
  

Mathematical Proofs



  

Outline for Today

● How to Write a Proof
● Synthesizing definitions, intuitions, and 

conventions.
● Proofs on Numbers

● Working with odd and even numbers.
● Universal and Existential Statements

● Two important classes of statements.
● Proofs on Sets

● From Venn diagrams to rigorous math.



  

What is a Proof?



  

A proof is an argument that
demonstrates why a conclusion is true, 
subject to certain standards of truth.



  

A mathematical proof is an argument 
that demonstrates why a mathematical 
statement is true, following the rules of 

mathematics.
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What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Writing our First Proof



  

Theorem: If n is an even integer,
then n2 is even.
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An integer n is called even if
there is an integer k where n = 2k.

10

8

0

2 · 5

2 · 4

2 · 0
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What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  Theorem: If n is an even integer, then n2 is even.

22  =  4 = 2 · 2
 

102  =  100 = 2 · 50
  

02  =  0 = 2 · 0
 

(-8)2  =  64 = 2 · 32
 

n2   =   = 2 · ?

Let’s Try Some Examples!

What’s the 
pattern? How do 
we predict this?

What’s the 
pattern? How do 
we predict this?



  Theorem: If n is an even integer, then n2 is even.

n

Let’s Draw Some Pictures!



  Theorem: If n is an even integer, then n2 is even.

k k

k

k

n2 = 2(2k2)

Let’s Draw Some Pictures!
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Our First Proof! 😃

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■ This symbol 
means “end of 

proof”

This symbol 
means “end of 

proof”



  

Our First Proof! 😃

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■

To prove a statement of the 
form

“If P, then Q”

Assume that P is true, then show 
that Q must be true as well.

To prove a statement of the 
form

“If P, then Q”

Assume that P is true, then show 
that Q must be true as well.



  

Our First Proof! 😃

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■

This is the definition of an 
even integer. We need to 
use this definition to make 

this proof rigorous.

This is the definition of an 
even integer. We need to 
use this definition to make 

this proof rigorous.



  

Our First Proof! 😃

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■

Notice how we use the value of k that we 
obtained above. Giving names to quantities, 
even if we aren't fully sure what they are, 
allows us to manipulate them. This is similar 

to variables in programs.

Notice how we use the value of k that we 
obtained above. Giving names to quantities, 
even if we aren't fully sure what they are, 
allows us to manipulate them. This is similar 

to variables in programs.



  

Our First Proof! 😃

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■

Our ultimate goal is to prove that 
n2 is even. This means that we 
need to find some m such that
n2 = 2m. Here, we're explicitly 
showing how we can do that.

Our ultimate goal is to prove that 
n2 is even. This means that we 
need to find some m such that
n2 = 2m. Here, we're explicitly 
showing how we can do that.



  

Our First Proof! 😃

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■

Hey, that's what we were trying 
to show! We're done now.

Hey, that's what we were trying 
to show! We're done now.



  

Our First Proof! 😃

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■



  

Our Next Proof



  

Theorem: For any integers m and n,
if m and n are odd, then m + n is even.
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What terms are 
used in this proof? 

What do they 
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What does this 
theorem mean? 
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should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

An integer n is called odd if
there is an integer k where n = 2k+1.

11

7

1

2 · 5 + 1

2 · 3 + 1

2 · 0 + 1



  

Going forward, we’ll assume the following:

  1. Every integer is either even or odd.
  2. No integer is both even and odd.
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Theorem: For any integers m and n,
if m and n are odd, then m+n is even.

Let’s Try Some Examples!

    1 + 1 =     2 =  2 · 1
 

137 + 103 =   240 =  2 · 120
 

   -5 + 5 =     0 =  2 · 0
 

   m + n =  2 · ?

What’s the 
pattern? How do 
we predict this?

What’s the 
pattern? How do 
we predict this?



  

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.

Let’s Do Some Math!
k r

2k+1 2r+1

(2k+1) + (2r+1) = 2(k + r + 1)

1
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What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
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Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such 
that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■
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m + n is even.
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such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

This is called making arbitrary choices. 
Rather than specifying what m and n are, 
we’re signaling to the reader that they 

could, in principle, supply any choices of m 
and n that they’d like.

 

By picking m and n arbitrarily, anything we 
prove about m and n will generalize to all 

possible choices we could have made.

This is called making arbitrary choices. 
Rather than specifying what m and n are, 
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could, in principle, supply any choices of m 
and n that they’d like.
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prove about m and n will generalize to all 

possible choices we could have made.



  

Theorem: For any integers m and n, if m and n are odd, then
m + n is even.
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                         m = 2k + 1.     (1)
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                         n = 2r + 1.         (2)
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         = 2k + 2r + 2
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Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

To prove a statement of the form

“If P, then Q”

Assume that P is true, then show 
that Q must be true as well.

To prove a statement of the form

“If P, then Q”

Assume that P is true, then show 
that Q must be true as well.



  

Theorem: For any integers m and n, if m and n are odd, then
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odd. Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such 
that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

Numbering these equalities lets us 
refer back to them later on, 

making the flow of the proof a bit 
easier to understand.

Numbering these equalities lets us 
refer back to them later on, 

making the flow of the proof a bit 
easier to understand.



  

Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)
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                         n = 2r + 1.         (2)
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                          m + n = 2k + 1 + 2r + 1
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Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

This is a complete sentence! Proofs are 
expected to be written in complete sentences, 
so you’ll often use punctuation at the end of 

formulas.
 

We recommend using the “mugga mugga” test 
– if you read a proof and replace all the 
mathematical notation with “mugga mugga,” 
what comes back should be a valid sentence.
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Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such 
that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■



  

Some Little Exercises

● Here’s a list of other theorems that are true about odd 
and even numbers:
● Theorem: The sum and difference of any two even numbers is 

even.
● Theorem: The sum and difference of an odd number and an 

even number is odd.
● Theorem: The product of any integer and an even number is 

even.
● Theorem: The product of any two odd numbers is odd.

● Going forward, we’ll just take these results for granted. 
Feel free to use them in the problem sets.

● If you’d like to practice the techniques from today, try 
your hand at proving these results!



  

Universal and Existential Statements



  

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.
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Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

This result is true for every possible 
choice of odd integer n. It’ll work 
for n = 1, n = 137, n = 103, etc.

This result is true for every possible 
choice of odd integer n. It’ll work 
for n = 1, n = 137, n = 103, etc.



  

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

We aren’t saying this is true for 
every choice of r and s. Rather, 
we’re saying that somewhere out 

there are choices of r and s where 
this works.

We aren’t saying this is true for 
every choice of r and s. Rather, 
we’re saying that somewhere out 

there are choices of r and s where 
this works.



  

Universal vs. Existential Statements

● A universal statement is a statement of 
the form

For all x, [some-property] holds for x.

● We've seen how to prove these statements.
● An existential statement is a statement of 

the form
There is some x where [some-property] holds for x.

● How do you prove an existential statement?



  

Proving an Existential Statement

● Over the course of the quarter, we will 
see several different ways to prove an 
existential statement of the form
There is an x where [some-property] holds for x.

● Simplest approach: Search far and 
wide, find an x that has the right 
property, then show why your choice is 
correct.
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1 = ___ 2 – ___ 2

3 = ___ 2 – ___ 2

5 = ___ 2 – ___ 2

7 = ___ 2 – ___ 2

9 = ___ 2 – ___ 2

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Try Some Examples!

1 = ___ 2 – ___ 2

3 = 2 2 – 1 2

5 = 3 2 – 2 2

7 = 4 2 – 3 2

9 = 5 2 – 4 2

1 = 1 2 – 0 2

We’ve got a 
pattern – but 
why does this 

work?

We’ve got a 
pattern – but 
why does this 

work?



  

k +1

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Draw Some Pictures!

k

(k+1)2  –  k2  =  2k+1
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Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

 Now, let r = k+1 and s = k. Then we see that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we 
needed to show. ■
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needed to show. ■

We make an arbitrary choice. Rather than 
specifying what n is, we’re signaling to the 
reader that they could, in principle, supply 

any choice n that they’d like.

We make an arbitrary choice. Rather than 
specifying what n is, we’re signaling to the 
reader that they could, in principle, supply 

any choice n that they’d like.



  

Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

 Now, let r = k+1 and s = k. Then we see that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we 
needed to show. ■

We’re trying to prove an 
existential statement. The easiest 
way to do that is to just give 
concrete choices of the objects 

being sought out.

We’re trying to prove an 
existential statement. The easiest 
way to do that is to just give 
concrete choices of the objects 

being sought out.



  

Time-Out for Announcements!



  



  

CURIS Poster Session

● There’s a CURIS poster session showcasing work from 
the summer going on from 3PM – 5PM Friday on the 
Packard lawn. Feel free to stop on by!

● Interested in seeing what research projects are open 
right now? Visit https://curis.stanford.edu.

● Have questions about research or how CURIS works?
● Email PhD students and CURIS mentors Griffin Dietz and 

Kexin Rong at curis-mentors@cs.stanford.edu.
● Email CURIS admin Nan Aoki at nanaoki@cs.stanford.edu.
● Email Phil Levis, the professor who runs CURIS, at 

pal@cs.stanford.edu.

https://curis.stanford.edu/
mailto:curis-mentors@cs.stanford.edu
mailto:nanaoki@cs.stanford.edu
mailto:pal@cs.stanford.edu


  

Piazza

● We have a Piazza site for CS103.
● Sign in to www.piazza.com and search 

for the course CS103 to sign in.
● Feel free to ask us questions!
● Use the site to find a partner for the 

problem sets!

http://www.piazza.com/


  

Qt Creator Help Session

● The lovely CS106B/X folks have invited all y’all 
to join them for a Qt Creator Help Session this 
evening if you’re having trouble getting Qt 
Creator up and running on your system.

● Runs 7:30PM – 9:30PM in the Tresidder first 
floor lounge.

● SCPD students – please reach out to us if you 
need help setting things up. We’ll do our best 
to help out.



  

Back to CS103!



  

Proofs on Sets



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).
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Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

This is the element-of relation ∈. It 
means that this object x is one of the 

items inside these sets.

This is the element-of relation ∈. It 
means that this object x is one of the 

items inside these sets.



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

What are 
these, again?

What are 
these, again?



  

Set Combinations

● In our last lecture, we saw four ways of 
combining sets together.

● The above pictures give a holistic sense of 
how these operations work.

● However, mathematical proofs tend to 
work on sets in a different way.

S ∪ T S ∩ T S – T S Δ T



  

Important Fact:
 

Proofs about sets almost always focus on 
individual elements of those sets. It’s rare 
to talk about how collections relate to one 

another “in general.”



  

S ∪ T

Set Union

Definition: The set S ∪ T is the set where, for any x:
x ∈ S ∪ T      when     x ∈ S or x ∈ T (or both)

 

If you know that x ∈ S ∪ T:
    You can conclude that x ∈ S or that x ∈ T (or both).
 

To prove that x ∈ S ∪ T:
    Prove either that x ∈ S or that x ∈ T (or both).

Definition: The set S ∪ T is the set where, for any x:
x ∈ S ∪ T      when     x ∈ S or x ∈ T (or both)

 

If you know that x ∈ S ∪ T:
    You can conclude that x ∈ S or that x ∈ T (or both).
 

To prove that x ∈ S ∪ T:
    Prove either that x ∈ S or that x ∈ T (or both).



  

S ∩ T

Set Intersection

Definition: The set S ∩ T is the set where, for any x:
x ∈ S ∩ T      when     x ∈ S and x ∈ T

 

If you know that x ∈ S ∩ T:
    You can conclude both that x ∈ S and that x ∈ T.
 

To prove that x ∈ S ∩ T:
    Prove both that x ∈ S and that x ∈ T.

Definition: The set S ∩ T is the set where, for any x:
x ∈ S ∩ T      when     x ∈ S and x ∈ T

 

If you know that x ∈ S ∩ T:
    You can conclude both that x ∈ S and that x ∈ T.
 

To prove that x ∈ S ∩ T:
    Prove both that x ∈ S and that x ∈ T.



  

There are similar rules for
S – T and S Δ T.

Check the Guide to Set Theory Proofs 
for more details!
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Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Try Some Examples!

A = {1, 2, 3}
B = {2, 3, 4}
C = {3, 4, 5}

 
x = 1?
x = 2?
x = 3?



  
Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)
Goal: pick 

elements inside 
of this shape…

Goal: pick 
elements inside 
of this shape…

…and explain why 
they also have to be 

in this shape.
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Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).

Proof: Consider arbitrary sets A, B, and C, then choose any
x ∈ (A ∩ B) ∪ C. We will prove x ∈ (A ∪ C) ∩ (B ∪ C).

Since x ∈ (A ∩ B) ∪ C, we know that x ∈ A ∩ B or that x ∈ C. 
We consider each case separately.

Case 1: x ∈ C. This in turn means that x ∈ A ∪ C and
that x ∈ B ∪ C.

Case 2: x ∈ A ∩ B. From x ∈ A ∩ B, we learn that
x ∈ A and that x ∈ B. Therefore, we know that
x ∈ A ∪ C and that x ∈ B ∪ C.

In either case, we learn that x ∈ A ∪ C and x ∈ B ∪ C. This 
establishes that x ∈ (A ∪ C) ∩ (B ∪ C), as required. ■
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principle, supply any choices of A, B, C, 

and x that they’d like.
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To Recap



  

Writing a good proof requires a blend of
definitions, intuitions, and conventions.
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Definitions tell us what we need to do in a proof. 
Many proofs directly reference these definitions.

An integer n is even if there 
is an integer k where n = 2k.

An integer n is even if there 
is an integer k where n = 2k.

An integer n is odd if there is 
an integer k where n = 2k+1.

An integer n is odd if there is 
an integer k where n = 2k+1.

S ∪ T is the set where, for any x:
x ∈ S ∪ T  when  x ∈ S or x ∈ T (or both).

S ∪ T is the set where, for any x:
x ∈ S ∪ T  when  x ∈ S or x ∈ T (or both).

S ∩ T is the set where, for any x:
x ∈ S ∩ T  when  both x ∈ S and x ∈ T.

S ∩ T is the set where, for any x:
x ∈ S ∩ T  when  both x ∈ S and x ∈ T.

S ⊆ T   when    for any x ∈ S, we have x ∈ T.S ⊆ T   when    for any x ∈ S, we have x ∈ T.

S = T   when   S ⊆ T and T ⊆ S.S = T   when   S ⊆ T and T ⊆ S.



  

Building intuition for results requires creativity, 
trial, and error.

Let’s Draw Some Pictures!

Let’s Do Some Math!

Let’s Try Some Examples!



  

Mathematical proofs have established conventions 
that increase rigor and readability.

● Prove universal 
statements by 
making arbitrary 
choices.

● Prove existential 
statements by 
making concrete 
choices.

● Prove “If P, then Q” 
by assuming P and 
proving Q.

● Write in complete 
sentences.

● Number sub-
formulas when 
referring to them.

● Summarize what 
was shown in 
proofs by cases.

● Articulate your 
start and end 
points.



  

Your Action Items

● Read “How to Succeed in CS103.”
● There’s a lot of valuable advice in there – take it to heart!

● Read “Guide to Proofs on Set Theory.”
● This picks up where we left off in today’s lecture. Pay 

particular attention to what we didn’t cover: proofs on 
differences, symmetric differences, and power sets.

● Read “Guide to ∈ and ⊆.”
● You’ll want to have a handle on how these concepts are 

related, and on how they differ.
● Finish and submit Problem Set 0.

● Don’t put this off until the last minute!



  

Next Time

● Indirect Proofs
● How do you prove something without actually proving 

it?
● Mathematical Implications

● What exactly does “if P, then Q” mean?
● Proof by Contrapositive

● A helpful technique for proving implications.
● Proof by Contradiction

● Proving something is true by showing it can't be false.



  

Appendix: More Proofs on Sets



  

Proofs on Subsets



  

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.
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What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Set Theory Review

● Recall from last time that we write x ∈ S 
if x is an element of set S and x ∉ S if x is 
not an element of set S.

● If S and T are sets, we say that S is a 
subset of T (denoted S ⊆ T) if the 
following statement is true:

For every x, if x ∈ S, then x ∈ T.
● What does this mean for proofs?



  

              T

Subsets

Definition: If S and T are sets, then S ⊆ T when
for every x ∈ S, we have x ∈ T.

 

If you know that S ⊆ T:
    If you have an x ∈ S, you can conclude x ∈ T.
 

To prove that S ⊆ T:
    Pick an arbitrary x ∈ S, then prove x ∈ T.
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Theorem: If A, B, and C are sets,
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A B A B
A ∩ B

C C
x

•If we pick x ∈ C on the 
left, then we know that 

x ∈ C on the right.

•If we pick x ∈ C on the 
left, then we know that 

x ∈ C on the right.

Let’s Draw Some Pictures!

Amazing diagrams by Amy Liu.



  

A B

C

A B

C

A ∩ B

•What happens if 
we pick an x that 

isn’t in C?

•What happens if 
we pick an x that 

isn’t in C?

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

Let’s Draw Some Pictures!

Amazing diagrams by Amy Liu.



  

A B

C

A B

C

A ∩ B
x

That means that x 
is in this region 

up here.

That means that x 
is in this region 

up here.

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

Let’s Draw Some Pictures!

Amazing diagrams by Amy Liu.



  

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

A B

C

A B

C

A ∩ B
x

Let’s Draw Some Pictures!

Amazing diagrams by Amy Liu.



  

Theorem: If A, B, and C are sets,
then (A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

A B

C

A B

C

A ∩ B
x

Let’s Draw Some Pictures!

Amazing diagrams by Amy Liu.



  

Conventions

In
tu

ition
s
D

efi
n
it

io
n
s

What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Theorem: If A, B, and C are sets, then
(A ∪ C) ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C.

Proof: Pick any sets A, B, and C. Then, choose any element
x ∈ (A ∪ C) ∩ (B ∪ C). We will prove that x ∈ (A ∩ B) ∪ C.

Since x ∈ (A ∪ C) ∩ (B ∪ C), we know that x ∈ A ∪ C and 
that x ∈ B ∪ C. We now consider two cases.

Case 1: x ∈ C. This means x ∈ (A ∩ B) ∪ C as well.

Case 2: x ∉ C. Because x ∈ A ∪ C, we know that x ∈ A
or that x ∈ C. However, since we have x ∉ C, we’re
left with x ∈ A. By similar reasoning, from x ∈ B ∪ C
we learn that x ∈ B.

Collectively, we’ve shown that x ∈ A and that x ∈ B, so 
we see that x ∈ A ∩ B. This means x ∈ (A ∩ B) ∪ C.

In either case, we see that x ∈ (A ∩ B) ∪ C, which is what 
we needed to show. ■
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Notice that the statement of the theorem 
doesn’t include any variable named x. We 
introduced this variable because that’s what 

the definition says to do.
 

This is common in proofwriting. Always call 
back to the definition to make sure you’re 

proving the right thing!
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or that x ∈ C. However, since we have x ∉ C, we’re
left with x ∈ A. By similar reasoning, from x ∈ B ∪ C
we learn that x ∈ B.

Collectively, we’ve shown that x ∈ A and that x ∈ B, so 
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In either case, we see that x ∈ (A ∩ B) ∪ C, which is what 
we needed to show. ■
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Theorem: If A, B, and C are sets, then
(A ∪ C) ∩ (B ∪ C) = (A ∩ B) ∪ C.

Proof: Fix any sets A, B, and C. We need to show that

   (A ∪ C) ∩ (B ∪ C) ⊆        (A ∩ B) ∪ C (1)

and that

        (A ∩ B) ∪ C    ⊆   (A ∪ C) ∩ (B ∪ C). (2)

We’ve already proved that (1) holds, so we just need to 
show (2). To do so, pick any x ∈ (A ∩ B) ∪ C. We need to 
prove that x ∈ (A ∪ C) ∩ (B ∪ C). But this is something we 
already know – we proved this earlier.

Since both (1) and (2) hold, we know that each of these two 
sets are subsets of one another, and therefore that the sets 
are equal. ■



  

Theorem: If A, B, and C are sets, then
(A ∪ C) ∩ (B ∪ C) = (A ∩ B) ∪ C.

Proof: Fix any sets A, B, and C. We need to show that

   (A ∪ C) ∩ (B ∪ C) ⊆        (A ∩ B) ∪ C (1)

and that

        (A ∩ B) ∪ C    ⊆   (A ∪ C) ∩ (B ∪ C). (2)

We’ve already proved that (1) holds, so we just need to 
show (2). To do so, pick any x ∈ (A ∩ B) ∪ C. We need to 
prove that x ∈ (A ∪ C) ∩ (B ∪ C). But this is something we 
already know – we proved this earlier.

Since both (1) and (2) hold, we know that each of these two 
sets are subsets of one another, and therefore that the sets 
are equal. ■

It is common for proofs in math 
to build on one another. That’s 
how we make progress and make 

new discoveries!
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