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Practice CS103 Final Exam IV

We strongly recommend that you work through this exam under realistic conditions rather than
Just flipping through the problems and seeing what they look like. Setting aside three hours in a
quiet space with your notes and making a good honest effort to solve all the problems is one of
the single best things you can do to prepare for this exam. It will give you practice working un-
der time pressure and give you an honest sense of where you stand and what you need to get
some more practice with.

This practice final exam is essentially the final exam from Fall 2015, with a few minor modifica-
tions (some of the problems we asked here got converted to problem set questions, so we replaced
them with other exam questions) and others covered topics that have since be dropped from
CS103 (namely, using self-reference to prove unrecognizability). With the exception of Q5.i1, ev-
ery question here has appeared on some CS103 exam in the past.

The exam policies are the same for the midterms — closed-book, closed-computer, limited note
(one double-sided sheet of 8.5” x 11” paper decorated however you'd like).

You have three hours to complete this exam. There are 48 total points.

Question Points Graders
(1) Logic and Relations /6
(2) Graphs and Sets /6
(3) Induction and Cardinality /6
(4) Regular and Context-Free Languages /12
(5) R and RE Languages /14
(6) P and NP Languages /4
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Problem One: Logic and Relations (6
Points)

Suppose that you want to prove the implication P — Q. Here are two possible routes you can take:
* Prove the implication by contradiction.
* Take the contrapositive of the implication, then prove the contrapositive by contradiction.
It turns out that these two proof approaches are completely equivalent to one another.

i. (2 Points) State, in propositional logic, which statements you will end up assuming if you
were to use each of the above proof approaches, then briefly explain why they're equiva-
lent.
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ii. (4 Points) Below is a drawing of a binary relation R over a set of people A:

@ (D

AC=—CD

For each of the following first-order logic statements about R, decide whether that state-
ment is true or false. No justification is required, and there is no penalty for an incorrect
guess.

1. Vpe A . dg€ A. pRq

] True L] False

2. dpe A. Vg€ A.pRq
] True L] False

3. dpe A.(pRp — Vg € A. gRq)
] True L] False

4. "Vpe A.Vge A. (p#q— dre A. (pRr A gRr))
L] True L] False
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Problem Two: Graphs and Sets (6 Points)

Recently, there's been a major development in complexity theory: an “almost” efficient algorithm
for the graph isomorphism problem. The algorithm relies on a special class of graphs that are the
focus of this problem.

The triangular graph of order n, denoted Tn, is a graph defined as follows. Begin with the set
{1,2, 3, ..., n}. The nodes in Tn are the two-element subsets of {1, 2, 3, ..., n}, and there's an
edge between any two sets that have exactly one element in common. For example, below are the
graphs T3 and Ty:

{1,4}

/

{1, 3} {2,4} {3,4}

A i B\

{1,2} {2,3} {1,2} {1, 3}
The graph T3 The graph T,

Recall from Problem Set Four that an independent set in an undirected graph G = (V, E) is a set
IC Vsuch that if x € I and y € I, then {x, y} ¢ E. Intuitively, an independent set in G is a set of
nodes where no two nodes in / are adjacent. The independence number of a graph G, denoted
a(G), 1s the size of the largest independent set in G.

Prove that if n € N and n = 1, then a(72.) = n. (Hint: You need to prove two separate results: first,
that there's an independent set of size n in T, second, that no larger independent set exists in Tz.)
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(Extra space for your answer to Problem Two, if you need it.)
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Problem Three: Induction and Cardinality (6 Points)

Consider the following series:
-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15 ...

We can think about evaluating larger and larger number of terms in the summation. For example,
the sum of the first five terms is =1 + 2 — 3 + 4 — 5 = -3, and the sum of the first eight terms works
outto—1+2-3+4-5+6-7+ 8 =4. For notational simplicity, let's define A, to be the sum of
the first n terms in the summation. For example, Ay is the sum of the first zero terms in the sum-
mation (that's the empty sum, which is zero). A; is the sum of the first term (-1), A, is the sum of
the first two terms (-1 + 2 = 1), A; is the sum of the first three terms (-1 + 2 — 3 = -2), etc.

When we covered cardinality in lecture, we gave the following piecewise function as an example
of a bijection f: N — Z:

n . .
— if n is even
2

n+l

fn)=

otherwise

It turns out that this function is closely connected to the above series. Specifically, for every natu-
ral number n, the following is true:

A= f(n)

In other words, you can form a bijection from N to Z by considering longer and longer alternating
sums of the natural numbers. Weird, isn't it?

Prove by induction on n that if n € N, then A, = f(n).



7115

(Extra space for your answer to Problem Three, if you need it.)
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Problem Four: Regular and Context-Free Languages (12 Points)
Let = = {a, b} and consider the following languages L; and L, over Z:

Li={weZ* | wdoesn't contain bb as a substring }

Ly={weZ* | Iwl 23 and the third-to-last character of wis an a }

This problem concerns the language L; N L,. As an example, the strings aaa, baaba, and bababa
are all in L; N L,, and the strings €, ba, abb, bbaab, and bab are all not in L; N L,.

i. (3 Points) Design an NFA for L; N L,. No justification is necessary.

ii. (3 Points) Write a regular expression for L; N L,. No justification is necessary.
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The “canonical” example of a nonregular language is the language L; = { a"b" | n € N }. It turns
out that, not only is this language not regular, but most of its subsets aren’t regular either.

iii. (3 Points) Prove that if L C L3 and L contains infinitely many strings, then L is not regu-
lar.
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In Problem Set Eight, you designed a CFG for the following language:
ADD = { 1"+1"£1"™" |m, n e N }
Now, consider the following language over the alphabet {1, +, =}, which is a variation on ADD:
NEAR ={ 1"+1"=21”Im,n,pe Nandm+n=p+1}

Intuitively, NEAR is the set of all arithmetic expressions where the left-hand side is exactly one
greater than the right-hand side. For example:

111+1=111 € NEAR +=~ ¢ NEAR
11+111=1111 € NEAR 1+1=11 ¢ NEAR
1+~ € NEAR 1+1=111 ¢ NEAR
+1= € NEAR 1+1+1=11 ¢ NEAR

This language turns out to be context-free.
iv. (3 Points) Write a CFG for NEAR.
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Problem Five: R and RE Languages (14 Points)
Consider the following TM, which we'll call TMg;:
a—al
b-b,L b-b R b-bR
x - x, L X~ xR x - xR
qy‘ a — X, L U‘q{{‘: a— X, R \‘qe )
o-0R a—- xR
&g('?[?
v
QSD b—»x,L:O o-0,R ‘?2)
a—a,lL
a—-aR b—b L b-bR
x - X, R x - x L x - X, R

Here, gqun 1s the start state, and g 1s the accepting state. As usual, we assume that all missing
transitions implicitly cause M to reject.

TMg's input alphabet is Z = {a, b} and its tape alphabet is I = {a, b, x, [ 1}.

i. (3 Points) Fill in the following blank to let us know what the language of TMg is. You
may find it useful to run this TM on a few small sample inputs to get a feel for how it
works. No justification is necessary.

P(TMg) = { we =*| }
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Let Z be an arbitrary alphabet and consider the following language:
AaL={ (My| MisaTM and (M) = Z* }
In other words, Aaw is the language of all descriptions of TMs that accept every string.
ii. (5 Points) Prove that AaL ¢ R.
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(Extra space for your answer to Problem 5.ii, if you need it.)
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iii. (6 Points) Below is a Venn diagram showing the overlap of different classes of languages

© N W

we've studied so far. We have also provided you a list of numbered languages. For each of
those languages, draw where in the Venn diagram that language belongs. As an example,
we've indicated where Language 1 and Language 2 should go. No proofs or justifications
are necessary, and there is no penalty for an incorrect guess.

ALL

5

{ we{a, b}* | Iwl 2 100 and the first 50 characters of w are the same as the last 50
characters of w }

{ (M}, My, M) | My, M,, and M5 are TMs over the same alphabet = and every string in Z*
belongs to exactly one of ¥ (M), ¥(M,), or ¥(M3) }

HALT — A
Amv— HALT
{ (V, w)| Vis a TM and there is a string ¢ such that V accepts (w, c) }

{ we {r,d}* | whas more r's than d's }
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Problem Six: P and NP Languages (4 Points)

Below is a series of four statements. For each statement, decide whether it's true or false. No jus-
tification is necessary. There is no penalty for an incorrect guess.

i. If P = NP, there are no NP-complete problems in P.
[ True [ ] False

ii. If P = NP, there are no NP-hard problems in P.
[ True [ ] False

iii. If P # NP, there are no NP-complete problems in P.
[ True [ False

iv. If P # NP, there are no NP-hard problems in P.
[ True [ ] False

We have one final question for you: do you think P = NP? Let us know in the space below. There
are no right or wrong answers to this question — we're honestly curious to hear your opinion!

L1 think P = NP L1 think P # NP



