Functions

What is a function?

Functions, High-School Edition

$$
f(x)=x^{4}-5 x^{2}+4
$$

Functions, High-School Edition

In high school, functions are usually given as objects of the form

$$
f(x)=\frac{x^{3}+3 x^{2}+15 x+7}{1-x^{137}}
$$

What does a function do?
It takes in as input a real number.
It outputs a real number
... except when there are vertical asymptotes or other discontinuities, in which case the function doesn't output anything.

Functions, CS Edition

int flipUntil(int n) \{ int numHeads = 0; int numTries $=0$;

while (numHeads < n) \{ if (randomBoolean()) numHeads++;
numTries++; \}
return numTries; \}

Functions, CS Edition

In programming, functions

- might take in inputs,
- might return values,
- might have side effects,
- might never return anything,
- might crash, and
- might return different values when called multiple times.

What's Common?

Although high-school math functions and CS functions are pretty different, they have two key aspects in common:

- They take in inputs.
- They produce outputs.

In math, we like to keep things easy, so that's pretty much how we're going to define a function.

Rough Idea of a Function:

A function is an object f that takes in an input and produces exactly one output.

(This is not a complete definition - we'll revisit this in a bit.)

High School versus CS Functions

In high school, functions usually were given by a rule:

$$
f(x)=4 x+15
$$

In CS, functions are usually given by code: int factorial(int n) \{

$$
\text { int result = } 1 \text {; }
$$

$$
\text { for (int } \mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++ \text {) }\{
$$

$$
\text { result } *=\mathrm{i} \text {; }
$$

\}
return result;
\}
What sorts of functions are we going to allow from a mathematical perspective?

... but also ...

$$
f(x)=x^{2}+3 x-15
$$

$$
f(n)=\left\{\begin{array}{cc}
-n / 2 & \text { if } n \text { is even } \\
(n+1) / 2 & \text { otherwise }
\end{array}\right.
$$

Functions like these are called piecewise functions.

To define a function, you will typically either

- draw a picture, or
- give a rule for determining the output.

In mathematics, functions are deterministic.

That is, given the same input, a function must always produce the same output.

The following is a perfectly valid piece of C++ code, but it's not a valid function under our definition:
int randomNumber(int numOutcomes)
\{ return rand() \% numOutcomes; \}

One Challenge

$$
f(x)=x^{2}+2 x+5
$$

$$
f(x)=x^{2}+2 x+5
$$

$$
f(3)=3^{2}+3 \cdot 2+5=20
$$

$$
f(x)=x^{2}+2 x+5
$$

$$
\begin{aligned}
& f(3)=3^{2}+3 \cdot 2+5=20 \\
& f(0)=0^{2}+0 \cdot 2+5=5
\end{aligned}
$$

$$
f(x)=x^{2}+2 x+5
$$

$f(3)=3^{2}+3 \cdot 2+5=20$ $f(0)=0^{2}+0 \cdot 2+5=5$
$f($ 商 $)=\ldots$?

$$
\begin{aligned}
& f(x)= \\
& f(137)=\ldots ?
\end{aligned}
$$

We need to make sure we can't apply functions to meaningless inputs.

Domains and Codomains

- Every function f has two sets associated with it: its domain and its codomain.
- A function f can only be applied to elements of its domain. For any x in the domain, $f(x)$ belongs to the codomain.

Domains and Codomains

- Every function f has two sets associated with it: its domain and its codomain.
- A function f can only be applied to elements of its domain. For any x in the domain, $f(x)$ belongs to the codomain.

The codomain of this function is \mathbb{R}. Everything produced is a real number, but not all real numbers can be produced.

The domain of this function is \mathbb{R}. Any real number can be provided as input.
double absoluteValueOf(double x) \{

$$
\text { if }(x>=0)\{
$$

return x;
\} else \{
return -x;
\}
\}

Domains and Codomains

- If f is a function whose domain is A and whose codomain is B, we write $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$.
- Think of this like a "function prototype" in C++.

The Official Rules for Functions

Formally speaking, we say that $f: A \rightarrow B$ if the following two rules hold.
First, f must be obey its domain/codomain rules:

$$
\begin{aligned}
& \forall \boldsymbol{a} \in \boldsymbol{A} . \exists \boldsymbol{b} \in \boldsymbol{B} . \boldsymbol{f (a)}=\boldsymbol{b} \\
& \text { ("Every input in A maps to some output in B.") }
\end{aligned}
$$

Second, f must be deterministic:
$\forall a_{1} \in A . \forall a_{2} \in A .\left(a_{1}=a_{2} \rightarrow f\left(a_{1}\right)=f\left(a_{2}\right)\right)$
("Equal inputs produce equal outputs.")
If you're ever curious about whether something is a function, look back at these rules and check! For example:
Can a function have an empty domain?
Can a function with a nonempty domain have an empty codomain?

Defining Functions

Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.
Examples:

- $f(n)=n+1$, where $f: \mathbb{Z} \rightarrow \mathbb{Z}$
- $f(x)=\sin x$, where $f: \mathbb{R} \rightarrow \mathbb{R}$
- $f(x)=\lceil x\rceil$, where $f: \mathbb{R} \rightarrow \mathbb{Z}$

Notice that we're giving both a rule and the domain/codomain.

Defining Functions

Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.
Examples:

- $f(n)=n+1$, where $f: \mathbb{Z} \rightarrow \mathbb{Z}$
- $f(x)=\sin x$, where $f: \mathbb{R} \rightarrow \mathbb{R}$
- $f(x)=\lceil\chi\rceil$, where $f: \mathbb{R} \rightarrow \mathbb{Z}$

Notice that we're giving both a rule and the domain/codomain.

Defining Functions

Typically, we specify a function by describing a rule that maps every element of the domain to some e This is the ceiling function - the smallest codomain. integer greater than or equal to x. For example, $\lceil 1\rceil=1,\lceil 1.37\rceil=2$, and $\lceil 3.14\rceil=$
 Examples: 4.
 $f(n)=n+1$, where $f: \mathbb{Z} \rightarrow \mathbb{Z}$ $f(x)=\sin x$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ $f(x)=\lceil x\rceil$, where $f: \mathbb{R} \rightarrow \mathbb{Z}$ Notice that we're giving both a rule and the domain/codomain.

Is This a Function From A to B ?

Is This a Function From A to B ?

California

Delaware

Washington DC

Is This a Function From A to B ?

Combining Functions

$$
f: \text { People } \rightarrow \text { Places } \quad g: \text { Places } \rightarrow \text { Prices }
$$

Function Composition

Suppose that we have two functions $f: A \rightarrow$ B and $g: B \rightarrow C$.
Notice that the codomain of f is the domain of g. This means that we can use outputs from f as inputs to g.

Function Composition

- Suppose that we have two functions $f: A \rightarrow B$ and $g: B \rightarrow C$.
- The composition of \boldsymbol{f} and \boldsymbol{g}, denoted $\boldsymbol{g} \circ \boldsymbol{f}$, is a function where
- $g \circ f: A \rightarrow C$, and
- $(g \circ f)(x)=g(f(x))$.
- A few things to notice:
- The domain of $g \circ f$ is the domain of f. Its codomain is the codomain of g.
- Even though the composition is written $g \circ f$, when evaluating $(g \circ f)(x)$, the function f is evaluated first.

Time-Out for Announcements!

Problem Set One Feedback

- Hopefully you have all seen problem set 1 feedback.
- If you haven't already, please review the feedback we've left for you as soon as possible, as well as the solution set.
- We're happy to answer any questions about specific comments in office hours or on Campuswire.
- If you believe we've made a grading error, see the Regrade Policies handout for instructions on how to submit a regrade.

Problem Set Three

- Problem Set Three is due on Thursday at 11:59pm.
- Play around with binary relations, functions, their properties, and their applications!
- As usual, feel free to ask questions!
- Ask on Campuswire!
- Stop by office hours!
- Pseudobreak from psets next week.

Back to CS103!

Special Types of Functions

MercuryVenus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune Pluto
MercuryVenus
Earth
Mars
Jupiter
Saturn
Uranus
NeptunePluto
Mercury
Venus
Earth
Mars
Jupiter
Saturn
UranusNeptune

Mercury

\section*{| 8 |
| :--- |
| |
| |
| 0 |
| 2 |
| 2 |
 ћ
 H
 Ψ}

Venus
Earth
ars
siter
turn
anus
Neptune
Mercury
Venus
Earth
Mars
Jupiter
Saturn
UranusNeptune

Injective Functions

A function $f: A \rightarrow B$ is called injective (or one-to-one) if the following statement is true about f :

$$
\forall a_{1} \in A . \forall a_{2} \in A .\left(a_{1} \neq a_{2} \rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)\right)
$$

("If the inputs are different, the outputs are different.") The following first-order definition is equivalent and is often useful in proofs.

$$
\forall a_{1} \in A . \forall a_{2} \in A .\left(f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)
$$

("If the outputs are the same, the inputs are the same.")
A function with this property is called an injection.
How does this compare to our second rule for functions?

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$. Then f is injective.

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$. Then f is injective.

Proof:

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$.
Then f is injective.
Proof:

How many of the following are correct ways of starting off this proof? Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $n_{1}=n_{2}$. We will prove that $f\left(n_{1}\right)=f\left(n_{2}\right)$. Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $n_{1} \neq n_{2}$. We will prove that $f\left(n_{1}\right) \neq f\left(n_{2}\right)$. Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=f\left(n_{2}\right)$. We will prove that $n_{1}=n_{2}$. Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right) \neq f\left(n_{2}\right)$. We will prove that $n_{1} \neq n_{2}$.

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$. Then f is injective.

Proof:
What does it mean for the function f to be injective?

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$.
Then f is injective.
Proof:
What does it mean for the function f to be injective?
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(f\left(n_{1}\right)=f\left(n_{2}\right) \rightarrow n_{1}=n_{2}\right)$
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(n_{1} \neq n_{2} \rightarrow f\left(n_{1}\right) \neq f\left(n_{2}\right)\right)$

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$.
Then f is injective.
Proof:
What does it mean for the function f to be injective?
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(f\left(n_{1}\right)=f\left(n_{2}\right) \rightarrow n_{1}=n_{2}\right)$
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(n_{1} \neq n_{2} \rightarrow f\left(n_{1}\right) \neq f\left(n_{2}\right)\right)$

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$.
Then f is injective.

Proof:

What does it mean for the function f to be injective?
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(f\left(n_{1}\right)=f\left(n_{2}\right) \rightarrow n_{1}=n_{2}\right)$
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(n_{1} \neq n_{2} \rightarrow f\left(n_{1}\right) \neq f\left(n_{2}\right)\right)$
Therefore, we'll pick arbitrary $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=$ $f\left(n_{2}\right)$, then prove that $n_{1}=n_{2}$.

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$.
Then f is injective.
Proof:
What does it mean for the function f to be injective?
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(f\left(n_{1}\right)=f\left(n_{2}\right) \rightarrow n_{1}=n_{2}\right)$
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(n_{1} \neq n_{2} \rightarrow f\left(n_{1}\right) \neq f\left(n_{2}\right)\right)$
Therefore, we'll pick arbitrary $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=$ $f\left(n_{2}\right)$, then prove that $n_{1}=n_{2}$.

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$.
Then f is injective.
Proof:
What does it mean for the function f to be injective?
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(\boldsymbol{f}\left(\boldsymbol{n}_{\mathbf{1}}\right)=\boldsymbol{f}\left(\boldsymbol{n}_{\mathbf{2}}\right) \rightarrow n_{1}=n_{2}\right)$
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(n_{1} \neq n_{2} \rightarrow f\left(n_{1}\right) \neq f\left(n_{2}\right)\right)$
Therefore, we'll pick arbitrary $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=$ $f\left(n_{2}\right)$, then prove that $n_{1}=n_{2}$.

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$.
Then f is injective.
Proof:
What does it mean for the function f to be injective?
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(f\left(n_{1}\right)=f\left(n_{2}\right) \rightarrow \boldsymbol{n}_{\mathbf{1}}=\boldsymbol{n}_{\mathbf{2}}\right)$
$\forall n_{1} \in \mathbb{N} . \forall n_{2} \in \mathbb{N} .\left(n_{1} \neq n_{2} \rightarrow f\left(n_{1}\right) \neq f\left(n_{2}\right)\right)$
Therefore, we'll pick arbitrary $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=$ $f\left(n_{2}\right)$, then prove that $n_{1}=n_{2}$.

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$. Then f is injective.

Proof: Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=f\left(n_{2}\right)$. We will prove that $n_{1}=n_{2}$.

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$. Then f is injective.

Proof: Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=f\left(n_{2}\right)$. We will prove that $n_{1}=n_{2}$.
Since $f\left(n_{1}\right)=f\left(n_{2}\right)$, we see that
$2 n_{1}+7=2 n_{2}+7$.

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$. Then f is injective.

Proof: Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=f\left(n_{2}\right)$. We will prove that $n_{1}=n_{2}$.
Since $f\left(n_{1}\right)=f\left(n_{2}\right)$, we see that
$2 n_{1}+7=2 n_{2}+7$.
This in turn means that

$$
2 n_{1}=2 n_{2}
$$

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$. Then f is injective.

Proof: Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=f\left(n_{2}\right)$. We will prove that $n_{1}=n_{2}$.
Since $f\left(n_{1}\right)=f\left(n_{2}\right)$, we see that
$2 n_{1}+7=2 n_{2}+7$.
This in turn means that

$$
2 n_{1}=2 n_{2}
$$

so $n_{1}=n_{2}$, as required.

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$. Then f is injective.

Proof: Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=f\left(n_{2}\right)$. We will prove that $n_{1}=n_{2}$.
Since $f\left(n_{1}\right)=f\left(n_{2}\right)$, we see that
$2 n_{1}+7=2 n_{2}+7$.
This in turn means that

$$
2 n_{1}=2 n_{2}
$$

so $n_{1}=n_{2}$, as required. \square

Injective Functions

Theorem: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n)=2 n+7$. Then f is injective.

Proof: Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=f\left(n_{2}\right)$. We will prove that $n_{1}=n_{2}$.

How many of the following are correct ways of starting off this proof?
Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $n_{1}=n_{2}$. We will prove that $f\left(n_{1}\right)=f\left(n_{2}\right)$.
Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $n_{1} \neq n_{2}$. We will prove that $f\left(n_{1}\right) \neq f\left(n_{2}\right)$. Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right)=f\left(n_{2}\right)$. We will prove that $n_{1}=n_{2}$. Consider any $n_{1}, n_{2} \in \mathbb{N}$ where $f\left(n_{1}\right) \neq f\left(n_{2}\right)$. We will prove that $n_{1} \neq n_{2}$.

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.
Proof:

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

How many of the following are correct ways of starting off this proof?
Assume for the sake of contradiction that f is not injective.
Assume for the sake of contradiction that there are integers x_{1} and x_{2} where $f\left(x_{1}\right)=f\left(x_{2}\right)$ but $x_{1} \neq x_{2}$.
Consider arbitrary integers x_{1} and x_{2} where $x_{1} \neq x_{2}$. We will prove that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Consider arbitrary integers x_{1} and x_{2} where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will prove that $x_{1} \neq x_{2}$.

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

$$
\neg \forall X_{1} \in \mathbb{Z} . \forall X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

$$
\begin{aligned}
& \neg \forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \neg \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
\end{aligned}
$$

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall X_{2} \in \mathbb{Z} .\left(x_{1} \neq X_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

$$
\begin{aligned}
& \neg \forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \neg \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \exists x_{2} \in \mathbb{Z} . \neg\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
\end{aligned}
$$

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

$$
\begin{aligned}
& \neg \forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \neg \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \exists x_{2} \in \mathbb{Z} . \neg\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \exists x_{2} \in \mathbb{Z} .\left(x_{1} \neq X_{2} \Lambda \neg\left(f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)\right)
\end{aligned}
$$

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

$$
\begin{aligned}
& \neg \forall X_{1} \in \mathbb{Z} . \forall X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists X_{1} \in \mathbb{Z} . \neg \forall X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \rightarrow f\left(X_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \exists x_{2} \in \mathbb{Z} . \neg\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \exists x_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \Lambda \neg\left(f\left(X_{1}\right) \neq f\left(x_{2}\right)\right)\right) \\
& \exists X_{1} \in \mathbb{Z} . \exists X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \Lambda f\left(X_{1}\right)=f\left(X_{2}\right)\right)
\end{aligned}
$$

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

$$
\begin{aligned}
& \neg \forall X_{1} \in \mathbb{Z} . \forall X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \rightarrow f\left(X_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists X_{1} \in \mathbb{Z} . \neg \forall X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \exists X_{2} \in \mathbb{Z} . \neg\left(X_{1} \neq X_{2} \rightarrow f\left(X_{1}\right) \neq f\left(X_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \exists x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \wedge \neg\left(f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)\right) \\
& \exists X_{1} \in \mathbb{Z} . \exists X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \boldsymbol{\Lambda}\left(X_{1}\right)=f\left(X_{2}\right)\right)
\end{aligned}
$$

Therefore, we need to find $x_{1}, x_{2} \in \mathbb{Z}$ such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$. Can we do that?

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall X_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

$$
\begin{aligned}
& \neg \forall X_{1} \in \mathbb{Z} . \forall X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \rightarrow f\left(X_{1}\right) \neq f\left(X_{2}\right)\right) \\
& \exists X_{1} \in \mathbb{Z}, \neg \forall X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \rightarrow f\left(X_{1}\right) \neq f\left(X_{2}\right)\right) \\
& \exists X_{1} \in \mathbb{Z} . \exists X_{2} \in \mathbb{Z} . \neg\left(X_{1} \neq X_{2} \rightarrow f\left(X_{1}\right) \neq f\left(X_{2}\right)\right) \\
& \exists X_{1} \in \mathbb{Z} . \exists X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \wedge \neg\left(f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)\right) \\
& \exists \mathbf{X}_{1} \in \mathbb{Z} . \exists \mathbf{x}_{2} \in \mathbb{Z} .\left(\mathbf{x}_{1} \neq \mathbf{x}_{2} \wedge \boldsymbol{\Lambda}\left(\mathrm{X}_{1}\right)=f\left(\mathrm{X}_{2}\right)\right)
\end{aligned}
$$

Therefore, we need to find $x_{1}, x_{2} \in \mathbb{Z}$ such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$. Can we do that?

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

$$
\begin{aligned}
& \neg \forall x_{1} \in \mathbb{Z}_{0} \forall \mathbf{x}_{2} \in \mathbb{Z}_{0}\left(\mathbf{x}_{1} \neq \mathbf{x}_{2} \rightarrow f\left(\mathbf{x}_{1}\right) \neq f\left(\mathbf{x}_{2}\right)\right) \\
& \exists \mathbf{x}_{1} \in \mathbb{Z}_{0} \neg \forall \mathbf{x}_{2} \in \mathbb{Z}_{0}\left(\mathbf{x}_{1} \neq \mathbf{x}_{2} \rightarrow f\left(\mathbf{x}_{1}\right) \neq f\left(\mathbf{x}_{2}\right)\right) \\
& \exists \mathbf{x}_{1} \in \mathbb{Z}_{0} \exists \mathbf{x}_{2} \in \mathbb{Z}_{0} \neg\left(\mathbf{x}_{1} \neq \mathbf{x}_{2} \rightarrow f\left(\mathbf{x}_{1}\right) \neq f\left(\mathbf{x}_{2}\right)\right) \\
& \exists \mathbf{x}_{1} \in \mathbb{Z}_{0} \exists \mathbf{x}_{2} \in \mathbb{Z}_{0}\left(\mathbf{x}_{1} \neq \mathbf{x}_{2} \Lambda \neg\left(f\left(\mathbf{x}_{1}\right) \neq f\left(\mathbf{x}_{2}\right)\right)\right) \\
& \exists \mathbf{x}_{1} \in \mathbb{Z}_{0} \exists \mathbf{x}_{2} \in \mathbb{Z}_{0}\left(\mathbf{x}_{1} \neq \mathbf{x}_{2} \boldsymbol{\Lambda} \mathbf{f (\mathbf { x } _ { 1 }) = \boldsymbol { f } (\mathbf { x } _ { 2 }))}\right.
\end{aligned}
$$

Therefore, we need to find $x_{1}, x_{2} \in \mathbb{Z}$ such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$. Can we do that?

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$
\forall x_{1} \in \mathbb{Z} . \forall x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

What is the negation of this statement?

$$
\begin{aligned}
& \neg \forall X_{1} \in \mathbb{Z} . \forall X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \rightarrow f\left(X_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists X_{1} \in \mathbb{Z} . \neg \forall X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \exists X_{2} \in \mathbb{Z} . \neg\left(X_{1} \neq X_{2} \rightarrow f\left(X_{1}\right) \neq f\left(X_{2}\right)\right) \\
& \exists x_{1} \in \mathbb{Z} . \exists x_{2} \in \mathbb{Z} .\left(x_{1} \neq x_{2} \wedge \neg\left(f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)\right) \\
& \exists X_{1} \in \mathbb{Z} . \exists X_{2} \in \mathbb{Z} .\left(X_{1} \neq X_{2} \boldsymbol{\Lambda}\left(X_{1}\right)=f\left(X_{2}\right)\right)
\end{aligned}
$$

Therefore, we need to find $x_{1}, x_{2} \in \mathbb{Z}$ such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$. Can we do that?

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof: We will prove that there exist integers x_{1} and x_{2} such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof: We will prove that there exist integers x_{1} and x_{2} such that $\chi_{1} \neq \chi_{2}$, but $f\left(\chi_{1}\right)=f\left(x_{2}\right)$.
Let $x_{1}=-1$ and $x_{2}=+1$.

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.
Proof: We will prove that there exist integers x_{1} and x_{2} such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Let $x_{1}=-1$ and $x_{2}=+1$.

$$
f\left(x_{1}\right)=f(-1)=(-1)^{4}=1
$$

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.
Proof: We will prove that there exist integers x_{1} and x_{2} such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Let $x_{1}=-1$ and $x_{2}=+1$.

$$
f\left(x_{1}\right)=f(-1)=(-1)^{4}=1
$$

and

$$
f\left(x_{2}\right)=f(1)=1^{4}=1
$$

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof: We will prove that there exist integers x_{1} and x_{2} such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Let $x_{1}=-1$ and $x_{2}=+1$.

$$
f\left(x_{1}\right)=f(-1)=(-1)^{4}=1
$$

and

$$
f\left(x_{2}\right)=f(1)=1^{4}=1
$$

so $f\left(x_{1}\right)=f\left(x_{2}\right)$ even though $x_{1} \neq x_{2}$, as required.

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof: We will prove that there exist integers x_{1} and x_{2} such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Let $x_{1}=-1$ and $x_{2}=+1$.

$$
f\left(x_{1}\right)=f(-1)=(-1)^{4}=1
$$

and

$$
f\left(x_{2}\right)=f(1)=1^{4}=1
$$

so $f\left(x_{1}\right)=f\left(x_{2}\right)$ even though $x_{1} \neq x_{2}$, as required.

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof: We will prove that there exist integers x_{1} and x_{2} such that $\chi_{1} \neq \chi_{2}$, but $f\left(\chi_{1}\right)=f\left(\chi_{2}\right)$.

How many of the following are correct ways of starting off this proof?
Assume for the sake of contradiction that f is not injective.
Assume for the sake of contradiction that there are integers x_{1} and x_{2} where $f\left(x_{1}\right)=f\left(x_{2}\right)$ but $x_{1} \neq x_{2}$.
Consider arbitrary integers x_{1} and χ_{2} where $\chi_{1} \neq x_{2}$. We will prove that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Consider arbitrary integers x_{1} and x_{2} where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will prove that $\chi_{1} \neq \chi_{2}$.

Injective Functions

Theorem: Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(x)=x^{4}$. Then f is not injective.

Proof: We will prove that there exist integers x_{1} and x_{2} such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Let $x_{1}=-1$ and $x_{2}=+1$.

$$
f\left(x_{1}\right)=f(-1)=(-1)^{4}=1
$$

and

$$
f\left(x_{2}\right)=f(1)=1^{4}=1
$$

so $f\left(x_{1}\right)=f\left(x_{2}\right)$ even though $x_{1} \neq x_{2}$, as required.

Injections and Composition

Injections and Composition

- Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is an injection.
- Our goal will be to prove this result. To do so, we're going to have to call back to the formal definitions of injectivity and function composition.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof:

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective.

There are two definitions of injectivity that we can use here:
$\forall a_{1} \in A . \forall a_{2} \in A .\left((g \circ f)\left(a_{1}\right)=(g \circ f)\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)$
$\forall a_{1} \in A . \forall a_{2} \in A .\left(a_{1} \neq a_{2} \rightarrow(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)\right)$

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective.

There are two definitions of injectivity that we can use here:
$\forall a_{1} \in A . \forall a_{2} \in A .\left((g \circ f)\left(a_{1}\right)=(g \circ f)\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)$
$\forall a_{1} \in A . \forall a_{2} \in A .\left(a_{1} \neq a_{2} \rightarrow(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)\right)$

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective.

There are two definitions of injectivity that we can use here:
$\forall a_{1} \in A . \forall a_{2} \in A .\left((g \circ f)\left(a_{1}\right)=(g \circ f)\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)$
$\forall a_{1} \in A . \forall a_{2} \in A .\left(a_{1} \neq a_{2} \rightarrow(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)\right)$
Therefore, we'll choose an arbitrary $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$, then prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$.

How is $(g \circ f)(x)$ defined?

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$.

How is $(g \circ f)(x)$ defined?

$$
(g \circ f)(x)=g(f(x))
$$

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$.

How is $(g \circ f)(x)$ defined?

$(\boldsymbol{g} \circ \boldsymbol{f})(\boldsymbol{x})=\boldsymbol{g}(\boldsymbol{f}(\mathbf{x}))$

So we need to prove that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$. Equivalently, we need to show that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.

How is $(g \circ f)(x)$ defined?

$(g \circ f)(x)=\boldsymbol{g}(f(x))$

So we need to prove that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$. Equivalently, we need to show that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$. Equivalently, we need to show that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.
Since f is injective and $a_{1} \neq a_{2}$, we see that $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$. Equivalently, we need to show that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.
Since f is injective and $a_{1} \neq a_{2}$, we see that $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. Then, since g is injective and $f\left(a_{1}\right) \neq f\left(a_{2}\right)$, we see that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$, as required.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$. Equivalently, we need to show that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.
Since f is injective and $a_{1} \neq a_{2}$, we see that $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. Then, since g is injective and $f\left(a_{1}\right) \neq f\left(a_{2}\right)$, we see that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$, as required.

Theorem: If $f: A \rightarrow B$ is an injection and $g: B \rightarrow C$ is an injection, then the function $g \circ f: A \rightarrow C$ is also an injection.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f: A \rightarrow C$ is also injective. To do so, consider any $a_{1}, a_{2} \in A$ where $a_{1} \neq a_{2}$. We will prove that $(g \circ f)\left(a_{1}\right) \neq(g \circ f)\left(a_{2}\right)$. Equivalently, we need to show that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.
Since f is injective and $a_{1} \neq a_{2}$, we see that $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. Then, since g is injective and $f\left(a_{1}\right) \neq f\left(a_{2}\right)$, we see that $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$, as required.

Let's take a five minute break!

Another Class of Functions

Mt. Shasta

Surjective Functions

A function $f: A \rightarrow B$ is called surjective (or onto) if this first-order logic statement is true about f :

$$
\forall b \in B . \exists a \in A \cdot f(a)=b
$$

("For every possible output, there's at least one possible input that produces it")
A function with this property is called a surjection.
How does this compare to our first rule of functions?

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof:

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof:

What does it mean for f to be surjective?

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof:

What does it mean for f to be surjective?

$$
\forall y \in \mathbb{R} . \exists x \in \mathbb{R} . f(x)=y
$$

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof:

What does it mean for f to be surjective?

$$
\forall y \in \mathbb{R} . \exists x \in \mathbb{R} . f(x)=y
$$

Therefore, we'll choose an arbitrary $y \in \mathbb{R}$, then prove that there is some $x \in \mathbb{R}$ where $f(x)=y$.

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof:

What does it mean for f to be surjective?

$$
\forall y \in \mathbb{R} . \exists x \in \mathbb{R} . f(x)=y
$$

Therefore, we'll choose an arbitrary $y \in \mathbb{R}$, then prove that there is some $x \in \mathbb{R}$ where $f(x)=y$.

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof:

What does it mean for f to be surjective?

$$
\forall \mathbb{y} \in \mathbb{R} . \exists x \in \mathbb{R} \cdot \boldsymbol{f}(\mathrm{x})=\mathbb{y}
$$

Therefore, we'll choose an arbitrary $y \in \mathbb{R}$, then prove that there is some $x \in \mathbb{R}$ where $f(x)=y$.

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof:

What does it mean for f to be surjective?

$$
\forall y \in \mathbb{R} . \exists x \in \mathbb{R} \cdot \boldsymbol{f}(\mathbf{x})=\boldsymbol{y}
$$

Therefore, we'll choose an arbitrary $y \in \mathbb{R}$, then prove that there is some $x \in \mathbb{R}$ where $f(x)=y$.

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.

Proof: Consider any $y \in \mathbb{R}$.

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x)=y$.

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x)=y$.
Let $x=2 y$.

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x)=y$.
Let $x=2 y$. Then we see that

$$
f(x)=f(2 y)
$$

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x)=y$.
Let $x=2 y$. Then we see that

$$
f(x)=f(2 y)=2 y / 2
$$

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x)=y$.
Let $x=2 y$. Then we see that

$$
f(x)=f(2 y)=2 y / 2=y
$$

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x)=y$.
Let $x=2 y$. Then we see that

$$
f(x)=f(2 y)=2 y / 2=y
$$

So $f(x)=y$, as required.

Surjective Functions

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x / 2$. Then $f(x)$ is surjective.
Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x)=y$.
Let $x=2 y$. Then we see that

$$
f(x)=f(2 y)=2 y / 2=y
$$

So $f(x)=y$, as required. \square

Composing Surjections

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof:

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections.
We will prove that the function $g \circ f: A \rightarrow C$ is also surjective.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections. We will prove that the function $g \circ f: A \rightarrow C$ is also surjective.

What does it mean for $\mathrm{g} \circ f: A \rightarrow C$ to be surjective?

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections. We will prove that the function $g \circ f: A \rightarrow C$ is also surjective.

What does it mean for $\mathrm{g} \circ f: A \rightarrow C$ to be surjective?

$$
\forall c \in C . \exists a \in A .(g \circ f)(a)=c
$$

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections. We will prove that the function $g \circ f: A \rightarrow C$ is also surjective.

What does it mean for $\mathrm{g} \circ f: A \rightarrow C$ to be surjective?

$\forall c \in C . \exists a \in A .(g \circ f)(a)=c$

Therefore, we'll choose arbitrary $c \in C$ and prove that there is some $a \in A$ such that $(g \circ f)(a)=c$.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections. We will prove that the function $g \circ f: A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a)=c$.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections.
We will prove that the function $g \circ f: A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a)=c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a))=c$.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections.
We will prove that the function $g \circ f: A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a)=c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a))=c$.
Consider any $c \in C$.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections.
We will prove that the function $g \circ f: A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a)=c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a))=c$.
Consider any $c \in C$. Since $g: B \rightarrow C$ is surjective, there is some $b \in B$ such that $g(b)=c$.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.

Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections.
We will prove that the function $g \circ f: A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a)=c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a))=c$.
Consider any $c \in C$. Since $g: B \rightarrow C$ is surjective, there is some $b \in B$ such that $g(b)=c$. Similarly, since $f: A \rightarrow B$ is surjective, there is some $a \in A$ such that $f(a)=b$.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections.
We will prove that the function $g \circ f: A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a)=c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a))=c$.
Consider any $c \in C$. Since $g: B \rightarrow C$ is surjective, there is some $b \in B$ such that $g(b)=c$. Similarly, since $f: A \rightarrow B$ is surjective, there is some $a \in A$ such that $f(a)=b$. This means that there is some $a \in A$ such that

$$
g(f(a))=g(b)=c,
$$

which is what we needed to show.

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.

Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections.
We will prove that the function $g \circ f: A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a)=c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a))=c$.
Consider any $c \in C$. Since $g: B \rightarrow C$ is surjective, there is some $b \in B$ such that $g(b)=c$. Similarly, since $f: A \rightarrow B$ is surjective, there is some $a \in A$ such that $f(a)=b$. This means that there is some $a \in A$ such that

$$
g(f(a))=g(b)=c
$$

Theorem: If $f: A \rightarrow B$ is surjective and $g: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is also surjective.
Proof: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary surjections. We will prove that the function $g \circ f: A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a)=c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a))=c$.
Consider any $c \in C$. Since $g: B \rightarrow C$ is surjective, there is some $b \in B$ such that $g(b)=c$. Similarly, since $f: A \rightarrow B$ is surjective, there is some $a \in A$ such that $f(a)=b$. This means that there is some $a \in A$ such that

$$
g(f(a))=g(b)=c,
$$

which is what we needed to show. \square

Injections and Surjections

An injective function associates at most one element of the domain with each element of the codomain.

A surjective function associates at least one element of the domain with each element of the codomain.

What about functions that associate exactly one element of the domain with each element of the codomain?

Bijections

A function that associates each element of the codomain with a unique element of the domain is called bijective.
Such a function is a bijection.
Formally, a bijection is a function that is both injective and surjective.
Bijections are sometimes called one-toone correspondences.
Not to be confused with "one-to-one functions."

Bijections and Composition

Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections.
Is $g \circ f$ necessarily a bijection?
Yes!
Since both f and g are injective, we know that $g \circ f$ is injective.
Since both f and g are surjective, we know that $g \circ f$ is surjective.
Therefore, $g \circ f$ is a bijection.

Inverse Functions

Mt. Shasta

$$
\begin{array}{cc}
\text { Mt. Lassen } \longleftarrow & \\
\text { Mt. Hood } & \text { California } \\
\text { Mt. St. Helens } \longleftarrow & \text { Washington } \\
\text { Oregon }
\end{array}
$$

Mt. Shasta

Inverse Functions

In some cases, it's possible to "turn a function around."
Let $f: A \rightarrow B$ be a function. A function $f^{1}: B \rightarrow A$ is called an inverse of \boldsymbol{f} if the following first-order logic statements are true about f and f^{1}
$\forall a \in A \cdot\left(f^{1}(f(a))=a\right) \quad \forall b \in B \cdot\left(f\left(f^{1}(b)\right)=b\right)$
In other words, if f maps a to b, then f^{1} maps b back to a and vice-versa.
Not all functions have inverses (we just saw a few examples of functions with no inverses).
If f is a function that has an inverse, then we say that f is invertible.

Inverse Functions

Theorem: Let $f: A \rightarrow B$. Then f is invertible if and only if f is a bijection.
These proofs are in the course reader. Feel free to check them out if you'd like!
Really cool observation: Look at the formal definition of a function. Look at the rules for injectivity and surjectivity. Do you see why this result makes sense?

