
  

Direct Proofs



  

Outline for Today

● Mathematical Proof
● What is a mathematical proof? What does a 

proof look like?
● Direct Proofs

● A versatile, powerful proof technique.
● Universal and Existential Statements

● What exactly are we trying to prove?
● Proofs on Set Theory

● Formalizing our reasoning.



  

What is a Proof?



  

A proof is an argument that
demonstrates why a conclusion is true, 
subject to certain standards of truth.



  

A mathematical proof is an argument 
that demonstrates why a mathematical 
statement is true, following the rules of 

mathematics.



  



  

Modern Proofs



  

Thinking about proofs as an 
adversarial exchange

● It is helpful to think about proofs as an 
exchange between two parties: 

1.someone who is trying to prove something 
is true

2.someone who is trying their best thwart 
that effort by choosing “hard” cases for you 
to address, and being generally skeptical of 
the argument



  

Two Quick Definitions

● An integer n is even if there is some 
integer k such that n = 2k.
● This means that 0 is even.

● An integer n is odd if there is some 
integer k such that n = 2k + 1.
● This means that 0 is not odd.

● We'll assume the following for now:
● Every integer is either even or odd.
● No integer is both even and odd.



  

Our First Direct Proof

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■
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To prove a statement of the form

“If P, then Q”

Assume that P is true, then show that 
Q must be true as well.



  

Our First Direct Proof

Theorem: If n is an even integer, then n2 is even.
Proof: Pick an arbitrary even integer n.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■

●  This “pick any” step is really important!

●  TAs will tell you, improper introduction of variables is 
one of the most common deductions for proofs on psets 
and exams!



  

Our First Direct Proof

Theorem: If n is an even integer, then n2 is even.
Proof: Pick an arbitrary even integer n.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■

●  Once you finish this step, think of the value picked as 
fixed for the rest of the proof.

●  So it’s important to specify any conditions or limitations 
now, in this step where you instruct the “adversarial” 
person on how to make the pick. 



  

Our First Direct Proof

Theorem: If n is an even integer, then n2 is even.
Proof: Pick an arbitrary even integer n.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

Fr om this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■

Acceptable wording for this step:

● “Pick an arbitrary even integer n.”

● “Consider any even integer n.”

● “Choose an arbitrary even integer n.”

● “Let n be an even integer.” 

Unacceptable wording for this step:

● “For all even integers n.” (“For any” is better but not ideal.)
● “Let n be an integer. Since n is even, it must have...”
● [just start talking about n]
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show! We're done now.
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That wasn't so bad! Let's do another one.



  

Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such 
that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■
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Proving Something Always Holds

● Many statements have the form

For any x, [some-property] holds of x.
● Examples:

For all integers n, if n is even, n2 is even.

For any sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C.

For all sets S, |S| < | (S)|.℘

● How do we prove these statements when there are 
(potentially) infinitely many cases to check?
● This is where the arbitrary choice comes in—our proof is 

essentially a template of what we would do for any choice the 
adversarial person could make for n.
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Theorem: The product of any two consecutive integers is even.

Proof: Pick any two consecutive integers n and n+1. We’ll prove
that their product n(n+1) is even. Let’s consider two cases:

Case 1: n is even. This means there exists an integer k such
that n = 2k. Therefore, we learn that

  n(n+1) =  2k(n+1)
 =  2(k(n+1)).

Therefore, there is an integer m (namely, k(n+1)) such that 
n(n+1) = 2m, so n(n+1) is even.

Case 2: n is odd. Then there is an integer k where n = 2k+1.
This tells us n+1 = 2k+2. We then see that

   n(n+1) =  n(2k + 2)
 =  2(n(k+1)).

This means there is an integer m (namely, n(k+1)) such 
that n(n+1) = 2m, so n(n+1) is even.

In either case, we find that n(n+1) is even, which is what we 
needed to show. ■
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Some Little Exercises

● Here’s a list of other theorems that are true about odd 
and even numbers:
● Theorem: The sum and difference of any two even numbers 

is even.
● Theorem: The sum and difference of an odd number and an 

even number is odd.
● Theorem: The product of any integer and an even number 

is even.
● Theorem: The product of any two odd numbers is odd.

● Feel free to use these results going forward.
● If you’d like to practice the techniques from today, try 

your hand at proving some of these results!



  

Universal and Existential Statements



  

Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

 Now, let r = k+1 and s = k. Then we see that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we 
needed to show. ■
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Which of the following should be the next
sentence of this proof?

A. “Pick any odd integer, n = 137.”
B. “Pick any odd integer n.”
C. “Pick any odd integer n and arbitrary integers r and s

where r2 – s2 = n.” 
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Universal vs. Existential Statements

● A universal statement is a statement of 
the form

For all x, [some-property] holds for x.

● We've seen how to prove these statements.
● An existential statement is a statement of 

the form

There is some x where [some-property] holds for 
x.

● How do you prove an existential statement?



  

Proving an Existential Statement

● Over the course of the quarter, we will 
see several different ways to prove an 
existential statement of the form

There is an x where [some-property] holds for 
x.

● Simplest approach: Search far and 
wide, find an x that has the right 
property, then show why your choice is 
correct.
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Follow-Up Question: There are some 
integers that can’t be written as r2 – s2 for 

any integers r and s.

Can you prove that every integer can be 
formed by adding and subtracting some 

combination of at most three perfect 
squares?



  

Reading Recommendations

● We’ve released two handouts online that you 
should read over:
● Handout 06: How to Succeed in CS103
● Handout 07: Set Theory Definitions.

● Additionally, if you haven’t yet read over the 
Guide to Elements and Subsets, we’d 
recommend doing so.

● Finally, we strongly recommend reading over 
Chapter 1 and Chapter 2 of the online course 
reader to get some more background with 
proofs and set theory.



  

Problem Set 0

● Problem Set 0 went out on Monday. It’s due 
this Friday at 2:30PM.
● Even though this just involves setting up your 

compiler and submitting things, please start this 
one early. If you start things on Friday morning, 
we can’t help you troubleshoot Qt Creator issues!

● There’s a very detailed troubleshooting guide up 
on the CS103 website and a Piazza post detailing 
common fixes. If you’re still having trouble, 
please feel free to ask on Piazza!



  

Back to CS103!



  

Proofs on Sets



  

Set Theory Review

● Recall from last time that we write x ∈ S if x 
is an element of set S and x ∉ S if x is not an 
element of set S.

● If S and T are sets, we say that S is a subset 
of T (denoted S ⊆ T) if the following 
statement is true:

For every object x, if x ∈ S, then x ∈ T.
● Let's explore some properties of the subset 

relation.



  

Theorem: For any sets A, B, and C, if A ⊆ B and
B ⊆ C, then A ⊆ C.

Proof: Suppose that A ⊆ B and B ⊆ C. We need to
prove that A ⊆ C. To do so, we will prove that for
every x, if x ∈ A, then x ∈ C.

Consider any x ∈ A. Since A ⊆ B and x ∈ A, we see 
that x ∈ B. Similarly, since B ⊆ C and x ∈ B, we 
see that x ∈ C, as required. ■
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be true.
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Q must be true as well.
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Set Equality and Lemmas



  

Set Equality

● As we mentioned on Monday, two sets A and B are 
equal when they have exactly the same elements.

● Here’s a little theorem that’s very useful for 
showing that two sets are equal:

 Theorem: If A and B are sets where A ⊆ B
                    and B ⊆ A, then A = B.

● We’ve included a proof of this result as an 
appendix to this slide deck. You should read over 
it on your own time.



  

A Trickier Theorem

● Our last theorem for today is this one, which 
comes to us from the annals of set theory:

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B.

● Unlike our previous theorem, this one is a lot 
harder to see using Venn diagrams alone.

A B



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

● Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.

We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.

We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.
● We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

● Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.
● We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.

We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.

We’re going to pick arbitrary sets A and B.
● We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

● Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.
● We’re going to pick arbitrary sets A and B.
● We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.

We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.

We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.
● We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

● Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.
● We’re going to pick arbitrary sets A and B.
● We’re going to assume A ∪ B ⊆ A ∩ B.
● We’re going to prove that A = B.



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.

We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.
● We’re going to prove that A = B.

Reasonable guess: let’s try 
proving that A ⊆ B and that B ⊆ 

A.

Reasonable guess: let’s try 
proving that A ⊆ B and that B ⊆ 

A.



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■

A lemma is a smaller proof that’s 
designed to build into a larger 
one. Think of it like program 
decomposition, except for 

proofs!
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Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
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What We've Covered

● What is a mathematical proof?
● An argument – mostly written in English – outlining a 

mathematical argument.
● What is a direct proof?

● It's a proof where you begin from some initial 
assumptions and reason your way to the conclusion.

● What are universal and existential statements?
● Universal statements make a claim about all objects of 

one type. Existential statements make claims about at 
least one object of some type.

● How do we write proofs about set theory?
● By calling back to definitions! Definitions are key.



  

Next Time

● Indirect Proofs
● How do you prove something without actually proving 

it?
● Mathematical Implications

● What exactly does “if P, then Q” mean?
● Proof by Contrapositive

● A helpful technique for proving implications.
● Proof by Contradiction

● Proving something is true by showing it can't be false.



  

Appendix: Set Equality



  

Set Equality

● If A and B are sets, we say that A = B precisely 
when the following statement is true:

For any object x, x ∈ A if and only if x ∈ B.
● (This is called the axiom of extensionality.)
● In practice, this definition is tricky to work 

with.
● It's often easier to use the following result to 

show that two sets are equal:

For any sets A and B,
if A ⊆ B and B ⊆ A, then A = B.



  

Theorem: For any sets A and B, if A ⊆ B and B ⊆ A,
then A = B.

Proof: Let A and B be arbitrary sets where A ⊆ B
and B ⊆ A. We need to prove A = B. To do so, we
will prove for all x that x ∈ A if and only if x ∈ B.

First, we'll prove that if x ∈ A, then x ∈ B. To do 
so, take any x ∈ A. Since A ⊆ B and x ∈ A, we see 
that x ∈ B, as required.

Next, we'll prove that if x ∈ B, then x ∈ A. 
Consider an arbitrary x ∈ B. Since B ⊆ A and
x ∈ B, we see that x ∈ A, which is what we needed 
to show.

Since we've proven both directions of implication, 
we see that A = B. ■
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