

Propositional Logic

Question: How do we formalize the
definitions and reasoning we use in our

proofs?

Where We're Going

● Propositional Logic (Today)
● Reasoning about Boolean values.

● First-Order Logic (Wednesday/Friday)
● Reasoning about properties of multiple

objects.

Propositional Logic

A proposition is a statement that is,
by itself, either true or false.

Some Sample Propositions

● I am not throwing away my shot.
● I’m just like my country.
● I’m young, scrappy, and hungry.
● I’m not throwing away my shot.
● I’m ‘a get a scholarship to King’s College.
● I prob’ly shouldn’t brag, but dag, I amaze

and astonish.
● The problem is I got a lot of brains but no

polish.

Things That Aren't Propositions

Commands
cannot be true

or false.

Commands
cannot be true

or false.

Things That Aren't Propositions

Questions
cannot be true

or false.

Questions
cannot be true

or false.

Propositional Logic

● Propositional logic is a mathematical system
for reasoning about propositions and how they
relate to one another.

● Every statement in propositional logic consists
of propositional variables combined via
propositional connectives.
● Each variable represents some proposition, such as

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related,

such as “If you liked it, then you should have put a
ring on it.”

Propositional Variables

● Each proposition will be represented by a
propositional variable.

● Propositional variables are usually
represented as lower-case letters, such
as p, q, r, s, etc.

● Each variable can take one one of two
values: true or false.

Propositional Connectives

● There are seven propositional connectives,
many of which will be familiar from
programming.

● First, there’s the logical “NOT” operation:

¬p
● You’d read this out loud as “not p.”
● The fancy name for this operation is logical

negation.

Propositional Connectives

● There are seven propositional connectives,
many of which will be familiar from
programming.

● Next, there’s the logical “AND” operation:

p ∧ q
● You’d read this out loud as “p and q.”
● The fancy name for this operation is logical

conjunction.

Propositional Connectives

● There are seven propositional connectives,
many of which will be familiar from
programming.

● Then, there’s the logical “OR” operation:

p ∨ q
● You’d read this out loud as “p or q.”
● The fancy name for this operation is logical

disjunction. This is an inclusive or.

Truth Tables

● A truth table is a table showing the
truth value of a propositional logic
formula as a function of its inputs.

● Let’s go look at the truth tables for the
three connectives we’ve seen so far:

¬ ∧ ∨

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's true if
at least one of the operands is true.
● Similar to the || operator in C, C++, Java, etc. and

the or operator in Python.
● If we need an exclusive “or” operator, we can

build it out of what we already have.
● Try this yourself! Take a minute to combine

these operators together to form an expression
that represents the exclusive or of p and q.

Mathematical Implication

Implication

● We can represent implications using this
connective:

p → q
● You’d read this out loud as “p implies q.”

● The fancy name for this is the material conditional.
● Question: What should the truth table for p → q

look like?
● Pull out a sheet of paper, make a guess, and talk

things over with your neighbors!

Ancient Babylonian Contract:

If Nanni pays money to Ea-Nasir, then
Ea-Nasir will give Nanni quality copper ingots.

Nanni Ea-Nasir

Nanni pays
Ea-Nasir

Gives quality
ingots. Contract

upheld?

p q p → q

T T T

TF F
TF T
FT F

$

p q p → q

T T T

TF F
TF T
FT F

An implication is false only
when the antecedent is true
and the consequent is false.

An implication is false only
when the antecedent is true
and the consequent is false.

Every formula is either true
or false, so these other
entries have to be true.

Every formula is either true
or false, so these other
entries have to be true.

p q p → q

T T T

TF F
TF T
FT F

Important observation:
The statement p → q is true
whenever p ∧ ¬q is false.

Important observation:
The statement p → q is true
whenever p ∧ ¬q is false.

p q p → q

T T T

TF F
TF T
FT F

An implication with a
true consequent is called

trivially true.

An implication with a
true consequent is called

trivially true.

An implication with a
false antecedent is

called vacuously true.

An implication with a
false antecedent is

called vacuously true.

p q p → q

T T T

TF F
TF T
FT F

Please commit this table
to memory. We’re going to

need it, extensively, over
the next couple of weeks.

Please commit this table
to memory. We’re going to

need it, extensively, over
the next couple of weeks.

Fun Fact: The Contrapositive Revisited

The Biconditional Connective

The Biconditional Connective

● On Friday, we saw that “p if and only if q” means
both that p → q and q → p.

● We can write this in propositional logic using the
biconditional connective:

p ↔ q
● This connective’s truth table has the same

meaning as “p implies q and q implies p.”
● Based on that, what should its truth table look

like?
● Take a guess, and talk it over with your neighbor!

Biconditionals

● The biconditional connective p ↔ q is
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔
is to think of it as
equality: the two

propositions must have
equal truth values.

One interpretation of ↔
is to think of it as
equality: the two

propositions must have
equal truth values.

True and False

● There are two more “connectives” to
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives,
though they don't connect anything.
● (Or rather, they connect zero things.)

Proof by Contradiction

● Suppose you want to prove p is true using a
proof by contradiction.

● The setup looks like this:
● Assume p is false.
● Derive something that we know is false.
● Conclude that p is true.

● In propositional logic:

(¬p → ⊥) → p

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to
add parentheses.

● Confused? Please ask!

The Big Table

Connective Read Aloud As C++ Version Fancy Name

¬

∧

∨

→

↔

⊤

⊥

“not”

“and”

“or”

“implies”

“if and only if”

“true”

“false”

!

&&

||

see PS2!

see PS2!

true

false

Negation

Conjunction

Disjunction

Implication

Biconditional

Truth

Falsity

Time-Out for Announcements!

Problem Set One

● The checkpoint problem for PS1 was due at
2:30PM today.
● We'll try to have it graded and returned by

Wednesday morning.
● Solutions are available. Please read them!

● The remaining problems from PS1 are due
on Friday at 2:30PM.
● Have questions? Stop by office hours or ask on

Piazza!

Your Questions

“What do you see as the most important
area of CS right now?”

From my vantage point, I’d say the biggest question is “how
do we ensure that everyone who wants to use technology to
solve problems in their world has the ability to do so?” The
potential impact of using computing power is huge, and no
one person knows all the issues people face worldwide.
Computers can’t solve every problem, but they can help
immensely in many arenas, and the question is how to get

these skills out to as many people as possible from as broad
a spectrum as possible.

From my vantage point, I’d say the biggest question is “how
do we ensure that everyone who wants to use technology to
solve problems in their world has the ability to do so?” The
potential impact of using computing power is huge, and no
one person knows all the issues people face worldwide.
Computers can’t solve every problem, but they can help
immensely in many arenas, and the question is how to get

these skills out to as many people as possible from as broad
a spectrum as possible.

“If there are most certainly more problems
to solve than programs to solve them, what

does this mean for the limits of
computability and of human knowledge?”

This question goes really deep,
and I’d like to return to it later
in the quarter when we talk about
undecidability and unrecognizability.

Ask me this again once we’ve
talked about self-reference!

This question goes really deep,
and I’d like to return to it later
in the quarter when we talk about
undecidability and unrecognizability.

Ask me this again once we’ve
talked about self-reference!

“What are your tips for when you first
approach a proof problem? I often find

myself confused as to how to get started”

It’s totally normal to feel that way! If there were a single, unified
approach that always worked, I promise I’d tell you what it was. Alas,

there isn’t one so we’ll have to resort to heuristics.

The main thing to keep in mind is that you aren’t expected to see
things instantly and on the first time around. Plan to throw away

beautiful arguments and lines of reasoning, and be open to the idea
that you’ll have to back up and start over.

It never hurts to write out, explicitly, what you’re assuming and what
you need to prove. It never hurts to try out concrete examples and
to draw pictures. It’s good to look at other proofs to see if you can

draw inspiration from them. Don’t be afraid to pause one line of
exploration to explore another. You’ll build up an intuition for what
works as you get more experience. So hang in there, and good luck!

It’s totally normal to feel that way! If there were a single, unified
approach that always worked, I promise I’d tell you what it was. Alas,

there isn’t one so we’ll have to resort to heuristics.

The main thing to keep in mind is that you aren’t expected to see
things instantly and on the first time around. Plan to throw away

beautiful arguments and lines of reasoning, and be open to the idea
that you’ll have to back up and start over.

It never hurts to write out, explicitly, what you’re assuming and what
you need to prove. It never hurts to try out concrete examples and
to draw pictures. It’s good to look at other proofs to see if you can

draw inspiration from them. Don’t be afraid to pause one line of
exploration to explore another. You’ll build up an intuition for what
works as you get more experience. So hang in there, and good luck!

Back to CS103!

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Translating into Propositional Logic

Some Sample Propositions

“I won't see a total solar
eclipse if I'm not in the

path of totality.”

“I won't see a total solar
eclipse if I'm not in the

path of totality.”

¬a → ¬b

a: I will be in the path of totality.

b: I will see a total solar eclipse.

“p if q”

translates to

q → p

It does not translate to

 ⚠ p → q ⚠

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of
totality, but there's no solar
eclipse today, I won't see a

total solar eclipse.”

“If I will be in the path of
totality, but there's no solar
eclipse today, I won't see a

total solar eclipse.”

a ∧ ¬c → ¬b

“p, but q”

translates to

p ∧ q

The Takeaway Point

● When translating into or out of
propositional logic, be very careful not to
get tripped up by nuances of the English
language.
● In fact, this is one of the reasons we have a

symbolic notation in the first place!
● Many prepositional phrases lead to

counterintuitive translations; make sure
to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince
you that the statement p ∧ q is false?

Quick Question:

What would I have to show you to convince
you that the statement p ∨ q is false?

de Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q
● These two equivalences are called De Morgan's

Laws.

de Morgan's Laws in Code

● Pro tip: Don't write this:

 if (!(p() && q())) {

 /* … */

 }

● Write this instead:

 if (!p() || !q()) {

 /* … */

 }

● (This even short-circuits correctly!)

Logical Equivalence

● Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth
tables, we say that they're equivalent to one another.

● We denote this by writing

 ¬(p ∧ q) ≡ ¬p ∨ ¬q
● The ≡ symbol is not a connective.

● The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional formula.
If you plug in different values of p and q, it will evaluate to a
truth value. It just happens to evaluate to true every time.

● The statement ¬(p ∧ q) ≡ ¬p ∨ ¬q means “these two formulas
have exactly the same truth table.”

● In other words, the notation φ ≡ ψ means “φ and ψ
always have the same truth values, regardless of how the
variables are assigned.”

An Important Equivalence

● Earlier, we talked about the truth table
for p → q. We chose it so that

 p → q ≡ ¬(p ∧ ¬q)
● Later on, this equivalence will be

incredibly useful:

¬(p → q) ≡ p ∧ ¬q

Another Important Equivalence

● Here's a useful equivalence. Start with

 p → q ≡ ¬(p ∧ ¬q)
● By de Morgan's laws:

 p → q ≡ ¬(p ∧ ¬q)

 p → q≡ ¬p ∨ ¬¬q

 p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

Why All This Matters

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: We will prove the contrapositive of this statement:
if x < 8 and y < 8, then x + y ≠ 16.

Let x and y be arbitrary numbers such that x < 8 and
y < 8. Note that

x + y < 8 + y
 < 8 + 8

= 16.

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■

Why This Matters

● Propositional logic is a tool for reasoning
about how various statements affect one
another.

● To better understand how to prove a result,
it often helps to translate what you're
trying to prove into propositional logic first.

● That said, propositional logic isn't
expressive enough to capture all
statements. For that, we need something
more powerful.

Next Time

● First-Order Logic
● Reasoning about groups of objects.

● First-Order Translations
● Expressing yourself in symbolic math!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

