

Binary Relations
Part One

Outline for Today

● Binary Relations
● Reasoning about connections between

objects.
● Equivalence Relations

● Reasoning about clusters.
● A Fundamental Theorem

● How do we know we have the “right”
defnition for something?

Relationships

● In CS103, you've seen examples of relationships
● between sets:

A ⊆ B
● between numbers:

x < y x ≡ₖ y x ≤ y
● between people:

p loves q

● Since these relations focus on connections
between two objects, they are called binary
relations.
● The “binary” here means “pertaining to two things,”

not “made of zeros and ones.”

What exactly is a binary relation?

a b

aRb

R

a b

aR̸b

R

Binary Relations

● A binary relation over a set A is a predicate
R that can be applied to pairs of elements
drawn from A.

● If R is a binary relation over A and it holds for
the pair (a, b), we write aRb.

3 = 3 5 < 7 Ø ⊆ ℕ
● If R is a binary relation over A and it does not

hold for the pair (a, b), we write aR̸b.

4 ≠ 3 4 <≮ 3 ℕ ⊆≮ Ø

Properties of Relations

● Generally speaking, if R is a binary relation over
a set A, the order of the operands is signifcant.
● For example, 3 < 5, but 5 <≮ 3.
● In some relations order is irrelevant; more on that

later.
● Relations are always defned relative to some

underlying set.
● It's not meaningful to ask whether ☺ ⊆ 15, for

example, since ⊆ is defned over sets, not arbitrary
objects.

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing a line between
an element a and an element b if aRb is true.

● Example: the relation a | b (meaning “a divides b”) over
the set {1, 2, 3, 4} looks like this:

1

2

4

3

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing a line between
an element a and an element b if aRb is true.

● Example: the relation a ≠ b over the set {1, 2, 3, 4}
looks like this:

1

2

4

3

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing a line between
an element a and an element b if aRb is true.

● Example: the relation a = b over the set {1, 2, 3, 4}
looks like this:

1

2

4

3

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing a line between
an element a and an element b if aRb is true.

● Example: below is some relation over {1, 2, 3, 4} that's
a totally valid relation even though there doesn't
appear to be a simple unifying rule.

1

2

4

3

 Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, D, E, or F.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, D, E, or F.

Below is a picture of a binary relation R over the set {1, 2, …, 8}.
Which of the following is a correct defnition of the relation R?

A. xRy if x = 3 and y = 5
B. xRy if y = x + 2
C. yRx if y = x + 2
D. R = +2
E. None of these
F. More than one of these

Below is a picture of a binary relation R over the set {1, 2, …, 8}.
Which of the following is a correct defnition of the relation R?

A. xRy if x = 3 and y = 5
B. xRy if y = x + 2
C. yRx if y = x + 2
D. R = +2
E. None of these
F. More than one of these

1
2

3

4
5

6

7

8

Capturing Structure

Capturing Structure

● Binary relations are an excellent way for
capturing certain structures that appear in
computer science.

● Today, we'll look at one of them
(partitions), and next time we'll see
another (prerequisites).

● Along the way, we'll explore how to write
proofs about defnitions given in frst-order
logic.

Partitions

Partitions

● A partition of a set is a way of splitting the set
into disjoint, nonempty subsets so that every
element belongs to exactly one subset.
● Two sets are disjoint if their intersection is the

empty set; formally, sets S and T are disjoint
if S ∩ T = Ø.

● Intuitively, a partition of a set breaks the set
apart into smaller pieces.

● There doesn't have to be any rhyme or reason to
what those pieces are, though often there is one.

Partitions and Clustering

● If you have a set of data, you can often
learn something from the data by fnding
a “good” partition of that data and
inspecting the partitions.
● Usually, the term clustering is used in data

analysis rather than partitioning.
● Interested to learn more? Take CS161 or

CS246!

What's the connection between partitions
and binary relations?

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

Refexivity

● Some relations always hold from any element to
itself.

● Examples:
● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called refexive.
● Formally speaking, a binary relation R over a set A is

refexive if the following frst-order statement is true:

∀a ∈ A. aRa

(“Every element is related to itself.”)

Refexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)

∀a ∈ A. aRa
(“Every element is related to itself.”)

Let R be the binary relation
given by the drawing to the left.

How many of the following
objects are refexive?

R, , , ,

Let R be the binary relation
given by the drawing to the left.

How many of the following
objects are refexive?

R, , , ,

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then 0, 1, 2, 3, 4, or 5.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then 0, 1, 2, 3, 4, or 5.

∀a ∈ A. aRa
(“Every element is related to itself.”)

a

This means that R is
not refexive, since
the frst-order logic

statement given
below is not true.

This means that R is
not refexive, since
the frst-order logic

statement given
below is not true.

Is refexive?Is refexive?

∀a ∈ ??. a a

Refexivity is a property
of relations, not

individual objects.

Refexivity is a property
of relations, not

individual objects.

Symmetry

● In some relations, the relative order of the objects
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called

symmetric if the following frst-order statement is true
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

(“If a is related to b, then b is related to a.”)

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Is this relation symmetric?Is this relation symmetric?

Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if the

following frst-order statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

Is this relation transitive?Is this relation transitive?

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b

Equivalence Relations

● An equivalence relation is a relation
that is refexive, symmetric and
transitive.

● Some examples:
● x = y
● x ≡ₖ y
● x has the same color as y
● x has the same shape as y.

Binary relations give us a common
language to describe common

structures.

Equivalence Relations

● Most modern programming languages include some
sort of hash table data structure.
● Java: HashMap
● C++: std::unordered_map
● Python: dict

● If you insert a key/value pair and then try to look up a
key, the implementation has to be able to tell whether
two keys are equal.

● Although each language has a diferent mechanism for
specifying this, many languages describe them in
similar ways...

Equivalence Relations

“The equals method implements an equivalence
relation on non-null object references:
● It is refexive: for any non-null reference value x,
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and
y, x.equals(y) should return true if and only if
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y,
and z, if x.equals(y) returns true and y.equals(z) returns
true, then x.equals(z) should return true.”

Java 8 Documentation

Equivalence Relations

“Each unordered associative container is
parameterized by Key, by a function object type
Hash that meets the Hash requirements
(17.6.3.4) and acts as a hash function for
argument values of type Key, and by a binary
predicate Pred that induces an equivalence
relation on values of type Key. Additionally,
unordered_map and unordered_multimap associate
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3

Time-Out for Announcements!

Interpreting your Pset 1 Grade

25%ile: 60/80 (75%)
Median: 67/80 (82.7%)
75%ile: 74/80 (92.5%)

25%ile: 60/80 (75%)
Median: 67/80 (82.7%)
75%ile: 74/80 (92.5%)

Research Info Session

● CURIS (Undergraduate Research
Institute “in” CS—har har har) is a
summer research experience in our dept

● Unbelievable cutting-edge projects
● See if grad school might be of interest
● Learn more:

Tuesday, 1/30 at 5:30pm in Gates 219

Back to CS103!

Equivalence Relation Proofs

● Let's suppose you've found a binary
relation R over a set A and want to prove
that it's an equivalence relation.

● How exactly would you go about doing
this?

An Example Relation

● Consider the binary relation ~ defned over the set ℤ:

a~b if a+b is even
● Some examples:

0~4 1~9 2~6 5~5
● Turns out, this is an equivalence relation! Let's see how to

prove it.

We can binary relations by giving a rule, like this:

a~b if some property of a and b holds

This is the general template for defning a relation.
Although we're using “if” rather than “if” here, the two
above statements are defnitionally equivalent. For a
variety of reasons, defnitions are often introduced with
“if” rather than “if.” Check the “Mathematical
Vocabulary” handout for details.

We can binary relations by giving a rule, like this:

a~b if some property of a and b holds

This is the general template for defning a relation.
Although we're using “if” rather than “if” here, the two
above statements are defnitionally equivalent. For a
variety of reasons, defnitions are often introduced with
“if” rather than “if.” Check the “Mathematical
Vocabulary” handout for details.

What properties must ~ have to be an
equivalence relation?

Refexivity
Symmetry

Transitivity

Let's prove each property independently.

a~b if a+b is even

Lemma 1: The binary relation ~ is refexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the defnition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

What is the formal defiitioi of refexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose ai arbitrary iiteger a, thei
go prove that a ~ a.

What is the formal defiitioi of refexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose ai arbitrary iiteger a, thei
go prove that a ~ a.

a~b if a+b is even

Lemma 1: The binary relation ~ is refexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the defnition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, D, E, or F.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, D, E, or F.

Which of the following works best as the opening of this proof?

A. Consider any integers a and b. We will prove a~b and b~a.
B. Pick ∀a ∈ ℤ and ∀b ∈ ℤ. We will prove a~b → b~a.
C. Consider any integers a and b where a~b and b~a.
D. Consider any integer a where a~a.
E. The relation ~ is symmetric if for any a, b ∈ ℤ, we have a~b → b~a.
F. Consider any integers a and b where a~b. We will prove b~a.

Which of the following works best as the opening of this proof?

A. Consider any integers a and b. We will prove a~b and b~a.
B. Pick ∀a ∈ ℤ and ∀b ∈ ℤ. We will prove a~b → b~a.
C. Consider any integers a and b where a~b and b~a.
D. Consider any integer a where a~a.
E. The relation ~ is symmetric if for any a, b ∈ ℤ, we have a~b → b~a.
F. Consider any integers a and b where a~b. We will prove b~a.

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

What is the formal defiitioi of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary iitegers a aid
b where a ~ b, thei prove that b ~ a.

What is the formal defiitioi of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary iitegers a aid
b where a ~ b, thei prove that b ~ a.

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a~b and b~c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

What is the formal defiitioi of traisitivity?

∀a ∈ ℤ. ∀b ∈ ℤ. ∀c ∈ ℤ. (a ~ b ∧ b ~ c → a ~ c)

Therefore, we'll choose arbitrary iitegers a, b, aid c
where a ~ b aid b ~ c, thei prove that a ~ c.

What is the formal defiitioi of traisitivity?

∀a ∈ ℤ. ∀b ∈ ℤ. ∀c ∈ ℤ. (a ~ b ∧ b ~ c → a ~ c)

Therefore, we'll choose arbitrary iitegers a, b, aid c
where a ~ b aid b ~ c, thei prove that a ~ c.

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

An Observation

a~b if a+b is even

Lemma 1: The binary relation ~ is refexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the defnition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

The formal defiitioi of refexivity
is givei ii frst-order logic, but
this proof does not contain any

frst-order logic symbols!

The formal defiitioi of refexivity
is givei ii frst-order logic, but
this proof does not contain any

frst-order logic symbols!

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

The formal defiitioi of symmetry
is givei ii frst-order logic, but
this proof does not contain any

frst-order logic symbols!

The formal defiitioi of symmetry
is givei ii frst-order logic, but
this proof does not contain any

frst-order logic symbols!

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

The formal defiitioi of traisitivity
is givei ii frst-order logic, but
this proof does not contain any

frst-order logic symbols!

The formal defiitioi of traisitivity
is givei ii frst-order logic, but
this proof does not contain any

frst-order logic symbols!

First-Order Logic and Proofs

● First-order logic is an excellent tool for giving
formal defnitions to key terms.

● While frst-order logic guides the structure of
proofs, it is exceedingly rare to see frst-order
logic in written proofs.

● Follow the example of these proofs:
● Use the FOL defnitions to determine what to assume

and what to prove.
● Write the proof in plain English using the conventions

we set up in the frst week of the class.
● Please, please, please, please, please

internalize the contents of this slide!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

