Functions

What is a function?

Functions, High-School Edition

source: https://saylordotorg.github.io/text_intermediate-algebra/section_07/6aaf3a5ab540885474d58855068b64ce.png

source: http://study.com/cimages/multimages/16/asymptote_1.JPG

Functions, High-School Edition

In high school, functions are usually given as objects of the form

$$f(x) = \frac{x^3 + 3x^2 + 15x + 7}{1 - x^{137}}$$

What does a function do?

It takes in as input a real number.

It outputs a real number

... except when there are vertical asymptotes or other discontinuities, in which case the function doesn't output anything.

Functions, CS Edition

```
int flipUntil(int n) {
    int numHeads = 0;
    int numTries = 0;
    while (numHeads < n) {
        if (randomBoolean()) numHeads++;
    }
}</pre>
```

```
numTries++;
```

return numTries;

Functions, CS Edition

In programming, functions

- might take in inputs,
- might return values,
- might have side effects,
- might never return anything,
- might crash, and
- might return different values when called multiple times.

What's Common?

Although high-school math functions and CS functions are pretty different, they have two key aspects in common:

- They take in inputs.
- They produce outputs.

In math, we like to keep things easy, so that's pretty much how we're going to define a function.

Rough Idea of a Function:

A function is an object *f* that takes in an input and produces exactly one output.

(This is not a complete definition – we'll revisit this in a bit.)

High School versus CS Functions

In high school, functions usually were given by a rule:

f(x) = 4x + 15

In CS, functions are usually given by code:

```
int factorial(int n) {
    int result = 1;
    for (int i = 1; i <= n; i++) {
        result *= i;
    }
    return result;
}</pre>
```

What sorts of functions are we going to allow from a mathematical perspective?

... but also ...

$f(x) = x^2 + 3x - 15$

$$f(n) = \begin{cases} -n/2 & \text{if } n \text{ is even} \\ (n+1)/2 & \text{otherwise} \end{cases}$$

Functions like these are called *piecewise functions*. To define a function, you will typically either

- \cdot draw a picture, or
- \cdot give a rule for determining the output.

In mathematics, functions are *deterministic*.

That is, given the same input, a function must always produce the same output.

The following is a perfectly valid piece of C++ code, but it's not a valid function under our definition:

int randomNumber(int numOutcomes)

{ return rand() % numOutcomes; }

One Challenge

 $f(x) = x^2 + 2x + 5$

 $f(x) = x^2 + 2x + 5$

$f(3) = 3^2 + 3 \cdot 2 + 5 = 20$

$f(x) = x^2 + 2x + 5$

$f(3) = 3^2 + 3 \cdot 2 + 5 = 20$ $f(0) = 0^2 + 0 \cdot 2 + 5 = 5$

 $f(x) = x^2 + 2x + 5$

$f(3) = 3^2 + 3 \cdot 2 + 5 = 20$ $f(0) = 0^2 + 0 \cdot 2 + 5 = 5$

We need to make sure we can't apply functions to meaningless inputs.

Domains and Codomains

- Every function f has two sets associated with it: its *domain* and its *codomain*.
- A function *f* can only be applied to elements of its domain. For any *x* in the domain, *f*(*x*) belongs to the codomain.

Domains and Codomains

- Every function f has two sets associated with it: its *domain* and its *codomain*.
- A function *f* can only be applied to elements of its domain. For any *x* in the domain, *f*(*x*) belongs to the codomain.

Domains and Codomains

- If *f* is a function whose domain is *A* and whose codomain is *B*, we write $f : A \rightarrow B$.
- Think of this like a "function prototype" in C++.

The Official Rules for Functions

Formally speaking, we say that $f : A \rightarrow B$ if the following two rules hold.

First, *f* must be obey its domain/codomain rules:

 $\forall a \in A. \exists b \in B. f(a) = b$ ("Every input in A maps to some output in B.")

Second, *f* must be deterministic:

 $\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 = a_2 \rightarrow f(a_1) = f(a_2))$ ("Equal inputs produce equal outputs.")

If you're ever curious about whether something is a function, look back at these rules and check! For example:

Can a function have an empty domain?

Can a function with a nonempty domain have an empty codomain?

Defining Functions

Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.

Examples:

- f(n) = n + 1, where $f : \mathbb{Z} \to \mathbb{Z}$
- $f(x) = \sin x$, where $f : \mathbb{R} \to \mathbb{R}$
- f(x) = [x], where $f : \mathbb{R} \to \mathbb{Z}$

Notice that we're giving both a rule and the domain/codomain.

Defining Functions

Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.

Examples:

- f(n) = n + 1, where $f : \mathbb{Z} \to \mathbb{Z}$
- $f(x) = \sin x$, where $f : \mathbb{R} \to \mathbb{R}$
- f(x) = [x], where $f : \mathbb{R} \to \mathbb{Z}$

Notice that we're giving both a rule and the domain/codomain.

Defining Functions

Typically, we specify a function by describing a rule that maps every element of the domain to some This is the ceiling function – the smallest integer greater than or equal to x. For codomain.

Examples:

example, [1] = 1, [1.37] = 2, and [3.14] =

- f(n) = n + 1, where $f : \mathbb{Z} \to \mathbb{Z}$
- $f(x) = \sin x$, where $f : \mathbb{R} \to \mathbb{R}$
- f(x) = [x], where $f : \mathbb{R} \to \mathbb{Z}$

Notice that we're giving both a rule and the domain/codomain.

Is This a Function From A to B?

Is This a Function From A to B?

Combining Functions

Function Composition

Suppose that we have two functions $f : A \rightarrow B$ and $g : B \rightarrow C$.

Notice that the codomain of f is the domain of g. This means that we can use outputs from f as inputs to g.

Function Composition

- Suppose that we have two functions $f: A \rightarrow B$ and $g: B \rightarrow C$.
- The composition of f and g, denoted g f, is a function where
 - $g \circ f : A \to C$, and
 - $(g \circ f)(x) = g(f(x)).$
- A few things to notice:

The name of the function is $g \circ f$. When we apply it to an input x, we write $(g \circ f)(x)$. I don't know why, but that's what we do.

- The domain of $g \circ f$ is the domain of f. Its codomain is the codomain of g.
- Even though the composition is written $g \circ f$, when evaluating $(g \circ f)(x)$, the function f is evaluated first.

Time-Out for Announcements!

Problem Set One Feedback

- Hopefully you have all seen problem set 1 feedback.
- If you haven't already, please review the feedback we've left for you as soon as possible, as well as the solution set.
- We're happy to answer any questions about specific comments in office hours or on Campuswire.
- If you believe we've made a grading error, see the Regrade Policies handout for instructions on how to submit a regrade.

Problem Set Three

- Problem Set Three is due on Thursday at 11:59pm.
- Play around with binary relations, functions, their properties, and their applications!
- As usual, *feel free to ask questions!*
- Ask on Campuswire!
- Stop by office hours!
- Pseudobreak from psets next week.

Back to CS103!

Special Types of Functions

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune **Pluto**

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

A function $f : A \rightarrow B$ is called *injective* (or *one-to-one*) if the following statement is true about f:

 $\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2))$

("If the inputs are different, the outputs are different.")

The following first-order definition is equivalent and is often useful in proofs.

 $\forall a_1 \in A. \ \forall a_2 \in A. \ (f(a_1) = f(a_2) \rightarrow a_1 = a_2)$

("If the outputs are the same, the inputs are the same.")

A function with this property is called an *injection*.

How does this compare to our second rule for functions?

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

How many of the following are correct ways of starting off this proof?

Consider any $n_1, n_2 \in \mathbb{N}$ where $n_1 = n_2$. We will prove that $f(n_1) = f(n_2)$. Consider any $n_1, n_2 \in \mathbb{N}$ where $n_1 \neq n_2$. We will prove that $f(n_1) \neq f(n_2)$. Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$. Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) \neq f(n_2)$. We will prove that $n_1 \neq n_2$.

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$ $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$ $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$

 $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$

 $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function *f* to be injective?

 $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$

 $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$

 $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

Since $f(n_1) = f(n_2)$, we see that

 $2n_1 + 7 = 2n_2 + 7$.

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.
- Since $f(n_1) = f(n_2)$, we see that
- $2n_1 + 7 = 2n_2 + 7.$

This in turn means that

 $2n_1 = 2n_2$

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.
- Since $f(n_1) = f(n_2)$, we see that
- $2n_1 + 7 = 2n_2 + 7.$

This in turn means that

$$2n_1=2n_2$$

so $n_1 = n_2$, as required.

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.
- Since $f(n_1) = f(n_2)$, we see that
- $2n_1 + 7 = 2n_2 + 7.$

This in turn means that

 $2n_1 = 2n_2$

so $n_1 = n_2$, as required.

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof: Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

How many of the following are correct ways of starting off this proof?

Consider any $n_1, n_2 \in \mathbb{N}$ where $n_1 = n_2$. We will prove that $f(n_1) = f(n_2)$. Consider any $n_1, n_2 \in \mathbb{N}$ where $n_1 \neq n_2$. We will prove that $f(n_1) \neq f(n_2)$. Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$. Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) \neq f(n_2)$. We will prove that $n_1 \neq n_2$.

So $m = m_2$, as required.

Good exercise: Repeat this proof using the other definition of injectivity!

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

How many of the following are correct ways of starting off this proof?
Assume for the sake of contradiction that f is not injective.
Assume for the sake of contradiction that there are integers x₁ and x₂ where f(x₁) = f(x₂) but x₁ ≠ x₂.
Consider arbitrary integers x₁ and x₂ where x₁ ≠ x₂. We will prove that f(x₁) = f(x₂).
Consider arbitrary integers x₁ and x₂ where f(x₁) = f(x₂). We will prove that x₁ ≠ x₂.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

 $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

 $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

What is the negation of this statement?

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

```
\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
```

What is the negation of this statement?

 $\neg \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

```
\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
```

What is the negation of this statement?

 $\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)) \\ \exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)) \end{cases}$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

 $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

What is the negation of this statement?

 $\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

 $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

What is the negation of this statement?

 $\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land \neg (f(x_1) \neq f(x_2)))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective? $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ What is the negation of this statement? $\neg \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \neg \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \land \neg (f(x_1) \neq f(x_2)))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \land f(x_1) = f(x_2)))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

 $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

What is the negation of this statement?

 $\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land \neg (f(x_1) \neq f(x_2)))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land f(x_1) = f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

$$\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

What is the negation of this statement?

 $\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land \neg (f(x_1) \neq f(x_2)))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land f(x_1) = f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

$$\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

What is the negation of this statement?

 $\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land \neg (f(x_1) \neq f(x_2)))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land f(x_1) = f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for *f* to be injective?

 $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

What is the negation of this statement?

 $\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land \neg (f(x_1) \neq f(x_2)))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land f(x_1) = f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

and

$$f(x_2) = f(1) = 1^4 = 1$$

- **Theorem:** Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.
- **Proof:** We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

and

$$f(x_2) = f(1) = 1^4 = 1,$$

so $f(x_1) = f(x_2)$ even though $x_1 \neq x_2$, as required.

- **Theorem:** Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.
- **Proof:** We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

and

$$f(x_2) = f(1) = 1^4 = 1,$$

so $f(x_1) = f(x_2)$ even though $x_1 \neq x_2$, as required.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

How many of the following are correct ways of starting off this proof? Assume for the sake of contradiction that f is not injective. Assume for the sake of contradiction that there are integers x_1 and x_2

Assume for the sake of contradiction that there are integers x_1 and x_2 where $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

Consider arbitrary integers x_1 and x_2 where $x_1 \neq x_2$. We will prove that $f(x_1) = f(x_2)$.

Consider arbitrary integers x_1 and x_2 where $f(x_1) = f(x_2)$. We will prove that $x_1 \neq x_2$.

- **Theorem:** Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.
- **Proof:** We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

and

$$f(x_2) = f(1) = 1^4 = 1,$$

so $f(x_1) = f(x_2)$ even though $x_1 \neq x_2$, as required.

Injections and Composition

Injections and Composition

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is an injection.
- Our goal will be to prove this result. To do so, we're going to have to call back to the formal definitions of injectivity and function composition.

Proof:

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

There are two definitions of injectivity that we can use here:

 $\forall a_1 \in A. \ \forall a_2 \in A. \ ((g \circ f)(a_1) = (g \circ f)(a_2) \rightarrow a_1 = a_2)$ $\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

There are two definitions of injectivity that we can use here:

$\forall a_1 \in A. \ \forall a_2 \in A. \ ((g \circ f)(a_1) = (g \circ f)(a_2) \rightarrow a_1 = a_2)$ $\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

There are two definitions of injectivity that we can use here:

$\forall a_1 \in A. \ \forall a_2 \in A. \ ((g \circ f)(a_1) = (g \circ f)(a_2) \rightarrow a_1 = a_2)$ $\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$

Therefore, we'll choose an arbitrary $a_1, a_2 \in A$ where $a_1 \neq a_2$, then prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

```
(g \circ f)(x) = g(f(x))
```

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

```
(g \circ f)(x) = g(f(x))
```

So we need to prove that $g(f(a_1)) \neq g(f(a_2))$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

$(g\circ f)(x)=g(f(x))$

So we need to prove that $g(f(a_1)) \neq g(f(a_2))$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.
- Since *f* is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.
- Since *f* is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since *g* is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.
- Since *f* is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since *g* is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.
- Since *f* is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since *g* is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required.

Let's take a five minute break!

Another Class of Functions

A function $f : A \rightarrow B$ is called *surjective* (or *onto*) if this first-order logic statement is true about f:

 $\forall b \in B. \exists a \in A. f(a) = b$

("For every possible output, there's at least one possible input that produces it")

A function with this property is called a *surjection*.

How does this compare to our first rule of functions?

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

What does it mean for *f* to be surjective?

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

What does it mean for *f* to be surjective?

 $\forall y \in \mathbb{R}. \ \exists x \in \mathbb{R}. \ f(x) = y$

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

What does it mean for *f* to be surjective?

 $\forall y \in \mathbb{R}. \ \exists x \in \mathbb{R}. \ f(x) = y$

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

What does it mean for *f* to be surjective?

```
\forall y \in \mathbb{R}. \ \exists x \in \mathbb{R}. \ f(x) = y
```

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

What does it mean for *f* to be surjective?

 $\forall y \in \mathbb{R}. \exists x \in \mathbb{R}. f(x) = y$

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

What does it mean for *f* to be surjective?

```
\forall y \in \mathbb{R}. \exists x \in \mathbb{R}. f(x) = y
```

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof: Consider any $y \in \mathbb{R}$.

- **Theorem:** Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.
- **Proof:** Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.

- **Theorem:** Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.
- **Proof:** Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.

Let x = 2y.

- **Theorem:** Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.
- **Proof:** Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.
- Let x = 2y. Then we see that

f(x) = f(2y)

- **Theorem:** Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.
- **Proof:** Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.
- Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2

- **Theorem:** Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.
- **Proof:** Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.
- Let x = 2y. Then we see that

$$f(x) = f(2y) = 2y / 2 = y.$$

- **Theorem:** Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.
- **Proof:** Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.
- Let x = 2y. Then we see that

$$f(x) = f(2y) = 2y / 2 = y.$$

So f(x) = y, as required.

- **Theorem:** Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.
- **Proof:** Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.
- Let x = 2y. Then we see that

$$f(x) = f(2y) = 2y / 2 = y.$$

So f(x) = y, as required.

Composing Surjections

Proof:

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections.

- **Theorem:** If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

What does it mean for $g \circ f : A \rightarrow C$ to be surjective?

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

What does it mean for $g \circ f : A \rightarrow C$ to be surjective?

 $\forall c \in C. \exists a \in A. (g \circ f)(a) = c$

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

What does it mean for $g \circ f : A \rightarrow C$ to be surjective?

$\forall c \in C. \exists a \in A. (g \circ f)(a) = c$

Therefore, we'll choose arbitrary $c \in C$ and prove that there is some $a \in A$ such that $(g \circ f)(a) = c$.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that f(a) = b.

Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that f(a) = b. This means that there is some $a \in A$ such that

g(f(a)) = g(b) = c,

Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that f(a) = b. This means that there is some $a \in A$ such that

g(f(a)) = g(b) = c,

Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.
- Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that f(a) = b. This means that there is some $a \in A$ such that

$$g(f(a)) = g(b) = c,$$

which is what we needed to show. 🔳

Injections and Surjections

An injective function associates *at most* one element of the domain with each element of the codomain.

A surjective function associates *at least* one element of the domain with each element of the codomain.

What about functions that associate **exactly one** element of the domain with each element of the codomain?

Bijections

A function that associates each element of the codomain with a unique element of the domain is called *bijective*.

- Such a function is a *bijection*.
- Formally, a bijection is a function that is both *injective* and *surjective*.

Bijections are sometimes called *one-toone correspondences*.

Not to be confused with "one-to-one functions."

Bijections and Composition

Suppose that $f : A \rightarrow B$ and $g : B \rightarrow C$ are bijections.

Is *g* • *f* necessarily a bijection? **Yes!**

Since both f and g are injective, we know that $g \circ f$ is injective.

Since both f and g are surjective, we know that $g \circ f$ is surjective.

Therefore, $g \circ f$ is a bijection.

Inverse Functions

Inverse Functions

In some cases, it's possible to "turn a function around."

Let $f : A \to B$ be a function. A function $f^1 : B \to A$ is called an *inverse of f* if the following first-order logic statements are true about f and f^1

$\forall a \in A. \ (f^1(f(a)) = a) \qquad \forall b \in B. \ (f(f^1(b)) = b)$

In other words, if f maps a to b, then f^1 maps b back to a and vice-versa.

Not all functions have inverses (we just saw a few examples of functions with no inverses).

If f is a function that has an inverse, then we say that f is *invertible*.

Inverse Functions

Theorem: Let $f : A \rightarrow B$. Then f is invertible if and only if f is a bijection.

These proofs are in the course reader. Feel free to check them out if you'd like!

Really cool observation: Look at the formal definition of a function. Look at the rules for injectivity and surjectivity. Do you see why this result makes sense?