
  

Propositional Logic
 



  

Question: How do we formalize the 
definitions and reasoning we use in our 

proofs?



  

Where We're Going

● Propositional Logic (Today)
● Reasoning about Boolean values.

● First-Order Logic (Wednesday/Friday)
● Reasoning about properties of multiple 

objects.



  

Propositional Logic



  

A proposition is a statement that is,
by itself, either true or false.



  

Some Sample Propositions

● I am not throwing away my shot.
● I’m just like my country.
● I’m young, scrappy, and hungry.
● I’m not throwing away my shot.
● I’m ‘a get a scholarship to King’s College.
● I prob’ly shouldn’t brag, but dag, I amaze 

and astonish.
● The problem is I got a lot of brains but no 

polish.



  

Things That Aren't Propositions

Commands 
cannot be true 

or false.

Commands 
cannot be true 

or false.



  

Things That Aren't Propositions

Questions 
cannot be true 

or false.

Questions 
cannot be true 

or false.



  

Propositional Logic

● Propositional logic is a mathematical system 
for reasoning about propositions and how they 
relate to one another.

● Every statement in propositional logic consists 
of propositional variables combined via 
propositional connectives.
● Each variable represents some proposition, such as 

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related, 

such as “If you liked it, then you should have put a 
ring on it.”



  

Propositional Variables

● Each proposition will be represented by a 
propositional variable.

● Propositional variables are usually 
represented as lower-case letters, such 
as p, q, r, s, etc.

● Each variable can take one one of two 
values: true or false.



  

Propositional Connectives

● There are seven propositional connectives, 
many of which will be familiar from 
programming.

● First, there’s the logical “NOT” operation:

¬p
● You’d read this out loud as “not p.”
● The fancy name for this operation is logical 

negation.



  

Propositional Connectives

● There are seven propositional connectives, 
many of which will be familiar from 
programming.

● Next, there’s the logical “AND” operation:

p ∧ q
● You’d read this out loud as “p and q.”
● The fancy name for this operation is logical 

conjunction.



  

Propositional Connectives

● There are seven propositional connectives, 
many of which will be familiar from 
programming.

● Then, there’s the logical “OR” operation:

p ∨ q
● You’d read this out loud as “p or q.”
● The fancy name for this operation is logical 

disjunction. This is an inclusive or.



  

Truth Tables

● A truth table is a table showing the 
truth value of a propositional logic 
formula as a function of its inputs.

● Let’s go look at the truth tables for the 
three connectives we’ve seen so far:

¬       ∧        ∨



  

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's true if 
at least one of the operands is true.
● Similar to the || operator in C, C++, Java, etc. and 

the or operator in Python.
● If we need an exclusive “or” operator, we can 

build it out of what we already have.
● Try this yourself! Take a minute to combine 

these operators together to form an expression 
that represents the exclusive or of p and q.



  

Mathematical Implication



  

Implication

● We can represent implications using this 
connective:

p → q
● You’d read this out loud as “p implies q.”

● The fancy name for this is the material conditional.
● Question: What should the truth table for p → q 

look like?
● Pull out a sheet of paper, make a guess, and talk 

things over with your neighbors!



  

Ancient Babylonian Contract:
  

If Nanni pays money to Ea-Nasir, then
Ea-Nasir will give Nanni quality copper ingots.

Nanni Ea-Nasir

Nanni pays 
Ea-Nasir

Gives quality 
ingots. Contract 

upheld?

p q p → q

T T T

TF F
TF T
FT F

$



  

p q p → q

T T T

TF F
TF T
FT F

An implication is false only 
when the antecedent is true 
and the consequent is false.

An implication is false only 
when the antecedent is true 
and the consequent is false.

Every formula is either true 
or false, so these other 
entries have to be true.

Every formula is either true 
or false, so these other 
entries have to be true.



  

p q p → q

T T T

TF F
TF T
FT F

Important observation: 
The statement p → q is true 
whenever p ∧ ¬q is false.

Important observation: 
The statement p → q is true 
whenever p ∧ ¬q is false.



  

p q p → q

T T T

TF F
TF T
FT F

An implication with a 
true consequent is called 

trivially true.

An implication with a 
true consequent is called 

trivially true.

An implication with a 
false antecedent is 

called vacuously true.

An implication with a 
false antecedent is 

called vacuously true.



  

p q p → q

T T T

TF F
TF T
FT F

Please commit this table 
to memory. We’re going to 

need it, extensively, over 
the next couple of weeks.

Please commit this table 
to memory. We’re going to 

need it, extensively, over 
the next couple of weeks.



  

Fun Fact: The Contrapositive Revisited



  

The Biconditional Connective



  

The Biconditional Connective

● On Friday, we saw that “p if and only if q” means 
both that p → q and q → p.

● We can write this in propositional logic using the 
biconditional connective:

p ↔ q
● This connective’s truth table has the same 

meaning as “p implies q and q implies p.”
● Based on that, what should its truth table look 

like?
● Take a guess, and talk it over with your neighbor!



  

Biconditionals

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of  ↔ 
is to think of it as 
equality: the two 

propositions must have 
equal truth values.

One interpretation of  ↔ 
is to think of it as 
equality: the two 

propositions must have 
equal truth values.



  

True and False

● There are two more “connectives” to 
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives, 
though they don't connect anything.
● (Or rather, they connect zero things.)



  

Proof by Contradiction

● Suppose you want to prove p is true using a 
proof by contradiction.

● The setup looks like this:
● Assume p is false.
● Derive something that we know is false.
● Conclude that p is true.

● In propositional logic:

(¬p → ⊥) → p  



  

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like 
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to 
add parentheses.

● Confused? Please ask!



  

The Big Table

Connective Read Aloud As C++ Version Fancy Name

¬

∧

∨

→

↔

⊤

⊥

“not”

“and”

“or”

“implies”

“if and only if”

“true”

“false”

!

&&

||

see PS2!

see PS2!

true

false

Negation

Conjunction

Disjunction

Implication

Biconditional

Truth

Falsity



  

Time-Out for Announcements!



  

Problem Set One

● The checkpoint problem for PS1 was due at 
2:30PM today.
● We'll try to have it graded and returned by 

Wednesday morning.
● Solutions are available. Please read them!

● The remaining problems from PS1 are due 
on Friday at 2:30PM.
● Have questions? Stop by office hours or ask on 

Piazza!



  

Your Questions



  

“What do you see as the most important 
area of CS right now?”

From my vantage point, I’d say the biggest question is “how 
do we ensure that everyone who wants to use technology to 
solve problems in their world has the ability to do so?” The 
potential impact of using computing power is huge, and no 
one person knows all the issues people face worldwide. 
Computers can’t solve every problem, but they can help 
immensely in many arenas, and the question is how to get 

these skills out to as many people as possible from as broad 
a spectrum as possible.

From my vantage point, I’d say the biggest question is “how 
do we ensure that everyone who wants to use technology to 
solve problems in their world has the ability to do so?” The 
potential impact of using computing power is huge, and no 
one person knows all the issues people face worldwide. 
Computers can’t solve every problem, but they can help 
immensely in many arenas, and the question is how to get 

these skills out to as many people as possible from as broad 
a spectrum as possible.



  

“If there are most certainly more problems 
to solve than programs to solve them, what 

does this mean for the limits of 
computability and of human knowledge?”

This question goes really deep, 
and I’d like to return to it later 
in the quarter when we talk about 
undecidability and unrecognizability. 

Ask me this again once we’ve 
talked about self-reference!

This question goes really deep, 
and I’d like to return to it later 
in the quarter when we talk about 
undecidability and unrecognizability. 

Ask me this again once we’ve 
talked about self-reference!



  

“What are your tips for when you first 
approach a proof problem? I often find 

myself confused as to how to get started”

It’s totally normal to feel that way! If there were a single, unified 
approach that always worked, I promise I’d tell you what it was. Alas, 

there isn’t one so we’ll have to resort to heuristics.
 

The main thing to keep in mind is that you aren’t expected to see 
things instantly and on the first time around. Plan to throw away 

beautiful arguments and lines of reasoning, and be open to the idea 
that you’ll have to back up and start over.

 

It never hurts to write out, explicitly, what you’re assuming and what 
you need to prove. It never hurts to try out concrete examples and 
to draw pictures. It’s good to look at other proofs to see if you can 

draw inspiration from them. Don’t be afraid to pause one line of 
exploration to explore another. You’ll build up an intuition for what 
works as you get more experience. So hang in there, and good luck!

It’s totally normal to feel that way! If there were a single, unified 
approach that always worked, I promise I’d tell you what it was. Alas, 

there isn’t one so we’ll have to resort to heuristics.
 

The main thing to keep in mind is that you aren’t expected to see 
things instantly and on the first time around. Plan to throw away 

beautiful arguments and lines of reasoning, and be open to the idea 
that you’ll have to back up and start over.

 

It never hurts to write out, explicitly, what you’re assuming and what 
you need to prove. It never hurts to try out concrete examples and 
to draw pictures. It’s good to look at other proofs to see if you can 

draw inspiration from them. Don’t be afraid to pause one line of 
exploration to explore another. You’ll build up an intuition for what 
works as you get more experience. So hang in there, and good luck!



  

Back to CS103!



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Translating into Propositional Logic



  

Some Sample Propositions

“I won't see a total solar 
eclipse if I'm not in the 

path of totality.”

“I won't see a total solar 
eclipse if I'm not in the 

path of totality.”

¬a → ¬b

a: I will be in the path of totality.

b: I will see a total solar eclipse.



  

“p if q”

translates to

q → p

It does not translate to

   ⚠   p → q   ⚠   



  

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of 
totality, but there's no solar 
eclipse today, I won't see a 

total solar eclipse.”

“If I will be in the path of 
totality, but there's no solar 
eclipse today, I won't see a 

total solar eclipse.”

a ∧ ¬c → ¬b



  

“p, but q”

translates to

p ∧ q



  

The Takeaway Point

● When translating into or out of 
propositional logic, be very careful not to 
get tripped up by nuances of the English 
language.
● In fact, this is one of the reasons we have a 

symbolic notation in the first place!
● Many prepositional phrases lead to 

counterintuitive translations; make sure 
to double-check yourself!



  

Propositional Equivalences



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∧ q is false?



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∨ q is false?



  

de Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q  
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q  
● These two equivalences are called De Morgan's 

Laws.



  

de Morgan's Laws in Code

● Pro tip: Don't write this:

            if (!(p() && q())) {

                /* … */

            }

● Write this instead:

            if (!p() || !q()) {

                /* … */

            }

● (This even short-circuits correctly!)



  

Logical Equivalence

● Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth 
tables, we say that they're equivalent to one another.

● We denote this by writing

 ¬(p ∧ q)  ≡  ¬p ∨ ¬q  
● The ≡ symbol is not a connective.

● The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional formula. 
If you plug in different values of p and q, it will evaluate to a 
truth value. It just happens to evaluate to true every time.

● The statement ¬(p ∧ q)  ≡  ¬p ∨ ¬q means “these two formulas 
have exactly the same truth table.”

● In other words, the notation φ ≡ ψ means “φ and ψ 
always have the same truth values, regardless of how the 
variables are assigned.”



  

An Important Equivalence

● Earlier, we talked about the truth table 
for p → q. We chose it so that

    p → q    ≡    ¬(p ∧ ¬q)
● Later on, this equivalence will be 

incredibly useful:

¬(p → q)    ≡    p ∧ ¬q      



  

Another Important Equivalence

● Here's a useful equivalence. Start with

     p → q ≡ ¬(p ∧ ¬q)
● By de Morgan's laws:

     p → q ≡ ¬(p ∧ ¬q)

      p → q≡ ¬p ∨ ¬¬q

      p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q



  

Why All This Matters



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x + y = 16 → x ≥ 8 ∨ y ≥ 8



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: We will prove the contrapositive of this statement:
if x < 8 and y < 8, then x + y ≠ 16.

 

Let x and y be arbitrary numbers such that x < 8 and
y < 8. Note that

 

x + y < 8 + y
         < 8 + 8

= 16.
 

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■



  

Why This Matters

● Propositional logic is a tool for reasoning 
about how various statements affect one 
another.

● To better understand how to prove a result, 
it often helps to translate what you're 
trying to prove into propositional logic first.

● That said, propositional logic isn't 
expressive enough to capture all 
statements. For that, we need something 
more powerful.



  

Next Time

● First-Order Logic
● Reasoning about groups of objects.

● First-Order Translations
● Expressing yourself in symbolic math!
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