

Complexity Theory
Part One

Complexity Theory

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] decidability,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● (P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in
Presburger arithmetic is true or false has to move its tape
head at least times on some inputs of length n (for some
fixed constant c).

22cn

For Reference

● Assume c = 1.

220

=2
221

=4
222

=16
223

=256
224

=65536
225

=18446744073709551616
226

=340282366920938463463374607431768211456

The Limits of Decidability

● The fact that a problem is decidable does not
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved
efficiently by a computer?

● In the remainder of this course, we will
explore this question in more detail.

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

The Setup

● In order to study computability, we
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.
● Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)

What is an efficient algorithm?

Searching Finite Spaces

● Many decidable problems can be solved by
searching over a large but finite space of
possible options.

● Searching this space might take a
staggeringly long time, but only finite time.

● From a decidability perspective, this is totally
fine.

● From a complexity perspective, this is totally
unacceptable.

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Longest Increasing Subsequences

● One possible algorithm: try all subsequences, find
the longest one that's increasing, and return that.

● There are 2n subsequences of an array of length n.
● (Each subset of the elements gives back a subsequence.)

● Checking all of them to find the longest increasing
subsequence will take time O(n · 2n).

● Nifty fact: the age of the universe is about 4.3 × 1026
nanoseconds old. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't terminate
if you give it an input of size 100 or more.

Longest Increasing Subsequences

● Theorem: There is an algorithm that can find
the longest increasing subsequence of an array
in time O(n log n).

● The algorithm is beautiful and surprisingly
elegant. Look up patience sorting if you're
curious.

● This algorithm works by exploiting particular
aspects of how longest increasing subsequences
are constructed. It's not immediately obvious
that it works correctly.

Another Problem

E

A

F

C

D

B

To

From

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Shortest Paths

● It is possible to find the shortest path in a
graph by listing off all sequences of
nodes in the graph in ascending order of
length and finding the first that's a path.

● This takes time O(n · n!) in an n-node
graph.

● For reference: 29! nanoseconds is longer
than the lifetime of the universe.

Shortest Paths

● Theorem: It's possible to find the shortest
path between two nodes in an n-node, m-
edge graph in time O(m + n).

● This is the breadth-first search algorithm.
Take CS106B/X or CS161 for more details!

● The algorithm is a bit nuanced. It uses
some specific properties of shortest paths
and the proof of correctness is nontrivial.

For Comparison

● Longest increasing
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path
problem:
● Naive: O(n · n!)
● Fast: O(n + m).

Defining Efficiency

● When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many
possible options.

● Brute-force solutions tend to take at least
exponential time to complete.

● Clever algorithms often run in time O(n),
or O(n2), or O(n3), etc.

Polynomials and Exponentials

● An algorithm runs in polynomial time if
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n

Why Polynomials?

● Polynomial time somewhat captures efficient
computation, but has a few edge cases.

● However, polynomials have very nice mathematical
properties:
● The sum of two polynomials is a polynomial. (Running one

efficient algorithm after the other gives an efficient
algorithm.)

● The product of two polynomials is a polynomial. (Running
one efficient algorithm a “reasonable” number of times
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial.
(Using the output of one efficient algorithm as the input to
another efficient algorithm gives an efficient algorithm.)

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
efficiently.

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the

CYK algorithm or Earley's algorithm.)
● And a ton of other problems are in P as

well.
● Curious? Take CS161!

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

 Undecidable Languages

Regular
Languages CFLs RP

What can't you do in polynomial time?

start

end

How many simple
paths are there
from the start
node to the end

node?

How many simple
paths are there
from the start
node to the end

node?

, , ,

How many
subsets of this
set are there?

How many
subsets of this
set are there?

An Interesting Observation

● There are (at least) exponentially many
objects of each of the preceding types.

● However, each of those objects is not very
large.
● Each simple path has length no longer than the

number of nodes in the graph.
● Each subset of a set has no more elements than

the original set.
● This brings us to our next topic...

What if you need to search a large
space for a single object?

Verifiers – Again

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku problem
have a solution?

4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

Verifiers – Again

Is there an ascending subsequence of
length at least 7?

Verifiers – Again

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Polynomial-Time Verifiers

● A polynomial-time verifier for L is a
TM V such that
● V halts on all inputs.
● w ∈ L iff ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's

runtime is O(|w|k) for some integer k)

The Complexity Class NP

● The complexity class NP (nondeterministic
polynomial time) contains all problems that can be
verified in polynomial time.

● Formally:

 NP = { L | There is a polynomial-time
 verifier for L }

● The name NP comes from another way of
characterizing NP. If you introduce nondeterministic
Turing machines and appropriately define
“polynomial time,” then NP is the set of problems
that an NTM can solve in polynomial time.

And now...

The

Most Important Question

in

Theoretical Computer Science

What is the connection between P and NP?

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a polynomial-time
 verifier for L }

P ⊆ NP

P NP

Which Picture is Correct?

P NP

Which Picture is Correct?

Does P = NP?

P ≟ NP

● The P ≟ NP question is the most important question in
theoretical computer science.

● With the verifier definition of NP, one way of phrasing
this question is

If a solution to a problem can be checked efficiently,
can that problem be solved efficiently?

● An answer either way will give fundamental insights
into the nature of computation.

Why This Matters

● The following problems are known to be efficiently
verifiable, but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

● Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems

could be solved efficiently.
● Our capacity to solve many problems will scale

well with the size of the problems we want to
solve.

● If P ≠ NP:
● Enormous computational power would be

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up

with our curiosity.

What We Know

● Resolving P ≟ NP has proven extremely difficult.
● In the past 45 years:

● Not a single correct proof either way has been
found.

● Many types of proofs have been shown to be
insufficiently powerful to determine whether
P ≟ NP.

● A majority of computer scientists believe P ≠ NP,
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers
about P ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question

The Clay Mathematics Institute has offered
a $1,000,000 prize to anyone who proves

or disproves P = NP.

Time-Out for Announcements!

Problem Sets

● Problem Set Eight was due at the start of class
today.
● You can use late days to extend the deadline to

Monday, but it’s not recommended.
● Problem Set Nine goes out today. It’s due next

Wednesday at the start of class.
● No late submissions can be accepted. This is

university policy.
● This problem set is much shorter than the other

ones we’ve given out so far this quarter.

Problem Set Seven

● PS7 has been graded and returned. Here’s
the overall distribution:

● The trickiest problems were the tautonyms
problem and the regex design questions.

Final Exam Logistics

● Our final exam is one week from Friday. It’ll be from
3:30PM – 6:30PM. Rooms are divvied up by last (family) name:
● Abb – Kan: Go to Bishop Auditorium.
● Kar – Zuc: Go to Cemex Auditorium.

● Exam is cumulative and all topics from the lectures and
problem sets are fair game.

● The exam focus is roughly 50/50 between discrete math topics
(PS1 – PS5) and computability/complexity topics (PS6 – PS9).

● As with the midterms, the exam is closed-book, closed-
computer, and limited-note. You can bring a single, double-
sided, 8.5” × 11” sheet of notes with you to the exam.

● Students with OAE accommodations: please contact us ASAP if
you haven’t already done so.

Preparing for the Exam

● Up on the course website, you’ll find
● three sets of extra practice problems (EPP9 –

EPP11), with solutions, and
● four practice final exams, with solutions.

● Feel free to ask questions about them on
Piazza or in office hours.

● Need more practice on a particular
topic? Let us know!

Your Questions

“Earlier you said "it's great that [almost]
everyone did really well on the midterm".

How does that bode for the midterm's
curve? Doesn't that just make it hard?”

We don’t curve individual exam grades – it makes no sense
to enforce a fixed distribution that doesn’t match the actual
distribution. If you did well on the exam, that’s fantastic!
Don’t worry if other folks did better. That doesn’t put you

at a disadvantage.

You’re not competing against your classmates. If everyone in
this class rocks the final, we’ll give out more As than usual.

We don’t curve individual exam grades – it makes no sense
to enforce a fixed distribution that doesn’t match the actual
distribution. If you did well on the exam, that’s fantastic!
Don’t worry if other folks did better. That doesn’t put you

at a disadvantage.

You’re not competing against your classmates. If everyone in
this class rocks the final, we’ll give out more As than usual.

“I'm concerned/stressed with the quick
turnaround between PSET 9 and our

FINAL so what do suggest, realistically, to
be the best way to prep for this exam?”

We’ve deliberately scaled back the size and difficulty of this
problem set to try to give you some more time to study for
the final. Working through this problem set is a great way to
study the “apex predator” topics from the course from the
last week, and hopefully you’ll have time to study up on the

topics that you need some practice with.

Realistically: aim to complete this problem set as soon as you
can (you know everything you need for it with the exception
of one part of one problem), and spend your remaining
time prepping for the final however you best see fit.

We’ve deliberately scaled back the size and difficulty of this
problem set to try to give you some more time to study for
the final. Working through this problem set is a great way to
study the “apex predator” topics from the course from the
last week, and hopefully you’ll have time to study up on the

topics that you need some practice with.

Realistically: aim to complete this problem set as soon as you
can (you know everything you need for it with the exception
of one part of one problem), and spend your remaining
time prepping for the final however you best see fit.

Back to CS103!

What do we know about P ≟ NP?

Adapting our Techniques

A Problem

● The R and RE languages correspond to
problems that can be decided and verified,
period, without any time bounds.

● To reason about what's in R and what's in RE,
we used two key techniques:
● Universality: TMs can run other TMs as

subroutines.
● Self-Reference: TMs can get their own source code.

● Why can't we just do that for P and NP?

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

A Challenge

 NP PREG

Problems in NP vary widely in their
difficulty, even if P = NP.

How can we rank the relative difficulties
of problems?

Reducibility

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

A matching, but
not a maximum

matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

A maximum
matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.
● (This is the same Edmonds as in “Cobham-

Edmonds Thesis.”)
● Using this fact, what other problems can

we solve?

Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

In Pseudocode

boolean canPlaceDominos(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,

because if we can solve maximum
matching efficiently, we can solve domino

tiling efficiently.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

