solve domino 

tiling efficiently.
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