
Functions



What is a function?



Functions, High-School Edition



f(x) = x4 – 5x2 + 4

source: https://saylordotorg.github.io/text_intermediate-algebra/section_07/6aaf3a5ab540885474d58855068b64ce.png



source: http://study.com/cimages/multimages/16/asymptote_1.JPG



Functions, High-School Edition

In high school, functions are usually given as 
objects of the form

What does a function do?

It takes in as input a real number.

It outputs a real number

… except when there are vertical asymptotes 
or other discontinuities, in which case the 
function doesn't output anything.

𝑓 𝑥 =
𝑥3 + 3𝑥2 + 15𝑥 + 7

1 − 𝑥137



Functions, CS Edition



int flipUntil(int n) {
int numHeads = 0;
int numTries = 0;

while (numHeads < n) {
if (randomBoolean()) numHeads++;

numTries++;
}

return numTries;
}



Functions, CS Edition

In programming, functions

• might take in inputs,

• might return values,

• might have side effects,

• might never return anything,

• might crash, and

• might return different values when called 
multiple times.



What's Common?

Although high-school math functions and 
CS functions are pretty different, they have 
two key aspects in common:

• They take in inputs.

• They produce outputs.

In math, we like to keep things easy, so 
that's pretty much how we're going to 
define a function.



Rough Idea of a Function:

A function is an object f that takes in an 
input and produces exactly one output.

(This is not a complete definition – we'll 
revisit this in a bit.)

f



High School versus CS Functions

In high school, functions usually were given by a rule:

f(x) = 4x + 15

In CS, functions are usually given by code:

int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result *= i;
}
return result;

}

What sorts of functions are we going to allow from a 
mathematical perspective?



Dikdik
Nubian

Ibex
Sloth





… but also …



f(x) = x2 + 3x – 15



𝑓 𝑛 = ቊ
Τ−𝑛 2 if 𝑛 is even
Τ𝑛 + 1 2 otherwise

Functions like these 
are called piecewise 

functions.



To define a function, you will typically either

· draw a picture, or

· give a rule for determining the output.



In mathematics, functions are deterministic.

That is, given the same input, a function must 
always produce the same output.

The following is a perfectly valid piece of
C++ code, but it’s not a valid function under 

our definition:

int randomNumber(int numOutcomes) 

{    return rand() % numOutcomes;   }                                  



One Challenge



f(x) = x2 + 2x + 5

f( 3 ) = 32 + 3 · 2 + 5 = 20

f( 0 ) = 02 + 0 · 2 + 5 = 5

f( 3 ) = … ?
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f(x) = x2 + 2x + 5

f( 3 ) = 32 + 3 · 2 + 5 = 20

f( 0 ) = 02 + 0 · 2 + 5 = 5

f( 3 ) = … ?



f(      ) =

f(      ) =137 …?



We need to make sure we can't apply 
functions to meaningless inputs.



Domains and Codomains

• Every function f has two sets associated with it: 
its domain and its codomain.

• A function f can only be applied to elements of 
its domain. For any x in the domain, f(x) belongs 
to the codomain.

Domain Codomain

The function 
must be defined 

for every element 
of the domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

must be 
produced as 

outputs.



Domains and Codomains

• Every function f has two sets associated with it: 
its domain and its codomain.

• A function f can only be applied to elements of 
its domain. For any x in the domain, f(x) belongs 
to the codomain.

double absoluteValueOf(double x) {
if (x >= 0) {

return x;
} else {

return -x;
}

}

The domain of this function 
is ℝ. Any real number can be 

provided as input.

The codomain of this function 
is ℝ. Everything produced is a 
real number, but not all real 
numbers can be produced.



Domains and Codomains

• If f is a function whose domain is A and whose 
codomain is B, we write f : A → B.

• Think of this like a “function prototype” in C++.

f : A → B

Argument
type

Return
type

Function
name

B f(A arg);

Argument
type

Return
type

Function
name



The Official Rules for Functions

Formally speaking, we say that f : A → B if the following two 
rules hold.

First, f must be obey its domain/codomain rules:

∀a ∈ A. ∃b ∈ B. f(a) = b
(“Every input in A maps to some output in B.”)

Second, f must be deterministic:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ = a₂ → f(a₁) = f(a₂))
(“Equal inputs produce equal outputs.”)

If you’re ever curious about whether something is a function, 
look back at these rules and check! For example:

Can a function have an empty domain?

Can a function with a nonempty domain have an empty 
codomain?



Defining Functions

Typically, we specify a function by 
describing a rule that maps every element 
of the domain to some element of the 
codomain.

Examples:

• f(n) = n + 1, where f : ℤ → ℤ

• f(x) = sin x, where f : ℝ → ℝ

• f(x) = ⌈x⌉, where f : ℝ → ℤ

Notice that we're giving both a rule and the 
domain/codomain.
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Defining Functions

Typically, we specify a function by 
describing a rule that maps every element 
of the domain to some element of the 
codomain.

Examples:

f(n) = n + 1, where f : ℤ → ℤ

f(x) = sin x, where f : ℝ → ℝ

f(x) = ⌈x⌉, where f : ℝ → ℤ

Notice that we're giving both a rule and the 
domain/codomain.

This is the ceiling function – the smallest 
integer greater than or equal to x.  For 

example, ⌈1⌉ = 1, ⌈1.37⌉ = 2, and ⌈3.14⌉ = 
4.



Is This a Function From A to B?

A B

Stanford

Berkeley

Michigan

Arkansas

Cardinal

White

Blue

Gold



Is This a Function From A to B?

California

New York

Delaware

Washington DC

Sacramento

Dover

Albany

A B



Is This a Function 
From A to B?

عيد الفطر

عيد الأضحى

صَفَر

م مُحَرََّ

رَبيع الأوَّل

A

B

جُمادى الأولى

رَبيع الثاني

جُمادى الآخرة

شَعْبان

رَجَب

رَمَضان

ذو القعدة

شوَّال

ذو الحجة



Combining Functions



People Places Prices

Gili

Amanda

Hugo

Teresa

Mountain View

San Francisco

Redding, CA

Barrow, AK

Far Too Much

King's Ransom

A Modest Amount

Pocket Change

Robert
Palo Alto

f : People → Places g : Places → Prices

h : People → Prices
h(x) = g(f(x))



Function Composition

Suppose that we have two functions f : A → 
B and g : B → C.

Notice that the codomain of f is the domain 
of g. This means that we can use outputs 
from f as inputs to g.

f g



Function Composition

• Suppose that we have two functions f : A → B
and g : B → C.

• The composition of f and g, denoted g ∘ f, 
is a function where

• g ∘ f : A → C, and

• (g ∘ f)(x) = g(f(x)).

• A few things to notice:

• The domain of g ∘ f is the domain of f. Its 
codomain is the codomain of g.

• Even though the composition is written g ∘ f, 
when evaluating (g ∘ f)(x), the function f is 
evaluated first.

The name of the function is g ∘ f. 
When we apply it to an input x, 
we write (g ∘ f)(x). I don't know 

why, but that's what we do.



Time-Out for Announcements!



Problem Set One Feedback

• Hopefully you have all seen problem set 1 
feedback.

• If you haven’t already, please review the 
feedback we’ve left for you as soon as 
possible, as well as the solution set.

• We’re happy to answer any questions about 
specific comments in office hours or on 
Campuswire.

• If you believe we’ve made a grading error, 
see the Regrade Policies handout for 
instructions on how to submit a regrade.



Problem Set Three

• Problem Set Three is due on Thursday at 
11:59pm.

• Play around with binary relations, 
functions, their properties, and their 
applications!

• As usual, feel free to ask questions!

• Ask on Campuswire!

• Stop by office hours!

• Pseudobreak from psets next week.



Back to CS103!



Special Types of Functions



Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Pluto
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Injective Functions

A function f : A → B is called injective (or one-to-one) if 
the following statement is true about f:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different.”)

The following first-order definition is equivalent and is 
often useful in proofs.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

A function with this property is called an injection.

How does this compare to our second rule for functions?



Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.

This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■
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How many of the following are correct ways of starting off this proof?

Consider any n₁, n₂ ∈ ℕ where n₁ = n₂. We will prove that f(n₁) = f(n₂).
Consider any n₁, n₂ ∈ ℕ where n₁ ≠ n₂. We will prove that f(n₁) ≠ f(n₂).
Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We will prove that n₁ = n₂.
Consider any n₁, n₂ ∈ ℕ where f(n₁) ≠ f(n₂). We will prove that n₁ ≠ n₂.
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∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( f(n₀) = f(n₁) → n₀ = n₁ )

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( n₀ ≠ n₁ → f(n₀) ≠ f(n₁) )

Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ where f(n₀) = 
f(n₁), then prove that n₀ = n₁.
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How many of the following are correct ways of starting off this proof?

Consider any n₁, n₂ ∈ ℕ where n₁ = n₂. We will prove that f(n₁) = f(n₂).
Consider any n₁, n₂ ∈ ℕ where n₁ ≠ n₂. We will prove that f(n₁) ≠ f(n₂).
Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We will prove that n₁ = n₂.
Consider any n₁, n₂ ∈ ℕ where f(n₁) ≠ f(n₂). We will prove that n₁ ≠ n₂.

Good exercise: Repeat this proof using 
the other definition of injectivity!



Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■
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How many of the following are correct ways of starting off this proof?

Assume for the sake of contradiction that f is not injective.

Assume for the sake of contradiction that there are integers x₁ and x₂ 
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How many of the following are correct ways of starting off this proof?

Assume for the sake of contradiction that f is not injective.

Assume for the sake of contradiction that there are integers x₁ and x₂ 
where f(x₁) = f(x₂) but x₁ ≠ x₂.

Consider arbitrary integers x₁ and x₂ where x₁ ≠ x₂. We will prove
that f(x₁) = f(x₂).

Consider arbitrary integers x₁ and x₂ where f(x₁) = f(x₂). We will prove
that x₁ ≠ x₂.
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Great exercise: Repeat this proof 
using the other definition of 

injectivity.



Let’s take a five minute break!
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Surjective Functions

A function f : A → B is called surjective (or onto) 
if this first-order logic statement is true about f:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one 
possible input that produces it”)

A function with this property is called a 
surjection.

How does this compare to our first rule of 
functions?



Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = x / 2. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■
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What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ, then prove that 
there is some x ∈ ℝ where f(x) = y.
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Composing Surjections



Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is some 
b ∈ B such that g(b) = c. Similarly, since f : A → B is surjective, 
there is some a ∈ A such that f(a) = b. This means that there is 
some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■
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What does it mean for g ∘ f : A → C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c ∈ C and prove that there
is some a ∈ A such that (g ∘ f)(a) = c.
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Injections and Surjections

An injective function associates at most
one element of the domain with each 
element of the codomain.

A surjective function associates at least
one element of the domain with each 
element of the codomain.

What about functions that associate 
exactly one element of the domain with 
each element of the codomain?
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Bijections

A function that associates each element of 
the codomain with a unique element of the 
domain is called bijective.

Such a function is a bijection.

Formally, a bijection is a function that is 
both injective and surjective.

Bijections are sometimes called one-to-
one correspondences.

Not to be confused with “one-to-one 
functions.”



Bijections and Composition

Suppose that f : A → B and g : B → C are 
bijections.

Is g ∘ f necessarily a bijection?

Yes!

Since both f and g are injective, we know 
that g ∘ f is injective.

Since both f and g are surjective, we know 
that g ∘ f is surjective.

Therefore, g ∘ f is a bijection.



Inverse Functions
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Inverse Functions

In some cases, it's possible to “turn a function 
around.”

Let f : A → B be a function. A function f-1 : B → A is 
called an inverse of f if the following first-order 
logic statements are true about f and f-1

∀a ∈ A. (f-1(f(a)) = a)         ∀b ∈ B. (f(f-1(b)) = b)

In other words, if f maps a to b, then f-1 maps b
back to a and vice-versa.

Not all functions have inverses (we just saw a few 
examples of functions with no inverses).

If f is a function that has an inverse, then we say 
that f is invertible.



Inverse Functions

Theorem: Let f : A → B. Then f is invertible 
if and only if f is a bijection.

These proofs are in the course reader. Feel 
free to check them out if you'd like!

Really cool observation: Look at the 
formal definition of a function. Look at the 
rules for injectivity and surjectivity. Do you 
see why this result makes sense?


