

Binary Relations

Outline for Today

● Binary Relations
● Reasoning about connections between

objects.
● Equivalence Relations

● Reasoning about clusters.
● Strict Orders

● Reasoning about prerequisites.

Relationships

● In CS103, you've seen examples of relationships
● between sets:

A ⊆ B
● between numbers:

x < y x ≡ₖ y x ≤ y
● between people:

p loves q

● Since these relations focus on connections
between two objects, they are called binary
relations.
● The “binary” here means “pertaining to two things,”

not “made of zeros and ones.”

What exactly is a binary relation?

<

10 12

<

10 12

<

10 < 12

<

<

5 -2

<

5 -2

5 <≮ -2

≡₃

≡₃

7 10

7 10

≡₃

7 ≡₃ 10

≡₃

6 11

≡₃

6 11

6 ≡≮₃ 11

R

a b

R

a b

aRb

R

a b

R

a b

aR̸b

R

Binary Relations

● A binary relation over a set A is a predicate
R that can be applied to ordered pairs of
elements drawn from A.

● If R is a binary relation over A and it holds for
the pair (a, b), we write aRb.

3 = 3 5 < 7 Ø ⊆ ℕ
● If R is a binary relation over A and it does not

hold for the pair (a, b), we write aR̸b.

4 ≠ 3 4 <≮ 3 ℕ ⊆≮ Ø

Properties of Relations

● Generally speaking, if R is a binary relation over
a set A, the order of the operands is signifcant.
● For example, 3 < 5, but 5 <≮ 3.
● In some relations order is irrelevant; more on that

later.
● Relations are always defned relative to some

underlying set.
● It's not meaningful to ask whether ☺ ⊆ 15, for

example, since ⊆ is defned over sets, not arbitrary
objects.

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing an arrow
between an element a and an element b if aRb is true.

● Example: the relation a | b (meaning “a divides b”) over
the set {1, 2, 3, 4} looks like this:

1

2

4

3

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing an arrow
between an element a and an element b if aRb is true.

● Example: the relation a ≠ b over the set {1, 2, 3, 4}
looks like this:

1

2

4

3

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing an arrow
between an element a and an element b if aRb is true.

● Example: the relation a = b over the set {1, 2, 3, 4}
looks like this:

1

2

4

3

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing an arrow
between an element a and an element b if aRb is true.

● Example: below is some relation over {1, 2, 3, 4} that's
a totally valid relation even though there doesn't
appear to be a simple unifying rule.

1

2

4

3

Capturing Structure

Capturing Structure

● Binary relations are an excellent way for
capturing certain structures that appear
in computer science.

● Today, we'll look at two examples
(partitions and prerequisites).

● Then on Wednesday, we'll explore how to
write proofs about defnitions given in
frst-order logic.

Partitions

Partitions

● A partition of a set is a way of splitting the set
into disjoint, nonempty subsets so that every
element belongs to exactly one subset.
● Two sets are disjoint if their intersection is the

empty set; formally, sets S and T are disjoint
if S ∩ T = Ø.

● Intuitively, a partition of a set breaks the set
apart into smaller pieces.

● There doesn't have to be any rhyme or reason to
what those pieces are, though often there is one.

Partitions and Clustering

● If you have a set of data, you can often
learn something from the data by fnding
a “good” partition of that data and
inspecting the partitions.
● Usually, the term clustering is used in data

analysis rather than partitioning.
● Interested to learn more? Take CS161 or

CS246!

What's the connection between partitions
and binary relations?

a a

a a

a b

a b

a b

ab

a b

a b

a bc

b c

ab c

ca

ba cb ca

ba ab

aa

→

∧ →

→

→∧

aRa

aRb bRa

aRb bRc aRc

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

Refexivity

● Some relations always hold from any element to
itself.

● Examples:
● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called refexive.
● Formally speaking, a binary relation R over a set A is

refexive if the following frst-order statement is true:

∀a ∈ A. aRa

(“Every element is related to itself.”)

Refexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)

∀a ∈ A. aRa
(“Every element is related to itself.”)

Let R be the
 relation drawn
 to the left. Is R

 refexive?

Let R be the
 relation drawn
 to the left. Is R

 refexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)

∀a ∈ A. aRa
(“Every element is related to itself.”)

a

∀a ∈ A. aRa
(“Every element is related to itself.”)

a

∀a ∈ A. aRa
(“Every element is related to itself.”)

a

This means that R is
not refexive, since
the frst-order logic

statement given
below is not true.

This means that R is
not refexive, since
the frst-order logic

statement given
below is not true.

Is refexive?Is refexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is refexive?Is refexive?

∀a ∈ ??. a a

Is refexive?Is refexive?

∀a ∈ ??. a a

Refexivity is a property
of relations, not

individual objects.

Refexivity is a property
of relations, not

individual objects.

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

Symmetry

● In some relations, the relative order of the objects
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called

symmetric if the following frst-order statement is true
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

(“If a is related to b, then b is related to a.”)

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if the

following frst-order statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b

Equivalence Relations

● An equivalence relation is a relation
that is refexive, symmetric and
transitive.

● Some examples:
● x = y
● x ≡ₖ y
● x has the same color as y
● x has the same shape as y.

Time-Out for Announcements!

Problem Set One Solutions

● We’ve just released solutions to Problem Set
One, both in hardcopy and online.

● You need to read over these solutions as
soon as possible.

● Why?
● Each question is there for a reason. We’ve described

what it is that we hoped you would have learned
when solving those problems.

● There are lots of diferent ways of solving these
problems. Comparing what you did against our
solutions, which are just one possible set of solutions,
can help introduce new techniques.

Problem Set Two

● The problem set is due Friday at 3:00PM.
● Have questions?

● Stop by ofice hours!
● Ask on Piazza!

● General problem set policy reminders:
● Please tag your pages on Gradescope
● All solutions must be typed
● Partners should only make one submission – put both

partners names on the PDF and tag both partners on
Gradescope

● Working in partners is encouraged!

Back to CS103!

What's the connection between partitions
and binary relations?

 xRy if x and y have the same shape

 xTy if x and y have the same color

Equivalence Classes

● Given an equivalence relation R over a
set A, for any x ∈ A, the equivalence
class of x is the set

[x]R = { y ∈ A | xRy }

● Intuitively, the set [x]R contains all
elements of A that are related to x by
relation R.

 xRy if x and y have the same shape

[]R []R[]R

The Fundamental Theorem of
Equivalence Relations: Let R be an
equivalence relation over a set A. Then
every element a ∈ A belongs to exactly one
equivalence class of R.

 xRy if x and y have the same shape

[]R []R[]R

How’d We Get Here?

● We discovered equivalence relations by
thinking about partitions of a set of elements.

● We saw that if we had a binary relation that
tells us whether two elements are in the same
group, it had to be refexive, symmetric, and
transitive.

● The FToER says that, in some sense, these
rules precisely capture what it means to be a
partition.

Binary relations give us a common
language to describe common

structures.

Equivalence Relations IRL

● Most modern programming languages include some
sort of hash table data structure.
● Java: HashMap
● C++: std::unordered_map
● Python: dict

● If you insert a key/value pair and then try to look up a
key, the implementation has to be able to tell whether
two keys are equal.

● Although each language has a diferent mechanism for
specifying this, many languages describe them in
similar ways...

Equivalence Relations IRL

“The equals method implements an equivalence
relation on non-null object references:
● It is refexive: for any non-null reference value x,
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and
y, x.equals(y) should return true if and only if
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y,
and z, if x.equals(y) returns true and y.equals(z) returns
true, then x.equals(z) should return true.”

Java 8 Documentation

Equivalence Relations IRL

“The equals method implements an equivalence
relation on non-null object references:
● It is refexive: for any non-null reference value x,
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and
y, x.equals(y) should return true if and only if
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y,
and z, if x.equals(y) returns true and y.equals(z) returns
true, then x.equals(z) should return true.”

Java 8 Documentation

Equivalence Relations IRL

“Each unordered associative container is
parameterized by Key, by a function object type
Hash that meets the Hash requirements
(17.6.3.4) and acts as a hash function for
argument values of type Key, and by a binary
predicate Pred that induces an equivalence
relation on values of type Key. Additionally,
unordered_map and unordered_multimap associate
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3

Equivalence Relations IRL

“Each unordered associative container is
parameterized by Key, by a function object type
Hash that meets the Hash requirements
(17.6.3.4) and acts as a hash function for
argument values of type Key, and by a binary
predicate Pred that induces an equivalence
relation on values of type Key. Additionally,
unordered_map and unordered_multimap associate
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3

Prerequisite Structures

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical
Foundations of

Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T

h
e
o
ry

S
ys

te
m

s

Pancakes

Everyone's got a pancake recipe. This one comes from Food Wishes
(http://foodwishes.blogspot.com/2011/08/grandma-kellys-good-old-
fashioned.html).

Ingredients

 · 1 1/2 cups all-purpose four
 · 3 1/2 tsp baking powder
 · 1 tsp salt
 · 1 tbsp sugar
 · 1 1/4 cup milk
 · 1 egg
 · 3 tbsp butter, melted

Directions

1. Sift the dry ingredients together.
2. Stir in the butter, egg, and milk. Whisk together to form the batter.
3. Heat a large pan or griddle on medium-high heat. Add some oil.
4. Make pancakes one at a time using 1/4 cup batter each. They're ready
 to fip when the centers of the pancakes start to bubble.

Measure
Flour

Measure
Baking Pwdr

Measure
Salt

Measure
Sugar

Measure
Milk

Melt
Butter

Beat Egg

Combine Dry
Ingredients

Heat
Griddle

Oil
Griddle

Add Wet
Ingredients

Make
Pancakes

Serve
Pancakes

Relations and Prerequisites

● Let's imagine that we have a prerequisite
structure with no circular dependencies.

● We can think about a binary relation R
where aRb means

“a must happen before b”
● What properties of R could we deduce

just from this?

a a

aa

a b

a b

a bc

b c

ab c

ca

a b

a b

a b

ab

aa

ba cb ca

∧ →

ba ab

→

aRa

aRb ∧ bRc → aRc

aRb → bRa

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Irrefexivity

● Some relations never hold from any element to
itself.

● As an example, x <≮ x for any x.

● Relations of this sort are called irrefexive.
● Formally speaking, a binary relation R over a

set A is irrefexive if the following frst-order
logic statement is true about R:

∀a ∈ A. aR̸a

(“No element is related to itself.”)

Irrefexivity Visualized

∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation
refexive?

Is this relation
refexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation
refexive?

Is this relation
refexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation
refexive?

Is this relation
refexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation
refexive?

Is this relation
refexive?

Nope!

Is this relation
irrefexive?

Is this relation
irrefexive?

∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation
irrefexive?

Is this relation
irrefexive?

∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation
irrefexive?

Is this relation
irrefexive?

∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation
irrefexive?

Is this relation
irrefexive?

Nope!

Refexivity and Irrefexivity

● Refexivity and irrefexivity are not negations
of one another!

● Here's the defnition of refexivity:

∀a ∈ A. aRa
● What is the negation of the above statement?

∃a ∈ A. aR̸a
● What is the defnition of irrefexivity?

∀a ∈ A. aR̸a

∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Irrefexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Irrefexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Asymmetry

● In some relations, the relative order of the
objects can never be reversed.

● As an example, if x < y, then y <≮ x.
● These relations are called asymmetric.
● Formally: a binary relation R over a set A is called

asymmetric if the following frst-order logic
statement is true about R:

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)

(“If a relates to b, then b does not relate to a.”)

Asymmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)
(“If a relates to b, then b does not relate to a.”)

Question to Ponder: Are symmetry and
asymmetry negations of one another?

Irrefexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Irrefexivity

Transitivity

Asymmetry

Strict Orders

● A strict order is a relation that is irrefexive,
asymmetric and transitive.

● Some examples:

x < y.

a can run faster than b.

A ⊊ B (that is, A ⊆ B and A ≠ B).
● Strict orders are useful for

● representing prerequisite structures,
● modeling dependencies,
● listing preferences,
● and so much more!

Strict Orders IRL

● In C++, many STL containers rely on strict orders to
defne the relative position of elements in terms of
precedence of one item over other.

● Eg. the std::set which is implemented with a binary
search tree.

● If you want to use std::sort, you have to provide a
comparator function or overload the < operator.

● If you overload the < operator, C++ requires that
the < relation be a strict order over the underlying
type!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172

