
  

Connected Components



  



  



  



  



  



  

★



  

★



  

Connected Components

● Let G = (V, E) be a graph. For each v ∈ V, the 
connected component containing v is the set

[v] = { x ∈ V | v is connected to x }
● Intuitively, a connected component is a “piece” 

of a graph in the sense we just talked about.
● Question: How do we know that this 

particular definition of a “piece” of a graph is a 
good one?

● Goal: Prove that any graph can be broken 
apart into different connected components.



  

We’re trying to reason about some way of 
partitioning the nodes in a graph into 

different groups.

What structure have we studied that 
captures the idea of a partition?



  

Connectivity

● Claim: For any graph G, the “is 
connected to” relation is an equivalence 
relation.
● Is it reflexive?
● Is it symmetric?
● Is it transitive?
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Claim: For any graph G, the “is 
connected to” relation is an equivalence 
relation.
● Is it reflexive?

Is it symmetric?

Is it transitive?

∀v ∈ V. Conn(v, v)∀v ∈ V. Conn(v, v)



  

A path in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.

A path in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Two nodes in a graph are 
called connected if there is a 
path between them

Two nodes in a graph are 
called connected if there is a 
path between them

A graph G as a whole is called 
connected if all pairs of nodes 
in G are connected.

A graph G as a whole is called 
connected if all pairs of nodes 
in G are connected.

(This graph is not 
connected.)

(This graph is not 
connected.)
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Claim: For any graph G, the “is 
connected to” relation is an equivalence 
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Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then 
the singleton path v is a path from v to itself. Therefore, v is 
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V 
where x is connected to y. We need to show that y is connected 
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y 
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is 
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be 
arbitrary nodes where x is connected to y and y is connected to 
z. We will prove that x is connected to z. Since x is connected to 
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected 
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected 
to z, as required. ■



  

Putting Things Together

● Earlier, we defined the connected component of 
a node v to be

[v] = { x ∈ V | v is connected to x }
● Connectivity is an equivalence relation! So 

what’s the equivalence class of a node v with 
respect to connectivity?

[v] = { x ∈ V | v is connected to x }
● Connected components are equivalence 

classes of the connectivity relation!



  

Theorem: If G = (V, E) is a graph, then every node in G
belongs to exactly one connected component of G.

Proof: Let G = (V, E) be an arbitrary graph and let v ∈ V be
any node in G. The connected components of G are just
the equivalence classes of the connectivity relation in G.
The Fundamental Theorem of Equivalence Relations
guarantees that v belongs to exactly one equivalence
class of the connectivity relation. Therefore, v belongs to
exactly one connected component in G. ■



  

Planar Graphs



  



  



  

A graph is called a planar graph if there is 
some way to draw it in a 2D plane without 

any of the edges crossing.



  

A graph is called a planar graph if there is 
some way to draw it in a 2D plane without 

any of the edges crossing.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Is this graph planar?Is this graph planar?
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This graph is called the utility 
graph. There is no way to draw 

it in the plane without edges 
crossing. Check out this video 

for an explanation!

This graph is called the utility 
graph. There is no way to draw 

it in the plane without edges 
crossing. Check out this video 

for an explanation!

https://youtu.be/VvCytJvd4H0
https://youtu.be/VvCytJvd4H0


  

A fun game by a former CS103er:
http://www.nkhem.com/planarity-knot/

http://www.nkhem.com/planarity-knot/
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● Intuitively, a k-vertex-coloring of a graph G = (V, E) is a 
way to color each node in V one of k different colors such 
that no two adjacent nodes in V are the same color.

Formally, a k-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic 
number.

The chromatic number of a graph G is denoted χ(G), from the 
Greek χρώμα, meaning “color.”
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Graph Coloring

Although this is the formal definition of a
k-vertex-coloring, you rarely see it used in 
proofs. It's more common to just talk about 

assigning colors to nodes. However, this 
definition is super useful if you want to write 
programs to reason about graph colorings!
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● Intuitively, a k-vertex-coloring of a graph G = (V, E) is a 
way to color each node in V one of k different colors such 
that no two adjacent nodes in V are the same color.

● A k-vertex-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))
● A graph G is k-colorable if a k-vertex coloring of G exists.
● The smallest k for which G is k-colorable is its chromatic 

number.
● The chromatic number of a graph G is denoted χ(G), from the 

Greek χρώμα, meaning “color.”

Graph Coloring
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Graph Coloring



  

Theorem (Four-Color Theorem): Every 
planar graph is 4-colorable.



  

● 1850s: Four-Color Conjecture posed.

● 1879: Kempe proves the Four-Color Theorem.

● 1890: Heawood finds a flaw in Kempe's proof.

● 1976: Appel and Haken design a computer program that 
proves the Four-Color Theorem. The program checked 1,936 
specific cases that are “minimal counterexamples;” any 
counterexample to the theorem must contain one of the 
1,936 specific cases.

● 1980s: Doubts rise about the validity of the proof due to 
errors in the software.

● 1989: Appel and Haken revise their proof and show it is 
indeed correct. They publish a book including a 400-page 
appendix of all the cases to check.

● 1996: Roberts, Sanders, Seymour, and Thomas reduce the 
number of cases to check down to 633.

● 2005: Werner and Gonthier repeat the proof using an 
established automatic theorem prover (Coq), improving 
confidence in the truth of the theorem.



  

Then less than one year ago (!)

● An amateur mathematician disproved this 
conjecture:

For all graphs where the edges are the same length 
(length 1 unit), and the points are all on a plane (but the 
edges can cross), the graph is 4-colorable. 

● Q: How do you disprove a universal statement? In 
other words, how do you prove the negation, 
which is an existential statement? 

●  A: You demonstrate the thing. Here’s the thing:



  

Then two weeks ago (!!!)



  

Next Time

● The Pigeonhole Principle
● A simple, powerful, versatile theorem.

● Graph Theory Party Tricks
● Applying math to graphs of people!
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