
  

Binary Relations



  

Outline for Today

● Binary Relations
● Reasoning about connections between 

objects.
● Equivalence Relations

● Reasoning about clusters.
● Strict Orders

● Reasoning about prerequisites.



  

Relationships

● In CS103, you've seen examples of relationships
● between sets:

A ⊆ B
● between numbers:

x < y         x ≡ₖ y         x ≤ y
● between people:

p loves q

● Since these relations focus on connections 
between two objects, they are called binary 
relations.
● The “binary” here means “pertaining to two things,” 

not “made of zeros and ones.”



  

What exactly is a binary relation?
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Binary Relations

● A binary relation over a set A is a predicate 
R that can be applied to ordered pairs of 
elements drawn from A.

● If R is a binary relation over A and it holds for 
the pair (a, b), we write aRb.

3 = 3                5 < 7                Ø ⊆ ℕ
● If R is a binary relation over A and it does not 

hold for the pair (a, b), we write aR̸b.

4 ≠ 3                4 <≮ 3                ℕ ⊆≮ Ø



  

Properties of Relations

● Generally speaking, if R is a binary relation over 
a set A, the order of the operands is signifcant.
● For example, 3 < 5, but 5 <≮ 3.
● In some relations order is irrelevant; more on that 

later.
● Relations are always defned relative to some 

underlying set.
● It's not meaningful to ask whether ☺ ⊆ 15, for 

example, since ⊆ is defned over sets, not arbitrary 
objects.



  

Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow 
between an element a and an element b if aRb is true.

● Example: the relation a | b (meaning “a divides b”) over 
the set {1, 2, 3, 4} looks like this:

1

2

4

3



  

Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow 
between an element a and an element b if aRb is true.

● Example: the relation a ≠ b over the set {1, 2, 3, 4} 
looks like this:

1

2

4

3



  

Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow 
between an element a and an element b if aRb is true.

● Example: the relation a = b over the set {1, 2, 3, 4} 
looks like this:

1

2

4

3



  

Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow 
between an element a and an element b if aRb is true.

● Example: below is some relation over {1, 2, 3, 4} that's 
a totally valid relation even though there doesn't 
appear to be a simple unifying rule.

1

2

4

3



  

Capturing Structure



  

Capturing Structure

● Binary relations are an excellent way for 
capturing certain structures that appear 
in computer science.

● Today, we'll look at two examples 
(partitions and prerequisites).

● Then on Wednesday, we'll explore how to 
write proofs about defnitions given in 
frst-order logic.



  

Partitions



  



  



  



  



  



  



  



  



  



  



  

Partitions

● A partition of a set is a way of splitting the set 
into disjoint, nonempty subsets so that every 
element belongs to exactly one subset.
● Two sets are disjoint if their intersection is the 

empty set; formally, sets S and T are disjoint 
if S ∩ T = Ø.

● Intuitively, a partition of a set breaks the set 
apart into smaller pieces.

● There doesn't have to be any rhyme or reason to 
what those pieces are, though often there is one.



  

Partitions and Clustering

● If you have a set of data, you can often 
learn something from the data by fnding 
a “good” partition of that data and 
inspecting the partitions.
● Usually, the term clustering is used in data 

analysis rather than partitioning.
● Interested to learn more? Take CS161 or 

CS246!



  

What's the connection between partitions 
and binary relations?



  



  

a a



  

a a



  



  

a b



  

a b



  

a b



  

ab



  



  

a b



  

a b



  

a bc



  

b c



  

ab c



  

ca



  

ba cb ca

ba ab

aa

→

∧ →



  

→

→∧

aRa

aRb bRa

aRb bRc aRc



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



  

Refexivity

● Some relations always hold from any element to 
itself.

● Examples:
● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called refexive.
● Formally speaking, a binary relation R over a set A is 

refexive if the following frst-order statement is true:

∀a ∈ A. aRa   

(“Every element is related to itself.”)   



  

Refexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

Let R be the
 relation drawn
 to the left. Is R

 refexive?

Let R be the
 relation drawn
 to the left. Is R

 refexive?



  

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

a



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

a



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

a

This means that R is 
not refexive, since 
the frst-order logic 

statement given 
below is not true.

This means that R is 
not refexive, since 
the frst-order logic 

statement given 
below is not true.



  

Is           refexive?Is           refexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

Is           refexive?Is           refexive?

∀a ∈ ??. a      a



  

Is           refexive?Is           refexive?

∀a ∈ ??. a      a

Refexivity is a property 
of relations, not 

individual objects.

Refexivity is a property 
of relations, not 

individual objects.



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



  

Symmetry

● In some relations, the relative order of the objects 
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called 

symmetric if the following frst-order statement is true 
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)  

(“If a is related to b, then b is related to a.”)



  

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b



  

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



  

Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if the 

following frst-order statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)



  

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



  

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



  

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b



  

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b



  

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b



  

Equivalence Relations

● An equivalence relation is a relation 
that is refexive, symmetric and 
transitive.

● Some examples:
● x = y
● x ≡ₖ y
● x has the same color as y
● x has the same shape as y.



  

Time-Out for Announcements!



  

Problem Set One Solutions

● We’ve just released solutions to Problem Set 
One, both in hardcopy and online.

● You need to read over these solutions as 
soon as possible.

● Why?
● Each question is there for a reason. We’ve described 

what it is that we hoped you would have learned 
when solving those problems.

● There are lots of diferent ways of solving these 
problems. Comparing what you did against our 
solutions, which are just one possible set of solutions, 
can help introduce new techniques.



  

Problem Set Two

● The problem set is due Friday at 3:00PM.
● Have questions?

● Stop by ofice hours!
● Ask on Piazza!

● General problem set policy reminders:
● Please tag your pages on Gradescope
● All solutions must be typed
● Partners should only make one submission – put both 

partners names on the PDF and tag both partners on 
Gradescope

● Working in partners is encouraged!



  

Back to CS103!



  

What's the connection between partitions 
and binary relations?



  xRy    if    x and y have the same shape



  xTy    if    x and y have the same color



  

Equivalence Classes

● Given an equivalence relation R over a 
set A, for any x ∈ A, the equivalence 
class of x is the set

[x]R = { y ∈ A | xRy }

● Intuitively, the set [x]R contains all 
elements of A that are related to x by 
relation R.



  xRy    if    x and y have the same shape

[    ]R [    ]R[    ]R



  

The Fundamental Theorem of 
Equivalence Relations: Let R be an 
equivalence relation over a set A. Then 
every element a ∈ A belongs to exactly one 
equivalence class of R.



  xRy    if    x and y have the same shape

[    ]R [    ]R[    ]R



  

How’d We Get Here?

● We discovered equivalence relations by 
thinking about partitions of a set of elements.

● We saw that if we had a binary relation that 
tells us whether two elements are in the same 
group, it had to be refexive, symmetric, and 
transitive.

● The FToER says that, in some sense, these 
rules precisely capture what it means to be a 
partition.



  

Binary relations give us a common 
language to describe common 

structures.



  

Equivalence Relations IRL

● Most modern programming languages include some 
sort of hash table data structure.
● Java: HashMap
● C++: std::unordered_map
● Python: dict

● If you insert a key/value pair and then try to look up a 
key, the implementation has to be able to tell whether 
two keys are equal.

● Although each language has a diferent mechanism for 
specifying this, many languages describe them in 
similar ways...



  

Equivalence Relations IRL

“The equals method implements an equivalence 
relation on non-null object references:
● It is refexive: for any non-null reference value x, 
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and 
y, x.equals(y) should return true if and only if 
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y, 
and z, if x.equals(y) returns true and y.equals(z) returns 
true, then x.equals(z) should return true.”

Java 8 Documentation



  

Equivalence Relations IRL

“The equals method implements an equivalence 
relation on non-null object references:
● It is refexive: for any non-null reference value x, 
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and 
y, x.equals(y) should return true if and only if 
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y, 
and z, if x.equals(y) returns true and y.equals(z) returns 
true, then x.equals(z) should return true.”

Java 8 Documentation



  

Equivalence Relations IRL

“Each unordered associative container is 
parameterized by Key, by a function object type 
Hash that meets the Hash requirements 
(17.6.3.4) and acts as a hash function for 
argument values of type Key, and by a binary 
predicate Pred that induces an equivalence 
relation on values of type Key. Additionally, 
unordered_map and unordered_multimap associate 
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3



  

Equivalence Relations IRL

“Each unordered associative container is 
parameterized by Key, by a function object type 
Hash that meets the Hash requirements 
(17.6.3.4) and acts as a hash function for 
argument values of type Key, and by a binary 
predicate Pred that induces an equivalence 
relation on values of type Key. Additionally, 
unordered_map and unordered_multimap associate 
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3



  

Prerequisite Structures
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Pancakes
 

Everyone's got a pancake recipe. This one comes from Food Wishes 
(http://foodwishes.blogspot.com/2011/08/grandma-kellys-good-old-
fashioned.html).
 

Ingredients
 

  · 1 1/2 cups all-purpose four
  · 3 1/2 tsp baking powder
  · 1 tsp salt
  · 1 tbsp sugar
  · 1 1/4 cup milk
  · 1 egg
  · 3 tbsp butter, melted
 

Directions
 

1. Sift the dry ingredients together.
2. Stir in the butter, egg, and milk. Whisk together to form the batter.
3. Heat a large pan or griddle on medium-high heat. Add some oil.
4. Make pancakes one at a time using 1/4 cup batter each. They're ready
    to fip when the centers of the pancakes start to bubble.



  

Measure
Flour

Measure
Baking Pwdr

Measure
Salt

Measure
Sugar

Measure
Milk

Melt
Butter

Beat Egg

Combine Dry
Ingredients

Heat
Griddle

Oil
Griddle

Add Wet
Ingredients

Make
Pancakes

Serve
Pancakes



  

Relations and Prerequisites

● Let's imagine that we have a prerequisite 
structure with no circular dependencies.

● We can think about a binary relation R 
where aRb means

“a must happen before b”
● What properties of R could we deduce 

just from this?
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aRb ∧ bRc → aRc

aRb → bRa



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Irrefexivity

● Some relations never hold from any element to 
itself.

● As an example, x <≮ x for any x.

● Relations of this sort are called irrefexive.
● Formally speaking, a binary relation R over a 

set A is irrefexive if the following frst-order 
logic statement is true about R:

∀a ∈ A. aR̸a   

(“No element is related to itself.”)   



  

Irrefexivity Visualized

∀a ∈ A. aR̸a
(“No element is related to itself.”)



  



  

Is this relation 
refexive?

Is this relation 
refexive?



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation 
refexive?

Is this relation 
refexive?



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation 
refexive?

Is this relation 
refexive?



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation 
refexive?

Is this relation 
refexive?

Nope!



  



  

Is this relation 
irrefexive?

Is this relation 
irrefexive?



  

∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation 
irrefexive?

Is this relation 
irrefexive?



  

∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation 
irrefexive?

Is this relation 
irrefexive?



  

∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation 
irrefexive?

Is this relation 
irrefexive?

Nope!



  

Refexivity and Irrefexivity

● Refexivity and irrefexivity are not negations 
of one another!

● Here's the defnition of refexivity:

∀a ∈ A. aRa
● What is the negation of the above statement?

∃a ∈ A. aR̸a
● What is the defnition of irrefexivity?

∀a ∈ A. aR̸a



  

∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Irrefexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Irrefexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Asymmetry

● In some relations, the relative order of the 
objects can never be reversed.

● As an example, if x < y, then y <≮ x.
● These relations are called asymmetric.
● Formally: a binary relation R over a set A is called 

asymmetric if the following frst-order logic 
statement is true about R:

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)  

(“If a relates to b, then b does not relate to a.”)



  

Asymmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)
(“If a relates to b, then b does not relate to a.”)



  

Question to Ponder: Are symmetry and 
asymmetry negations of one another?



  

Irrefexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Irrefexivity

Transitivity

Asymmetry



  

Strict Orders

● A strict order is a relation that is irrefexive, 
asymmetric and transitive.

● Some examples:

x < y.

a can run faster than b.

A  ⊊ B (that is, A ⊆ B and A ≠ B).
● Strict orders are useful for

● representing prerequisite structures,
● modeling dependencies,
● listing preferences,
● and so much more!



  

Strict Orders IRL

● In C++, many STL containers rely on strict orders to 
defne the relative position of elements in terms of 
precedence of one item over other.

● Eg. the std::set which is implemented with a binary 
search tree.

● If you want to use std::sort, you have to provide a 
comparator function or overload the < operator. 

● If you overload the < operator, C++ requires that 
the < relation be a strict order over the underlying 
type!
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