
  

Mathematical Logic
Part Three



  

Recap from Last Time



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifers that allow us to reason about 

many objects at once.



  

∃ is the existential quantifer 
and says “for some choice 
of m, the following is 

true.”

∃ is the existential quantifer 
and says “for some choice 
of m, the following is 

true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifer 
and says “for any choice of 

n, the following is true.”

 ∀ is the universal quantifer 
and says “for any choice of 

n, the following is true.”



  

“All A's are B's”

translates as

∀x. (A(x) → B(x))



  

Useful Intuition:

Universally-quantifed statements are true 
unless there's a counterexample.

∀x. (A(x) → B(x))

If x is a counterexample, 
it must have property A 
but not have property B.

If x is a counterexample, 
it must have property A 
but not have property B.



  

“Some A is a B”

translates as

∃x. (A(x) ∧ B(x))



  

Useful Intuition:

Existentially-quantifed statements are 
false unless there's a positive example.

∃x. (A(x) ∧ B(x))

If x is an example, it 
must have property A on 

top of property B.

If x is an example, it 
must have property A on 

top of property B.



  

The Aristotelian Forms

“All As are Bs”
 

∀x. (A(x) → B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))

“No As are Bs”
 

∀x. (A(x) → ¬B(x))

“Some As aren’t Bs”
 

∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns 
to memory. We’ll be using them 

throughout the day and they form the 
backbone of many frst-order logic 

translations.

It is worth committing these patterns 
to memory. We’ll be using them 

throughout the day and they form the 
backbone of many frst-order logic 

translations.



  

The Art of Translation



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in frst-order logic that means “every person 
loves someone else.”



  

Every person loves someone else 
 
 
 
 



  

Every person loves some other person 
 
 
 
 



  

Every person p loves some other person 
 
 
 
 



  

Every person p loves some other person 
 
 
 
 

“All As are Bs”
 

∀x. (A(x) → B(x))

“All As are Bs”
 

∀x. (A(x) → B(x))



  

∀p. (Person(p) → 
p loves some other person  

 
 
) 

“All As are Bs”
 

∀x. (A(x) → B(x))

“All As are Bs”
 

∀x. (A(x) → B(x))



  

∀p. (Person(p) → 
p loves some other person  

 
 
) 



  

∀p. (Person(p) → 
there is some other person that p loves 

 
 
) 



  

∀p. (Person(p) → 
there is a person other than p that p loves 

 
 
) 



  

∀p. (Person(p) → 
there is a person q, other than p, where 

p loves q 

) 



  

∀p. (Person(p) → 
there is a person q, other than p, where 

p loves q 

) 
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))



  

∀p. (Person(p) → 
∃q. (Person(q) ∧, other than p, where 

p loves q
) 

)
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))



  

∀p. (Person(p) → 
∃q. (Person(q) ∧, other than p, where 

p loves q
) 

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

p loves q
) 

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in frst-order logic that means “there is a 
person that everyone else loves.”



  

There is a person that everyone else loves 
 
 
 
 



  

There is a person p where everyone else loves p
 
 
 
 



  

There is a person p where everyone else loves p
 
 
 
 

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))



  

∃p. (Person(p) ∧ 
everyone else loves p

)
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))



  

∃p. (Person(p) ∧ 
everyone else loves p

)



  

∃p. (Person(p) ∧ 
every other person q loves p

)



  

∃p. (Person(p) ∧ 
every person q, other than p, loves p

)



  

∃p. (Person(p) ∧ 
every person q, other than p, loves p

)
“All As are Bs”

 

∀x. (A(x) → B(x))

“All As are Bs”
 

∀x. (A(x) → B(x))



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)
“All As are Bs”

 

∀x. (A(x) → B(x))

“All As are Bs”
 

∀x. (A(x) → B(x))



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

    ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

        Loves(p, q)
    )
)

Combining Quantifers

● Most interesting statements in frst-order 
logic require a combination of 
quantifers.

● Example: “Every person loves someone 
else”

For every person…

… there is another person 
… … they love

∀p. (Person(p) →

        Loves(p, q)
    )
)

    ∃q. (Person(q) ∧ p ≠ q ∧ 



  

    ∀q. (Person(q) ∧ p ≠ q →     ∀q. (Person(q) ∧ p ≠ q → 

∃p. (Person(p) ∧

        Loves(q, p)
    )
)

Combining Quantifers

● Most interesting statements in frst-order 
logic require a combination of 
quantifers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧There is a person…

… that everyone else …

… loves.         Loves(q, p)
    )
)



  

For Comparison

    ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

        Loves(p, q)
    )
)

For every person…

… there is another person 
… … they love

∀p. (Person(p) →

        Loves(p, q)
    )
)

    ∃q. (Person(q) ∧ p ≠ q ∧ 

    ∀q. (Person(q) ∧ p ≠ q →     ∀q. (Person(q) ∧ p ≠ q → 

∃p. (Person(p) ∧

        Loves(q, p)
    )
)

∃p. (Person(p) ∧
… that everyone else …

… loves.         Loves(q, p)
    )
)

There is a person…



  

Every Person Loves Someone Else



  

Every Person Loves Someone Else

No one here 
is universally 

loved.

No one here 
is universally 

loved.



  

There is Someone Everyone Else Loves



  

There is Someone Everyone Else Loves

This person 
does not 

love anyone 
else.

This person 
does not 

love anyone 
else.



  

Every Person Loves Someone Else and
There is Someone Everyone Else Loves



  

∧     

    ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

        Loves(p, q)
    )
)

For every person…

… there is another person 
… … they love

∀p. (Person(p) →

        Loves(p, q)
    )
)

    ∃q. (Person(q) ∧ p ≠ q ∧ 

and

    ∀q. (Person(q) ∧ p ≠ q →     ∀q. (Person(q) ∧ p ≠ q → 

∃p. (Person(p) ∧

        Loves(q, p)
    )
)

∃p. (Person(p) ∧There is a person…

… that everyone else …

… loves.         Loves(q, p)
    )
)



  

Quantifer Ordering

● The statement

 ∀x. ∃y. P(x, y)  

means “for any choice of x, there's some 
choice of y where P(x, y) is true.”

● The choice of y can be diferent every 
time and can depend on x.



  

Quantifer Ordering

● The statement

 ∃x. ∀y. P(x, y)  

means “there is some x where for any 
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any 
choice of y, this places a lot of 
constraints on what x can be.



  

Order matters when mixing existential 
and universal quantifers!



  

Time-Out for Announcements!



  

Problem Set Two

● Problem Set One was due today at 3:00PM.
● Want to use late days? Turn it in by Sunday at 3:00PM.

● Problem Set Two goes out today.
● There is no checkpoint assignment.
● All problems are due next Friday at 3:00PM.

● We have some reading recommendations for this 
problem set.
● Check out the Guide to Logic Translations for more on 

how to convert from English to FOL.
● Check out the Guide to Negations for information about 

how to negate formulas.
● Check out the First-Order Translation Checklist for 

details on how to check your work.



  

Back to CS103!



  

Set Translations



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “the empty 
set exists.”



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “the empty 
set exists.”

First-order logic doesn't have set 
operators or symbols “built in.” If we 
only have the predicates given above, 

how might we describe this?

First-order logic doesn't have set 
operators or symbols “built in.” If we 
only have the predicates given above, 

how might we describe this?



  

The empty set exists.(
(
(



  

There is some set S that is empty.(
(
(



  

∃S. (Set(S) ∧ 
S is empty. ∧

)



  

∃S. (Set(S) ∧ 
there are no elements in S∧

)



  

∃S. (Set(S) ∧ 
¬there is an element in S

)



  

∃S. (Set(S) ∧ 
¬there is an element x in S

)



  

∃S. (Set(S) ∧ 
¬∃x. x ∈ S

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
there are no elements in S(

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
every object does not belong to S(

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
every object x does not belong to S(

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
∀x. x ∉ S

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Both of these translations are correct. 
Just like in propositional logic, there 
are many diferent equivalent ways of 

expressing the same statement in 
frst-order logic.

Both of these translations are correct. 
Just like in propositional logic, there 
are many diferent equivalent ways of 

expressing the same statement in 
frst-order logic.



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “two sets are 
equal if and only if they contain the same elements.”



  

Two sets are equal if and only if they have the same elements.
)
)
)
)
)



  

Any two sets are equal if and only if they have the same 
elements.)
)
)
)
)



  

Any two sets S and T are equal if and only if they have the same 
elements.)
)
)
)
)



  

∀S. (Set(S) →
∀T. (Set(T) →

) S and T are equal if and only if they have the same
)  elements.)

)
)



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T if and only if they have the same elements.))

)
)



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ they have the same elements.))

)
)



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ S and T have the same elements.))

)
)



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ every element of S is an element of T and
  vice-versa)

)
)



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ x is an element of S if and only if x is an
  element of T)

)
)



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)

You sometimes see the universal quantifer pair 
with the  connective. This is especially common ↔
when talking about sets because two sets are 

equal when they have precisely the same 
elements.

You sometimes see the universal quantifer pair 
with the  connective. This is especially common ↔
when talking about sets because two sets are 

equal when they have precisely the same 
elements.



  

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)



  

Restricted Quantifers



  

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x) 
holds.” (It’s vacuously true if S is empty.)

● The notation

∃x ∈ S. P(x)

means “there is an element x of set S 
where P(x) holds.” (It’s false if S is empty.)



  

Quantifying Over Sets

● The syntax

∀x ∈ S. P(x)

∃x ∈ S. P(x)

is allowed for quantifying over sets.
● In CS103, feel free to use these restricted quantifers, but 

please do not use variants of this syntax.
● For example, don't do things like this:

⚠                  ∀x with P(x). Q(x)                     ⚠
⚠        ∀y such that P(y) ∧ Q(y). R(y).           ⚠
⚠                       ∃P(x). Q(x)                           ⚠

   



  

Let’s take a fve minute break!



  

Expressing Uniqueness



  

Using the predicate

   - WayToFindOut(w), which states that w is a way to fnd out,

write a sentence in frst-order logic that means “there is only 
one way to fnd out.”



  

There is only one way to find out. ∀
∀
∀



  

Something is a way to find out, and nothing else is. ∀
∀
∀



  

Some thing w is a way to find out, and nothing else is. ∀
∀
∀



  

Some thing w is a way to find out, and nothing besides w 
is a way to find out∀
∀



  

∃w. (WayToFindOut(w) ∧ 
nothing besides w is way to find out ∀

)



  

∃w. (WayToFindOut(w) ∧ 
anything that isn't w isn't a way to find out ∀

)



  

∃w. (WayToFindOut(w) ∧ 
any thing x that isn't w isn't a way to find out ∀∀

)



  

∃w. (WayToFindOut(w) ∧ 
∀x. (x ≠ w → x isn't a way to find out)

)



  

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → ¬WayToFindOut(x))

)



  

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → ¬WayToFindOut(x))

)



  

∃w. (WayToFindOut(w) ∧
∀x. (WayToFindOut(x) → x = w)

)



  

Expressing Uniqueness

● To express the idea that there is exactly one object 
with some property, we write that
● there exists at least one object with that property, and that
● there are no other objects with that property.

● You sometimes see a special “uniqueness quantifer” 
used to express this:

∃!x. P(x)  
● For the purposes of CS103, please do not use this 

quantifer. We want to give you more practice using 
the regular ∀ and ∃ quantifers.



  

Mechanics: Negating Statements



  

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)
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∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

Negating First-Order Statements

● Use the equivalences

¬∀x. A   ≡   ∃x. ¬A

¬∃x. A   ≡   ∀x. ¬A

to negate quantifers.
● Mechanically:

● Push the negation across the quantifer.
● Change the quantifer from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)



  

Two Useful Equivalences

● The following equivalences are useful when 
negating statements in frst-order logic:

¬(p ∧ q)     ≡     p → ¬q

¬(p → q)     ≡     p ∧ ¬q
● These identities are useful when negating 

statements involving quantifers.
● ∧ is used in existentially-quantifed statements.
● → is used in universally-quantifed statements.

● When pushing negations across quantifers, we 
strongly recommend using the above equivalences 
to keep → with ∀ and ∧ with ∃.



  

Negating Quantifers

● What is the negation of the following statement, which 
says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● This says “no puppy is cute.”
● Do you see why this is the negation of the original 

statement from both an intuitive and formal 
perspective?



  

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set with no elements.”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)
(“Every set contains at least one element.”)



  

These two statements are not negations of 
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)

Remember:  usually ∀

goes with , not → ∧

Remember:  usually ∀

goes with , not → ∧



  

Next Time

● Binary Relations
● How do we model connections between objects?

● Equivalence Relations
● How do we model the idea that objects can be 

grouped into clusters?
● First-Order Defnitions

● Where does frst-order logic come into all of this?
● Proofs with Defnitions

● How does frst-order logic interact with proofs?
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